
Performance modeling and analysis of the
Universal Control Hub

Elena Gómez-Mart́ınez1 and José Merseguer2

1 R & D Department, Fundosa Technosite - ONCE Foundation
C/ Albasanz, 16 28037 Madrid, Spain.

megomez@technosite.es
2 Dpto. de Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza

C/Maŕıa de Luna,1 50018 Zaragoza, Spain.
jmerse@unizar.es

Abstract. People with special needs may find difficulties using elec-
tronic consumer devices, user interfaces limit their chances of having
full control on them. The Universal Remote Control (URC) is an ISO
standard that promotes pluggable and interoperable user interfaces to re-
motely operate electronic devices. The Universal Control Hub (UCH) is
the software architecture that materialises URC, and several implemen-
tations are currently available. However, users and developers wonder
about UCH feasibility to respond to future needs regarding performance.
In this paper, we conduct a study to analyze whether UCH can face mul-
tiple concurrent users. Serious problems are exposed at this regard in this
paper, they may contribute to question a solution that initially and from
the interoperability point of view was very-well suited.

1 Introduction

In industrial societies, people massively use electronic devices in everyday life:
mobile phones, TV sets or washing machines are some of several examples. Nev-
ertheless, their use may became very complicated, and even impossible, to peo-
ple with special needs, such as impaired or elderly people. Their user interfaces
are not generally designed considering their needs neither Design for all prin-
ciples [16]. According to last reports of Eurostat office [6], the majority of the
European countries own more mobile subscriptions than inhabitants. Internal
studies of ONCE3 foundation demonstrates similar trends for people with dis-
abilities. So, the achievement of moving the proper control of electronic devices
to adapted devices (e.g., mobile phone) may solve most user interface acces-
sibility issues. Therefore, interoperability is critical to realizing the vision of
personalized and pluggable user interfaces for electronic devices and services.
An International Standard on pluggable user interfaces has here a key role to
play, Universal Remote Console (URC) [13]. Such a standard would facilitate

3 National Organization of blind people in Spain.

user interfaces that adapt or can be adapted to user’s personal needs and pref-
erences. It would allow easy to use interfaces that employ various modalities for
input and output.

Limitations in URC advised to develop an architecture called Universal Con-
trol Hub (UCH) [26] to make URC practical in real scenarios. In short, UCH
is a URC realization that acts as a gateway for communicating devices. UCH
has been implemented, using different languages and technologies [24, 23], and
currently is offering adequate and interoperable service within environments of a
reduced number of users. However, for UCH is not only interoperability the crit-
ical issue, performance is or will be a must when the amount of plugged devices
depletes the infrastructure to the point of exhausting its resources. This may
happen in real scenarios such as intelligent buildings where hundreds or thou-
sands of users will concurrently access the deployed architecture. Although UCH
and underlying implementations have not been tested in such environments, it
is a goal for [11] to assess if UCH can offer quality of service in these interest-
ing settings. Note that the costs (in budget as well as in technical difficulties)
prevent the architecture from testing in the new proposed environments, then
in our opinion the use of predictive performance models can play a role in this
context. Besides, in case of identifying adversities that turn UCH into a non
practicable solution, the testing investment would be a waste in resources. So,
the assessment should be also useful to pinpoint where in the UCH architecture
are the problems located, again predictive models can offer cheaper solutions
than real experimentation.

The study of the performance of UCH in future real situations is then a
necessity that we will carry out using the formal model of Petri nets [1] in the
context of the PUMA [25] methodology. The contributions of this paper are:
(i) the use of PUMA in a real-complex case study in the industrial setting and
(ii) the assessment of the performance of the UCH architecture in situations
where over budget hampers the benefits of the evaluation. To the best of our
knowledge, PUMA has been applied in examples or academic studies, but not
in an industrial setting.

The rest of the paper contains the following sections. Section 2 gives details
of the URC-UCH architecture to understand potential performance problems
it may provoke. Section 3 recalls the PUMA methodology we have followed to
analyze UCH. Section 4 follows the suggested steps in previous section for us to
gain a performance model for UCH. From the performance model, we propose,
in section 5, a set of experiments that will allow to compare their results with
results obtained from current real implementations, then they will validate the
performance model. From the validated model, the system will be tested to assess
its usefulness for future necessities above described. The paper ends recalling
the lesson learned from the system analysis, proposing future work and giving a
conclusion.

2 Interoperable Architecture

The Universal Remote Console (URC) is an International Standard published
in 2008, ISO/IEC 24752 [13]. URC describes an interoperable architecture with
a set of elements that allow users to control one or various devices by means of
a remote console, in a transparent way for them. So, URC, or remote console,
defines a framework of remote access to control devices or services. It can be
designed both, as a dedicated hardware (e.g., a universal remote control), or as
a URC-complaint software to run on specific devices such as personal computer,
PDA or mobile phone. Therefore, it is a device or software architecture (gateway)
through which the user accesses other devices, then being capable of rendering
its user interface. This fact allows to develop adaptable user interfaces, which
can satisfy users with special needs. In the following, the devices or services that
the user wants to control are referred as targets, and the controller may be any
user device. For instance, a blind person can control the washing machine, in
this case the target device, by means of his/her mobile phone (controller device).
So, URC allows to show washing machine functionalities in accessible manner.

ISO/IEC 24752 does not impose how it must be implemented. Besides, it
does not assume a specific network protocol between controller and targets, but
only network requirements. So, a URC interaction could be implemented on top
of existing networking platforms as long as they support device discovery, con-
trol and eventing, such as UPnP (universal plug and play), Web services and/or
HomePlug (IEEE 1901 [10]). Among others, URC defines the following XML
documents: Target Description (TD) and User Interface Implementation De-
scription (UIID). The TD document permits the remote console to learn how to
use the target device, locate its functionalities, current status, and other inter-
esting information. The main advantage of UIID is that delivers a generic user
interface, so the remote console can implement it under the most adaptive way
to the user (optical, audible, tactile), addressing Design for All principles [16].
Nevertheless, URC presents some issues: lack of devices with URC technology,
lack of plugging in several targets and multiplicity of communication protocols.

The Universal Control Hub (UCH) [26] architecture fixes some of the above
mentioned problems. Indeed, UCH is seen as an “open box” between the target
and the controller, acting as gateway between various controllers and various
targets, which overcomes communication limitations of URC. Basically, UCH is
a manner to implement URC, that focusses on normalizing how the Control Hub
works. So, UCH defines APIs and interfaces between internal modules of Control
Hub, inheriting the URC XML documents. Figure 1 depicts the components in
UCH:

– User Interface Protocol Module (UIPM): is a “pluggable user interface”
that specifies a protocol between the controller and the Socket Layer via an
API. URC-HTTP protocol is a UIPM specification based on HTTP.

– Socket Layer: is the core part of UCH, hosting the sockets of the targets.
– Target Adaptor (TA): synchronizes one or multiple targets with their sock-

ets (running in the Socket Layer). TAs can be dynamically loaded at run-
time.

– Target Discovery Module (TDM): discovers specific targets, connects to
the Socket Layer via API, and to the targets via any protocol. TDMs can
also be dynamically loaded at runtime.

– UIList: contains a dynamic list of available user interfaces, as given by the
currently loaded UIPMs.

UCH
(Socket
Layer)

IU
P
M
L
iste
n
e
r

IT
D
M
L
iste
n
e
r

IT
A
L
iste
n
e
r

UIPM

IU
P
M

p
ro
p
rie
tra
ry

IT
D
M

p
ro
p
rie
tra
ry

TDM
IT
A

p
ro
p
rie
tra
ry

TA
Control

UIList

Controller Target

Control

Discovery

Discovery

UCH

Fig. 1. Components of UCH architecture taken from [21].

Currently, there are three implementations of UCH, two of them developed
under open source: UCHj [24] and UCHe [23], and another one under proprietary
software. UCHj is a Java implementation designed for a closed delimited network,
such as an office or home. UCHe is developed in C/C++ for embedded systems.
Recently, a UIPM client for iPhone smart phone has been published [22], however
this one does not implement UCH core.

These different implementations could seriously affect performance in a sce-
nario with concurrent users. As URC and UCH are based on exchanging XML
messages, they suggest poor performance, as previous studies have observed [5, 4,
9]. Since both UCHj and UCHe implement UIPM on HTTP, then UIPM perfor-
mance should be also taken into account. Moreover, dynamic loading of modules
(TA, TDM) will impact system performance. Considering that the Socket Layer
is the UCH core module, then it will play a decisive role from a performance
point of view, since it is attending all system requests.

3 Performance by Unified Model Analysis

UCH and related implementations comprise a complex software for which, as
above described, their performance was considered critical in project [11]. Com-
plexity advised to carry out the evaluation from different points of view, so
to allow comparison, gain insights on the products and also validate results.
Therefore, it was decided that performance of current implementations should
be traced both, experimentally and within a benchmark approach [2], but also
it was pointed out the interest of an evaluation with formal methods, hence
to be able to test the system not only in its current form but under future
variations (mainly concurrent users). Among available choices we decided to use

Performance by Unified Model Analysis (PUMA) [25] based on different reasons.
Firstly due to our previous experience with it, also because of the existence of
related tools that may simplify its application, and finally because PUMA in-
corporates formal methods within a methodological and pragmatic framework.

PUMA is a methodology for the performance evaluation of software systems.
It allows different kinds of software design models (first and foremost, UML
diagrams) as sources, and different kinds of performance models (e.g., queuing
networks or Petri nets) as targets. PUMA uses an intermediate performance
model, called Core Scenario Model [19] , as a bridge among sources and targets,
then smartly solving the problem of translating N sources into M targets.

PUMA uses the standard UML Profile for Schedulability, Performance and
Time Specification (UML-SPT) [18]. It introduces stereotypes and tagged values
that can be applied to design model elements in the UML diagrams, specially in
the behaviour and deployment specifications. UML-SPT allows to describe the
input performance values of the system and also the metrics that will characterize
the performance analysis.

The Core Scenario Model (CSM) [19] is based on the domain model of the
UML-SPT. The benefits of intermediate models, which are discussed in [19],
basically bring the choice to be transformed into different formal models. CSM
is focused on describing performance scenarios. A scenario is a sequence of Steps,
linked by Connectors that include sequence, branch/merge, fork/join and Start
and an End points, where it begins and finishes. A step is a sequential piece
of execution. A start connector is associated with a Workload, which defines
arrivals and customers, and may be open or closed. There exist two kinds of
Resources: Active, which execute steps, and Passive, which are acquired and
released during scenarios by special ResAcquire and ResRelease steps. Steps are
executed by (software) Components which are passive resources. A primitive step
has a single host processor, which is connected through its component.

Petri nets (PN) are a graphical and mathematical modelling tool for describ-
ing concurrent systems. We used a temporal extension, the class of Generalized
Stochastic Petri Nets (GSPN) [1], which distinguishes three kind of transitions:
immediate transitions; transitions with probabilities; and transitions with expo-
nentially distributed random firings.

Regarding automation, it is worth noticing that PUMA offers tools to trans-
late a UML-SPT annotated model into CSM models [19], and also a tool to
translate from CSM models into GSPN [3].

4 Performance Model

The construction of the performance model was conducted as PUMA indicates,
i.e., firstly identifying the scenarios that represent the common usage of the
system. UML was the design notation used.

4.1 Design Models

For an initial understanding and in order to determine the interactions that
mostly affect system performance, we start summarizing the necessary steps to
control a target device, see sequence diagram in Figure 2.

User Device Target DeviceUIPM UCH TATDM

InitServer()

StartDiscover() DiscoverTarget()

TargetDiscovered
TargetDiscovered()

RegisterTarget()

TargetDiscovered()

OpenUserContext()

GetCompatibleUis() GetCompatibleUis()

UIListUIList

InitTarget()
OpenSessionRequest()

OpenSessionRequest()

SessionID
SessionID

getValues()

getValues()

setValues() setValues()
setValues()

loop

setValues()

Fig. 2. Sequence diagram summarizing the target device control process.

In a first step, the UCH core is initialized and then it discovers and registers
connected target devices by means of TDM module. Targets are listed (UIPM)
as accessible devices for users to eventually manage their services. Then UCH
waits for requests from user devices. When a request arises and compatibility is

checked, the UIPM module opens a session and obtains the target devices list
and corresponding services or functionalities which are granted in the form of a
list (UIList document), that is eventually shown in the user interface. Hitherto,
the system has performed two complex processes, discovery and user interface
auto-adaptation, that obviously spend a considerable amount of time and re-
sources. However, we will leave them out of our performance study since they
are executed only once, i.e., they are the equivalent to start up the system, and
all we understand the need for this process and its implications. So, we assume
that from now on, the user is able to control the target device (i.e., to invoke
commands through setValues message), which also means to modify the de-
vice status and variables. Indeed, this is the normal usage of the system and it
repeats as many times as invoked commands (as indicated by the loop in the
diagram), besides, several concurrent users (all those initialized in the system)
will be executing. Then this loop interaction turns to be the performance critical
part of the system.

Sequence diagram in Figure 3 models how a user requests a target by means
of setValue() operation, i.e., it details the previous critical loop. Firstly, the
User Device communicates to UCH core by means of UIPM via URC-HTTP
protocol. The Socket Layer module, i.e. UCH core, connects to TA module in
order to send a setValue() request to the Target Device. Once the request is
made, the response is rendered in the User Device in an adaptive way.

The physical structure of the system is necessary to describe the resources
where to allocate the modules of the architecture, as well as their connections
through a network, which obviously will delay the interchange of messages among
modules according to the size of the messages. A UML deployment diagram,
Figure 4, will help to understand these issues.

4.2 Performance Annotations

Once the detailed design has been carried out, the models of interest
(Figs. 3 and 4) have to be annotated as PUMA proposes, i.e., with performance
information according to the UML Profile for Schedulability, Performance and
Time Specification (UML-SPT) [18]. They will help to introduce input parame-
ters and metrics in the eventual performance model.

Table 1 summarizes this performance information concerning atomic actions
duration collected by experimental tests, which have considered both UCHj and
UCHe implementations. These actions are represented by <<PAstep>> stereo-
type, where PAdemand tag specifies its corresponding average execution time as
an exponentially distributed random variable.

Other parameter that may affect system performance is the access to the
target device, which is tagged by the PAextOp value. In the following, let us
assume that this time is negligible, since it is independent of UCH architecture
(e.g., the whole cycle time of a washing machine is very different from a TV set),
and obviously we have to take it as an external and non-controlable part of our
system.

org.myurc.webclient urchttp UchServletUchAction UCHUrcHttpUIPM SetValuesAction TargetListener TA Target Device

User

setValue()

setValue()

createEmptyDoc()

setTextContent()

serverRequest()

message http

doGet()

processRequest()

execute()

postRequest()

controllerRequest()

processRequest()

setValuesRequest()

setValuesRequest()
setValuesRequest()

setValuesRequest()

setValue()

sendUpdatedValues()
updateValues()

updateValues()
updateValues()

returnMapsetValueResponseMap

setValueResponseMap

setValueResponseMap

setValueResponseString

setValueResponse

responseDoc

pathValues

<<PAstep>>
{PArespTime=(’pred’,$RT)}

<<PAclosedLoad>>
{PApopulation=$NUsers}

<<PAstep>>
{PAextOp=(’network’,$net,’ms’)}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,($tta,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,($tuch,’ms’))}

<<PAstep>>
{PAextOp=(’network’,$net,’ms’)}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(0.1,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($tuipm,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(0.1,’ms’))}

<<PAstep>>
{PAextOp=(’target’,$target,’ms’)}

<<PAstep>>
{PAextOp=(’network’,$net,’ms’)}

<<PAstep>>
{PAextOp=(’network’,$net,’ms’)}

Fig. 3. Sequence diagram describing a key performance scenario: SetValue() request.

<<PAhost>>
User Device Processor

<<PAresource>> network

<<PAhost>>
Interop Processor

<<PAhost>>
Target Processor

Target Device

<<PApopulation>>
{PAclosedLoad=$NUsers}

UIPM

urchttp

UrcHttpUIPM

TA

UI Device

org.myurc.webclient

UCH core

TAListener

TDMListener

UchAction

UchServlet TDM

Fig. 4. Deployment diagram of UCH architecture.

Parameter UCHj UCHe

$tuipm 243.05 81.96

$tuch 3.00 1.18

$tta 51.45 1.27

Table 1. Mean execution time in milliseconds.

The metric to be calculated will be the system response time, it has been
annotated in the sequence diagram attached to the first message. The workload
of the system is the number of users, annotated in the first life line of the sequence
diagram. The rest of parameters of interest can also be seen in this diagram.

From the UML-SPT models we obtained the corresponding CSM model that
will not be depicted here for lack of space. Actually this model, being an inter-
mediate one, offers none further interesting details to understand the system.

4.3 GSPN Model

The next step in PUMA advises to transform the CSM into a performance
model (GSPN in our case), for which we used the CSM2GSPN translator [3]
then to obtain the GSPN in Figure 5. The value of $tuimp in Table 1 corre-
sponds with the duration of transition controllerRequest in the GSPN, as
indicated by annotation attached to the same message (controllerRequest)
in Figure 3. In the same way, values for GSPN transitions postRequest and
setValuesRequest correspond to variables $tuch and $tta. On the other
hand, setValue, sendUpdateValues and setValueResponse are external op-
erations whose duration is given by variables $net and $target that were set
to 0.01 milliseconds. These values were taken from real experimentation, they
are low because they depend on the network infrastructure that in this case was

the corporate intranet. Finally, transitions createEmptyDoc, setTextContent,

serverRequest, doGet, processRequest, execute and updateValues rep-
resent simple operations or calls, being their execution time around 0.01 mil-
liseconds. The accuracy of the latter values is imposed by the system clock
function. Resources are indicated with tokens in corresponding places. So, the
number of concurrent users, or system closed workload, is the number of to-
kens in place users, then matching to variable $NUsers in the sequence and
deployment diagrams. Tokens in place p userDevice represent the user device
(and its corresponding user interface) and hence the concurrent threads, while
places p uipm, p uch and p ta represent the UCH modules as resources. A first
glance to the GSPN reveals that the net sequentially executes the activities once
resources are acquired step by step, hence the performance will be hampered by
the number of concurrent users, place users, and alleviated by the number of
available threads, p userDevice, p uipm, p uch and p ta.

5 Performance Analysis

Once the performance model has been built, we used TimeNET [20] in order
to solve the GSPN by means of simulation techniques. Our first analysis goal
was to study UCH scalability considering the current open source implemen-
tations, UCHj and UCHe. Later, we will try to determine a system “optimal
configuration” in a context with several concurrent users.

5.1 Scalability

UCH was initially designed as an interoperable architecture for smart homes,
which means that relatively few people will be simultaneously using the system
to control different devices. Nevertheless, this architecture may be projected in
more complex environments, such as intelligent buildings, business buildings,
hospitals or hotels. In this case, the system will have to support requests from
several concurrent users.

Firstly, both implementations, UCHj and UCHe, were experimentally tested
within the INREDIS project [2, 12]. These experiments assumed that each user
wanted to control his/her own device, i.e., one user per target device. Results
regarding response time [2, 12] could be hardly obtained up to forty users due
to the difficulties of real experimentation. We reproduced these experiments
using our performance model, which meant to put as many tokens as users in
places users and p userDevice of the GSPN, so to also match one user to one
interface, and then we obtained the results in Figure 6. Differences in the results
between our performance model and the Java and C/C++ real implementations
accounted for less than a ten percent, then we assumed our GSPN as a valid
performance model and ready to address experiments initially not feasible to
carry out with the real implementations.

On the other hand, the discussion about what could be considered a good
response time is controversial, since besides the times so far considered, it may

users

p_userDevice

acq_userDevice

acq_uipm

end

rel_userDevice

p_uipm

setValue
createEmptyDoc

setTextContent

serverRequest

p_uch

acq_uch

doGet

processRequest

postRequest

execute

controllerRequest

processRequest

setValuesRequest

p_ta

acq_ta

setValue

SendUpdateValues

rel_uch

setValueResponse

rel_uipm

messageHTTP

updateValues

rel_ta

Fig. 5. Petri net describing the key performance scenario.

also depend on the kind of impairment the user has and on the kind of target
device the user wants to control. For example, elderly people could request com-
mands in their personal telecare device at a rate of few seconds. However for
a blind person it could last much more time to operate for instance the wash-
ing machine. Pragmatically, we will assume quantities around ten seconds as
acceptable response times, according to [15, 17]. This is so because in the exper-
iments (both, real and GSPN) we did not want to consider the time spend by
the impaired persons and neither the time to operate the target4. Therefore, for
concrete scenarios (persons and targets with defined profiles) the response times
will be higher.

Our next step, assuming valid the performance model, was to exercise the
same for a larger amount of concurrent users. Figure 7 extends experiments in

4 Note that this is not a limitation to evaluate the UCH architecture.

0

5

10

15

20

25

30

1 5 10 15 20 25 30 35 40

Number of users

R
e
sp

o
n
se

 T
im

e
 (

se
c
)

UCHj

UCHe

Fig. 6. Response time of UCHj and UCHe implementations from 1 to 40 concurrent
users.

Figure 6 up to 1000 users, so offering response time of the GSPN w.r.t. both
implementations, where we observe that UCH performs poorly, specially Java
implementation. Therefore, although UCHe outperforms UCHj, UCH should
not be considered as a practicable architecture in a real time environment with
hundreds of concurrent users. Now, we will try to get solutions by means of
replication.

5.2 Replication

UCH specification does not define whether UIPMs, TDMs and TAs modules
should be executed as independent processes or threads, or if they should be
allocated in different memory spaces, hence these are choices for each specific
implementation. In the case of both UCHj and UCHe, all UCH components
execute in the same space of memory and are attended by a unique process.

Now, we want to study an “optimal configuration” for the architecture by
means of modules replication. In fact, we replicated the two implementations of
UCH modules, i.e. UIPM, Socket Layer and TA modules (represented by places
p uipm, p uch, p ta in Figure 5), which were populated with threads ranging
from 1 to 25 in the same space of memory. Figure 8(a) shows the effect of
adding threads in UCHj implementation and Figure 8(b) in UCHe. Although
both graphics have similar shape, the order of magnitude is quite different. As
expected, UCHe outperforms UCHj. Note that using 15 threads, the response
times improve significantly in both cases, but adding more threads they do not
perform better. For a few hundreds of users, UCHe may get acceptable values
with 15 threads, around 8 seconds, however UCHj in these cases still is not
feasible, around 50 seconds. Figure 9 summarizes the response times of both
implementations with 15 threads.

0

200

400

600

800

1000

1200

1400

1600

1
10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
90
0

10
00

Number of users

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

UCHj

UCHe

Fig. 7. Response time of UCHj and UCHe implementations.

11
0
02
0
03
0
04
0
0

5
0
0

6
0
07
0
0

8
0
0

9
0
0

1
0
0
0

1
5

10
15

20

0

200

400

600

800

1000

1200

1400

1600

R
e
sp

o
n
se

 T
im

e
 (

se
c)

Number of users

Number o
f th

reads

11
0
02
0
03
0
04
0
05
0
06
0
0

7
0
08
0
0

9
0
0

1
0
0
0

1
5

10
15

20
25

0

25

50

75

100

125

150

175

200

225

250

275

R
e
sp

o
n
se

 T
im

e
 (

se
c)

Number of users

Number o
f th

reads
25

UCHj UCHe

a) UCHj implementation b) UCHe implementation

Fig. 8. Response time of UCH implementations adding threads.

As a conclusion, a solution for an “optimal configuration” for populated
environments could be a UCHe implementation of 15 threads, since as it can be
observed in the graph, UCHe response times in this setting may be acceptable.

0

20

40

60

80

100

120

1 100 200 300 400 500 600 700 800 900 1000

Number of users

R
e
sp

o
n
se

 T
im

e
 (

se
c
)

UCHj

UCHe

Fig. 9. Response times of UCHj and UCHe implementations using 15 threads.

6 Conclusions and Further Work

This paper has analysed the performance of the UCH interoperable architecture
through two open source implementations, UCHe and UCHj. The paper has
demonstrated that PUMA is useful for the assessment of an industrial case study.
The use of GSPNs has made possible to validate experimental results and to
analyse scenarios that otherwise could not be afforded with real experimentation.

The performance results demonstrate that current UCH implementations
fit in a very delimited context, with very few users. However we assessed that
system performance can be improved by adding threads, but also that UCHe
will always outperform UCHj, confirming that it is the best option for achieving
user requirements.

Regarding complex software projects of “similar” characteristics to UCH that
had been assessed using formal methods, we have found none in literature to be
compared. However, we can say that previous experiences with PUMA have been
reported in [25, 8, 7, 14], but these works are examples or studies for academic
purposes.

We think that further analyses of the GSPN can help improving URC
architecture and consequently related implementations. The solution explored
in this paper, i.e. module replication, have to be supplemented with other
architectural decisions that indeed we hope they could be assessed by the GSPN
analysis. The final objective of these assessments is to gain insight in closing the
“assessment loop” (Design → Performance Model → Analysis → Results → new

Design). Actually, the first transitions in the loop are well-known today and even
some tool support exists for them. However, very different is the case for the last
one (from Results to a new Design), and our interest is to further exploit this
project to gain insight at this regard and then to try to automate some aspects
of this transition, i.e. how to automate design decisions based on analysis results.

Acknowledgments The research described in this paper arises from a Span-
ish research project called INREDIS (INterfaces for RElations between Environ-
ment and people with DISabilities)[11]. INREDIS is led by Technosite and funded
by CDTI (Industrial Technology Development Centre), under the CENIT (Na-
tional Strategic Technical Research Consortia) Programme, in the framework of
the Spanish government’s INGENIO 2010 initiative. The opinions expressed in
this paper are those of the authors and are not necessarily those of the INREDIS
project’s partners or of the CDTI.
José Merseguer has been supported by the European Community’s 7th FP
project DISC (Grant Agreement n.INFSO-ICT-224498)
We would like to thank José Antonio Gutiérrez for his work in the experimental
tests.

References

1. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. John Wiley Series in Parallel Com-
puting - Chichester, 1995.

2. E. Catalán and M. Catalán. Performance Evaluation of the INREDIS framework.
Technical report, Departament Enginyeria Telematica, Universitat Politècnica de
Catalunya, 2010.

3. The CSM to GSPN translator. http://webdiis.unizar.es/˜jmerse/csm2pn.html.

4. D. Davis and M. Parashar. Latency Performance of SOAP Implementations. In
CCGRID, pages 407–412. IEEE Computer Society, 2002.

5. R. Elfwing, U. Paulsson, and L. Lundberg. Performance of SOAP in Web Ser-
vice Environment Compared to CORBA. In APSEC, pages 84–. IEEE Computer
Society, 2002.

6. Eurostat. Statistical Office of European Union. http://epp.eurostat.ec.europa.eu/.

7. E. Gómez-Mart́ınez, S. Ilarri, and J. Merseguer. Performance Analysis of Mobile
Agents Tracking. In Sixth International Workshop on Software and Performance
(WOSP 2007), pages 181–188. ACM, February 2007.

8. E. Gómez-Mart́ınez and J. Merseguer. Impact of SOAP Implementations in the
Performance of a Web Service-Based Application. In Geyong Min, Beniamino Di
Martino, Laurence Tianruo Yang, Minyi Guo, and Gudula Rünger, editors, ISPA
Workshops, volume 4331 of Lecture Notes in Computer Science, pages 884–896.
Springer, 2006.

9. M.R. Head, M. Govindaraju, A. Slominski, P. Liu, N. Abu-Ghazaleh, R. van Enge-
len, K. Chiu, and M.J. Lewis. A Benchmark Suite for SOAP-based Communication
in Grid Web Services. In SC, page 19. IEEE Computer Society, 2005.

10. IEEE. IEEE 1901 Draft Standard 3.0 for Broadband over Power Line Networks:
Medium Access Control and Physical Layer Specifications. 2010.

11. INREDIS. INterfaces for RElations between Environment and people with DISabil-
ities. http://www.inredis.es/.

12. INREDIS. Deliverable-78.2.1. Final Guide to a Generic Platform Deployment,
2010.

13. ISO. ISO 24752:2008 Information technology – User interfaces – Universal remote
console – Part 1: Framework. ISO, Geneva, Switzerland, 2008.

14. C.K.M. Marques, S. Ilarri, J. Merseguer, and G.C. Barroso. Performance analysis
of a dynamic architecture for reconfiguration of web servers clusters. In Proceedings
of the 6th International Conference on Networking and Services (ICNS’10), pages
224–229.

15. R. B. Miller. Response time in man-computer conversational transactions. In
AFIPS ’68 (Fall, part I): Proceedings of the December 9-11, 1968, fall joint com-
puter conference, part I, pages 267–277, New York, NY, USA, 1968. ACM.

16. A. F. Newell. Accessible computing – past trends and future suggestions: Commen-
tary on ”computers and people with disabilities”. ACM Transactions on Accessible
Computing (TACCESS), 1(2), 2008.

17. J. Nielsen. Usability Engineering. Morgan Kaufmann, 1993.
18. Object Management Group, http://www.uml.org. UML Profile for Schedulabibity,

Performance and Time Specification., January 2005. Version 1.1.
19. D. Petriu and M. Woodside. An intermediate metamodel with scenarios and re-

sources for generating performance models from UML designs. Software and Sys-
tems Modeling, 6(2):163–184, 2007.

20. The TimeNET tool, http://pdv.cs.tu-berlin.de/˜timenet/.
21. URC Consortium. http://myurc.org.
22. URC Consortium. iPhone client for UCH (iUCH).

http://myurc.org/tools/iPhone/.
23. URC Consortium. Universal Control Hub for C++ (UCHe).

http://myurc.org/tools/UCHe/,.
24. URC Consortium. Universal Control Hub for Java (UCHj).

http://myurc.org/tools/UCHj/.
25. C.M. Woodside, D.C. Petriu, D.B. Petriu, H. Shen, T. Israr, and J. Merseguer.

Performance by unified model analysis (PUMA). In WOSP, pages 1–12, 2005.
26. G. Zimmermann and G. C. Vanderheiden. The Universal Control Hub: An Open

Platform for Remote User Interfaces in the Digital Home. In Julie A. Jacko, editor,
HCI (2), volume 4551 of Lecture Notes in Computer Science, pages 1040–1049.
Springer, 2007.

