
Empir Software Eng manuscript No.
(will be inserted by the editor)

Performance Assessment of an Architecture with

Adaptative Interfaces for People with Special Needs

Industrial experience report

Elena Gómez-Mart́ınez · Rafael

González-Cabero · José Merseguer

Received: date / Accepted: date

Abstract People in industrial societies carry more and more portable elec-
tronic devices (e.g., smartphone or console) with some kind of wireless connec-
tivity support. Interaction with auto-discovered target devices present in the
environment (e.g., the air conditioning of a hotel) is not so easy since devices
may provide inaccessible user interfaces (e.g., in a foreign language that the
user cannot understand). Scalability for multiple concurrent users and response
times are still problems in this domain. In this paper, we assess an interop-
erable architecture, which enables interaction between people with some kind
of special need and their environment. The assessment, based on performance
patterns and antipatterns, tries to detect performance issues and also tries to
enhance the architecture design for improving system performance. As a result
of the assessment, the initial design changed substantially. We refactorized the
design according to the Fast Path pattern and The Ramp antipattern. More-
over, resources were correctly allocated. Finally, the required response time
was fulfilled in all system scenarios. For a specific scenario, response time was
reduced from 60 seconds to less than 6 seconds.

Keywords Software architecture · Performance assessment · ICT for people
with special needs · Industrial report · Performance patterns and antipatterns

Elena Gómez-Mart́ınez⋆

Babel Group, Universidad Politécnica de Madrid (Spain)
E-mail: egomez@babel.ls.fi.upm.es

Rafael González-Cabero
Ontology Engineering Group, Universidad Politécnica de Madrid (Spain)
E-mail: rgonza@fi.upm.es

José Merseguer
Dep. de Informática e Ingenieŕıa de Sistemas
Universidad de Zaragoza (Spain)
E-mail: jmerse@unizar.es

2 E. Gómez-Mart́ınez et al.

1 Introduction

Universal Access continues being a critical quality target for Information and
Communication Technologies (ICTs), as Stephanidis (2001) stated, especially
in industrial societies where there is a growing number of people with func-
tional diversity, including those with aging-related conditions. Indeed, ICTs
may require particular skills and abilities to interact with platforms, the
plethora of wireless communication systems and smart devices such as kiosks
or ATMs. The inexistence of these skills and abilities extends in some cases the
traditional concept of disabled people towards people with functional diversity
or special needs. The growing gap between their abilities and access to ICT is
called the digital divide.

The INREDIS project1 (INterfaces for RElations between Environment
and people with DISabilities) aimed to develop environments that enable the
creation of communications and interaction channels between people with
some kind of special need and their context, where the targets are a set of
auto-discoverable devices. More than 200 researchers from 14 Spanish com-
panies and 19 research organizations collaborated to carry out this project
during 48 months and a budget of e23.6 millions.

Although goal of the INREDIS project was to completely develop an ac-
cessibility architecture for disabled people, here we only focus on the analysis
and design steps of the project, in particular in the performance assessment
carried out. The rationale for the assessment is to explore the feasibility of
deploying this architecture in environments with a large number of concur-
rent users. Early performance assessment for the system architecture is highly
desirable to prevent underperformance during system deployment.

The assessment is carried out using principles and techniques of the Soft-
ware Performance Engineering (SPE, Smith 1990; Cortellessa et al 2011). SPE
represents the entire collection of software engineering activities and related
analyses used throughout the software development cycle, which are directed
to meeting performance requirements (Woodside et al 2007). The paper applies
SPE at the software architecture level. To the best of our knowledge, a com-
plete report of an industrial experience in the SPE field based on performance
patterns and antipatterns has not yet been reported.

This paper is an industrial experience report since we report results re-
garding the application of a performance assessment methodology to a real
industrial project, the INREDIS project. We have followed recommendations
from Runeson and Höst (2009) about case study research methodology for
software engineering. Thus, the objective of the paper is twofold. First, we
want to describe how we applied SPE in the project, with special attention to
performance patterns and antipatterns. So, this paper can be a blueprint for
practitioners needing to evaluate performance in a software project. We call
this external objective of the paper. On the other hand, we want to assess the
INREDIS architecture for performance, which is of interest not only for the

1 http://www.inredis.es/default.aspx

Assessment of an Architecture for People with Special Needs 3

project engineers but also for designers of accessible user interfaces. We call
this internal objective.

The rest of the paper contains the following sections. Section 2 describes
the INREDIS Interoperable architecture. Section 3 outlines the assessment
approach. Section 4 accomplishes the external objective. Section 5 addresses
the internal objective. Section 6 discusses both objectives. Section 7 covers
related work and Section 8 concludes the paper. The paper also includes four
appendices. They detail some aspects of interest for the project, but the paper
can be understood without a deep reading of these appendices.

2 An Interoperable Architecture

The INREDIS architecture further develops the idea of Universal Control Hub
(UCH) proposed by Zimmermann and Vanderheiden (2007). Its rationale is
that a person with its adapted device (e.g., smartphone, PDA or universal
controller) should be able to interact and control different devices (television,
door locks, ATMs, and a long etcetera), as well as external software services.
For instance, a blind person can control the washing machine (target device),
by means of his/her mobile phone (controller device). The controller device
allows to introduce assistive technologies to bridge the gap between the user
and the target device.

The INREDIS architecture was conceived as a universal solution capable
to provide disabled and elderly people with accessible and personalized inter-
faces according to their preferences and needs. Consequently, the architecture
was designed for a general purpose context of use. Nevertheless, some running
prototypes were built for different environments, covering a wide range of real
world scenarios, among them leisure services (location and purchase tickets
for events), smart home (Sainz et al 2011), urban networking (Giménez et al
2012), social networks (Murua et al 2011), eGoverment (Alvargonzález et al
2010) and banking services (ATMs) (Pous et al 2012). While users with func-
tional diversity are able to fully exploit the architecture capabilities, “any”
user should be able to obtain benefits when using the system (e.g., using their
mobiles as universal remote controllers in the smart environment).

The most important components of the INREDIS architecture are depicted
in the UML deployment diagram2 in Figure 1:

– Knowledge Base (KB in Figure 1). It stores ontologies and instances sets
that provide formal descriptions of the elements in the INREDIS domain
(e.g. user, assistive software instances, devices, software, etc.). The KB also
stores the terminology and a collection of rules. It also provides mechanisms
for reasoning with each of these type of knowledge and allows querying all
the instances set using SPARQL (Prud’hommeaux and Seaborne 2006).

2 The reader should note that we have added some grey notes in the UML diagrams. They
are performance annotations that will be explained in Section 4.

4
E
.
G
ó
m
ez-M

a
rt́ın

ez
et

a
l.

<<gaExecHost>>

AT Server

<<gaExecHost>>

User Device Processor

<<gaCommHost>> network

<<gaExecHost>>

Server Processor

ATSUI KB

Target Device

Info External Services

Target

AMS

IG

Generator

DecisorInitial Creator

Injector

Context

Adaptor

Container

<<gaExecHost>>

Target Processor

Core
Orchestator

WebApp

StartingPoint Servlet

Interaction Enacter

<<gaExecHost>>

Web Service Processor

interopGateway

UCHWeb Service

ASSM

<<deploy>>

<<deploy>>

<<deploy>><<deploy>> <<deploy>> <<deploy>>

<<deploy>> <<deploy>>

<<deploy>> <<storageResource>>
{resMult=$pKB}

<<resource>>
{resMult=$pATS}

<<resource>>
{resMult=$pAMS}

<<gaExecHost>>

{resMult=$pinteropGateway}

<<resource>>
{resMult=$pUCH}

<<resource>>
{resMult=$pWS}

F
ig
.
1

U
M
L

d
ep

lo
y
m
en

t
d
ia
g
ra
m

o
f
th

e
IN

R
E
D
IS

In
tero

p
era

b
le

A
rch

itectu
re

Assessment of an Architecture for People with Special Needs 5

– Adaptive Modelling Server (AMS in Figure 1). It keeps updated the
KB content using information from different and heterogeneous sources
(application context, user interaction logs or complex events processing).

– Assistive Technology Server (ATS server in Figure 1). It provides au-
tomatic discovery and configuration of assistive technologies, in a smart
and transparent fashion reducing the existing accessibility gap that may
exist between the users and their universal controller device.

– Interface Generator (IG in Figure 1). It adapts interfaces expressed in
a generic and abstract language, a subset of the User Interface Markup
Language (Phanouriou 2000), into concrete utilizable and accessible ones
(implemented in XHTML (2010)). This activity is made in terms of the user
characteristics, the device capabilities and the context. All this is possible
using the reasoning capabilities provided by the Knowledge Base.

The main processes performed by the INREDIS architecture are pictured
by the UML Interaction Overview Diagram (IOD) in Figure 2.

performance scenario

[interacting][back]

ref
First Interaction

ref
Navigation

[exiting]

ref
Back To Top

ref
Device Interaction

<<gaWorkloadEvent>>
{pattern=(closed(population = $NUser))}

<<gaScenario>>
{respT=(expr=$RT,unit=’s’,statQ=mean,source=pred)}

Fig. 2 UML Interaction Overview Diagram of the main processes of the architecture

– First Interaction. It consists in the creation of the initial interface that
acts as the access medium to the environment for the user. In the generation
of such interface the system must take into consideration the relevant set of
devices and services for the user (the INREDIS perimeter) and their state
(without forgetting the special needs of the user). This process involves an
interface generation subprocess, for building an accessible XHTML inter-
face, and the determination of the set of assistive software instances that
permit the user to interact which such interface.

6 E. Gómez-Mart́ınez et al.

– Navigation. Once the user has selected the device or service to inter-
act with, the navigation process starts. Devices and services are defined
by complex multi-staged interface descriptions that users can navigate.
Through navigation, we simplify the information offered at a time to the
user and we allow complex conversations with the device.

– Device interaction. When user navigation ends, or when the user per-
forms certain actions in the device interface, interactions with the end
device occur. The architecture supports interactions with devices either as
a UCH Target or as a Web service transparently.

– Back to top. The user can at any moment reset its interaction with the
device, going back to the first interface that the device offers. An updated
initial interface of the device must be rendered again.

These processes can be summarized with the following example: A user
wants to turn the TV at home on. Firstly, the user logins with his/her nickname
and password using his/her mobile phone (device controller). A screenshot
with the available devices and services, grouped by environment, is displayed
(First Interaction), e.g. it appears “Smart Home”, “Products and Services”
and “Health Care”, among others. These devices and services depend on the
user’s location. The user navigates through the screenshots until s/he identifies
the device or service that s/he wants to control (Navigation); for instance,
in the “Smart Home” display, s/he selects “TV set” (target device) and “Turn
on/Turn off” options. S/he turns on the TV (Device Interaction) and waits
for the notification of the new status. Finally, s/he comes back to the first
screenshot in order to interact with other device or service (Back to top).
Obviously, all the screenshots must be accessible and adapted to the specific
needs and preferences of this user.

Besides of these processes, special attention deserves the Assistive Soft-

ware Selection Mechanism (ASSM) (Gómez-Mart́ınez et al 2013). The
ASSM makes the environment able to automatically select the most suitable
assistive technologies provided by the ATS. It considers possible discrepan-
cies between the user and the environment, namely in the case of functional
diversity.

Each of these four processes and the ASSM are carefully explained in Ap-
pendix A. The appendix also includes UML sequence diagrams, which describe
the behaviour of the system and make up the design of the INREDIS archi-
tecture. The rest of the paper can be understood without checking the full
design, however, we have considered of interest to include the design, since:

– Being the paper industrial, the reader can neatly realize the magnitude of
the project through its design.

– Being empirical the scope of the journal, the design of the system illustrates
this aspect and it can be very useful for practitioners since it provides
guidance for future projects.

– The design of the architecture is the cornerstone for performance evalu-
ation, the performance engineer needs to use these diagrams in his/her
work, as we later describe.

Assessment of an Architecture for People with Special Needs 7

Finally, although the paper is exclusively focussed on the analysis and de-
sign stages of the INREDIS architecture, it is worth mentioning that the actual
architecture implementation and the development of some target devices and
services was carried out cooperatively by all the INREDIS partners3.

3 Overview of the Methodology

For achieving the internal objective of the paper, i.e., the performance assess-
ment of the architecture, we have followed a methodology and the principles
of Software Performance Engineering (SPE) (Smith 1990).

The performance assessment was intricate, due to several reasons:

– INREDIS is a very large system, various developing teams of tens of people
were involved.

– Technologies were new for these teams. So, it was unknown how to capi-
talize these technologies for system performance maximization.

– Being the product targeted to people with special needs, performance re-
quirements may differ from the habitual ones.

– We expected to deploy the system in various settings, most of them not
yet completely defined. For example, hotels or facilities where hundreds of
users could leverage the system.

Performance evaluation of software systems has been traditionally accom-
plished after deployment. This is the well-known fix-it later approach and it has
well-known problems (Smith 1990). For example, the cost of re-architecting,
re-implementing and re-deploying the system when performance goals are not
fulfilled. Also the over-budget for being out of schedule as Woodside et al
(2007) described. Moreover, our project had specific reasons for rejecting the
fix it later approach:

– Although the operative versions of the system should be deployed at the
very end of the project, we needed to deploy prototypes at the beginning
of the project, for users experimentation.

– We needed to experiment with the potential environments previously re-
ferred. So, to gain some insight about their potential system performance.
Otherwise, successful implementations in real deployments could not be
reused in potential environments, which could imply to start a new project
for each new deployment.

Software Performance Engineering (SPE) was defined by Smith (1990) as
a research field that tries to overcome the problems previously described. The
proposal is to leverage, for evaluation purposes, the software models created
by designers. So, performance evaluation can be carried out early in the life-
cycle when implementation has not been accomplished yet. Prototypes can
help to validate evaluation results, evaluation is then seen as a by-product of
the software design process.

3 http://www.inredis.es/consorcio.aspx

8 E. Gómez-Mart́ınez et al.

In this project, we resorted to well-established SPE principles and tech-
niques for performance assessment of our architecture. The methodology we
followed, depicted in Figure 3, loops to decide whether the performance ob-
jectives are met and to obtain the architecture that can meet these objectives.
The methodology is a simplified version of the PUMA methodology (Perfor-
mance by Unified Model Analysis) proposed by Woodside et al (2005, 2013).
We based our work on PUMA for several reasons, among others because it
was developed by one of the most experienced performance evaluation groups
world-wide4, and because we have had satisfactory industrial experiences us-
ing it in the past (Gómez-Mart́ınez et al 2007; Gómez-Mart́ınez and Merseguer
2010). We simplified PUMA because in some respects it is difficult to use. In
particular, we could avoid the use of multiple formalisms because in our in-
dustrial project only one formalism, in this case Petri nets, would be used for
analysis (PUMA was designed for managing various formalisms in the same
project). Although we chose PUMA for the reasons above, there exist other
methodologies that could have been used provided that the authors would
have had previous industrial experiences with them. Among these proposals it
is worth mentioning Q-ImPrESS (2009), PASA by Williams and Smith (2002)
or the Palladio Component Model by Becker et al (2009); these methodologies
are reviewed in Section 7, moreover we highlight some works where they were
applied.

Our simplified methodology proposal is then composed of the following
phases:

Design Performance Model Performance Analysis

Assessment

Results

New Design

First Design

Design + Optimal
Configuration

[yes]

no

performance

objectives?

Fig. 3 Performance assessment methodology

– Design. The methodology begins by modeling the system architecture using
UML diagrams. We also address the behaviour of those scenarios of the
system critical for performance. Section 2 and Appendix A reported these
two first steps of this stage for our project. Finally, in the design it is also
introduced the performance view of the system, next section reports this
step for our project.

4 http://www.sce.carleton.ca/rads/index.html

Assessment of an Architecture for People with Special Needs 9

– Performance Model. As proposed by PUMA, for each critical scenario,
a performance model is obtained. We used Generalized Stochastic Petri
nets (Ajmone Marsan et al 1995) as performance model.

– Performance Analysis. Measures of interest in our project are response
time, scalability and resources utilization. They are computed by analysis
or simulation of the performance model. We will carry out sensitive analy-
sis, which means to modify performance parameters to test different system
configurations. Sensitive analysis is managed in the assessment step to lo-
cate performance issues (e.g., high response times or overused resources)
and solutions. In fact, the assessment of these outcomes will help us to get
a responsive and scalable system.

– Assessment. The assessment stage proposes alternatives to meet perfor-
mance objectives and to improve the architecture. Resource replication,
threading and improvement of service times are the choices commonly ex-
plored. In our project, we also considered performance patterns and per-
formance antipatterns as choices that could influence performance.

We have applied the methodology at software architecture design level.
In fact, architecture design is a crucial part of the software design process,
where decisions about which software elements will make up the system and
their relationships are taken. Software architectures have emerged in the last
years as the cornerstone for early evaluation of qualitative and quantitative
properties of the software (QoSA 2005-2013). In the SPE field, architecture
design is recognized as an asset for performance assessment.

4 Methodology: Approach for Performance Assessment

The following subsections accomplish our external objective, hence, we aim
to apprise practitioners of the use of the methodology. We offer advise by
indicating how we actually applied the methodology in the INREDIS project
and which were our choices (e.g., which languages, performance models or
tools we used).

4.1 Design

Section 2 and Appendix A described the UML design of the system, which was
elaborated by the software engineers of the INREDIS project. In particular,
the architectural description has a focus on the behavioral view, which is of
primary importance for performance assessment. The overall architecture was
presented in the deployment in Figure 1. The IOD in Figure 2 defines a general
system scenario made of four sub-scenarios, each one describing a part of the
system behaviour.

Following SPE principles, we now introduce the performance view of the
system. The usual way in SPE for introducing a performance specification is
by annotating the design diagrams. Annotations account for properties such

10 E. Gómez-Mart́ınez et al.

as workload, host demands or routing rates. Profiling is the mechanism UML
offers to enhance a design with specifications beyond the typical structural and
behavioral views. The UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) described by Object Management Group
(OMG) (2011) is a standard that customizes UML for the modeling and anal-
ysis of performance properties. MARTE builds on previous UML profiles and
it is the most comprehensive proposal for performance assessment using UML.
Key features of MARTE are the non-functional properties (NFP) framework
and the Value Specification Language (VSL). The former5 is used to define
data-types characterized by several properties, such as the source - that allows
to specify whether an NFP is a requirement or a measure to be predicted, the
type of statistical measure associated to an NFP (e.g., mean), the type of the
quality order relation in the value domain of a NFP, for comparative analysis
purposes. Instead, the VSL enables the specification of variables and complex
expressions according to a well-defined syntax.

In this step, the software engineer defines performance objectives of interest
for analysis of the architecture. MARTE annotations help to this end. We
present INREDIS performance objectives in detail in Section 4.3. MARTE
annotations appear as gray notes in the UML diagrams we have presented.
In the following, some of the most interesting annotations are commented.
They capture properties, measures and requirements of interest for carrying
out performance analysis.

– The workload has been specified in the IOD in Figure 2 using GaWork-

loadEvent annotation. This is a closed workload, then specifying the num-
ber of concurrent users in the system through variable $NUsers in VSL.
This variable will allow to parameterize the performance model with values
to carry out system sensitivity analysis.

– The response time has also been specified in the IOD in Figure 2, in
this case using GaScenario annotation. Response time is a measure to be
predicted during analysis as indicated by source=pred. The result will be
gathered in variable $RT . The unit of measurement are seconds and the
statistical measure is a mean.

– Host demands and the size of the messages are requirements needed
to compute system duration activities. They are provided by the engineer
during analysis. Figure 19 offers some examples. The rest of the sequence
diagrams complete these specifications.

– Sequence diagrams also capture system routing rates, in the alternative
fragments. See for example in Figure 20 the prob annotation in the GaStep

attached to the alternative fragments.
– System resources are expressed in MARTE as lifelines in the sequence di-

agrams. Annotations acqRes and relRes attached to GaCommStep specify
their acquisition and release. Figure 20 depicts several examples, see one
of them attached to the KB lifeline. For specifying the number of system
available resources, annotation resMult in the deployment (Figure 1) is

5 See the top grey note in Figure 19 for an illustrative example.

Assessment of an Architecture for People with Special Needs 11

used. Variables (for example $pKB or $pAMS) will allow to perform sensi-
tive analysis parameterizing the system with different number of resources.

The performance view of the INREDIS project was completely developed
using MARTE. The diagrams in Section 2 and Appendix A show this view,
which enabled the INREDIS design for performance evaluation. In the follow-
ing we summarize the relevant scenarios in the performance view:

– First interaction scenario in Figure 19, for creating an initial interface.
– Navigation scenario in Figure 22, for the user to navigate the interface.
– Device interaction scenario in Figure 24, for describing user interactions

with devices and services.
– Back to top scenario in Figure 25, for going back to the device top interface.

4.2 Performance Model

Following the methodology, we need to obtain a performance model for each
critical scenario that we have previously annotated.

Performance models are formal models that help to obtain measures of
interest (e.g., system response time) by analysis or simulation. There are dif-
ferent kinds of performance formalisms widely accepted in SPE: queuing net-
works (Lazowska et al 1984), stochastic process algebras (Hermanns et al 2002)
and stochastic Petri nets (Ajmone Marsan et al 1995). We used stochastic Petri
nets (SPN) and concretely generalized SPN (GSPN). Appendix B offers a brief
introduction to GSPNs. Some of the reasons for using GSPNs were: their ca-
pacity to represent routing rates, competition for shared resources, stochastic
duration of the host demands, parallel executions and forks and joins. All
these parameters were present in the INREDIS project. Moreover, we had ex-
perience applying GSPN, which is an asset in an industrial project, mainly to
minimize risks and to meet deadlines and schedules.

Fortunately, there exist SPE methodologies that translate performance-
annotated UML models into the formalisms above mentioned. For example,
the work in (Petriu and Woodside 2002) to obtain queuing networks, the work
in (Tribastone and Gilmore 2008) to obtain process algebras or (Bernardi and
Merseguer 2007; Distefano et al 2011) to obtain Petri nets. Some of these
methodologies have associated tools that automate the translation process.
Concretely, we used ArgoSPE (Gómez-Mart́ınez and Merseguer 2006) which
translates UML into GSPNs. We translated each critical scenario and obtained
the structure of a GSPN, Figure 4 depicts the GSPN for the First Interaction
scenario. The rest of GSPN models of the INREDIS project, obtained from the
design, appear in Appendix D. The translation, although automatic, required
some additional effort, Section 6 discusses these issues.

12 E. Gómez-Mart́ınez et al.

ini_perimeterCalculation

ini_getInitialInterfaceini_firstInteraction

getInitialInterface

askAT

getProfiles

chooseAdaptationTransform

getTransformations

adaptInitialInterface

setAmbient

getServiceInfo

setServiceState

getState

setAbsoluteLocation

getUserPerimeterServices

setAbsoluteLocationKB

call_perimeterCalculation

end_getInitialInterface

res_KB

acq_ATS

acq_KB

res_KB

res_ATS

acq_KB

end_perimeterCalculation

res_AMS

acq_KB

res_KB

acq_infoExternal

acq_KB

res_interopGateway

res_KB

acq_interpGateway

isUCH

acq_UCH

acq_AMS

acq_KB

res_KB

end_firstInteraction

invokeUCH

res_UCH

acq_WS

isWS

invokeWS

res_WS

acq_KB
request_firstInteraction

InteractionEnacter

res_AMS

res_KB

acq_KB

getUserPerimeter

res_KB

applyATTransformation

pATS

pInfoExternal

pInteropGateway

$nUsers

pUCH pWS

pAMS

pKB

end_cycle

Fig. 4 GSPN representing First Interaction scenario.

4.3 Performance Analysis

In this step, the software engineer reviews the performance objectives, which
were defined during the design step, and carries out the analysis of the perfor-

Assessment of an Architecture for People with Special Needs 13

mance model. Performance objectives are quantitative measures that can be
computed in the performance models.

There were two important objectives in the INREDIS project: responsive-
ness and scalability. Responsiveness is the ability of a system to meet its ob-
jectives for response time (or throughput). Scalability is the ability of a system
to continue to meet its response time as the demand for the software function
increases.

Responsiveness is a property of primary importance for software systems,
so we can build the right system but if it does not meet the expected response
time it will not be useful from the user perspective. In general, people with
special needs demand software with response times equal to people without
those needs, see discussion in Section 4.3.1. However, there is a group not
so demanding, those with intellectual disabilities, for which INREDIS is also
intended. In any case, being the scope of INREDIS people with all kind of
special needs, the adapted interfaces have to be timely created, for the user
not to lose the focus. Regarding scalability INREDIS has to be deployed in very
different environments, e.g., building automation, urban, leisure or financial.
The number of concurrent users can vary considerably, even for the same kind
of environment it changes by orders of magnitude, for example, in the building
automation case we could have smart homes, asylums, hospitals or hotels.
Considering that the architecture has to be the same for all environments,
it needs to scale accordingly. Moreover, the architecture had to be developed
by the core INREDIS team, while each partner develops target devices and
specific services without worrying about scalable aspects.

Beyond these objectives, that were established by the project leaders, we
determined as performance specialists, software resource utilization also as a
performance objective, due to its relation to scalability. Utilization appropri-
ately measures the effect of software as it scales in usage (Smith and Williams
2002b). Performance objectives based on the system capacity, static or dy-
namic, were not considered. Static capacity refers to how many entities of a
particular type can the system store permanently. This was not an issue in
INREDIS since the architecture was not targeted to store information. Dy-
namic capacity refers to how much demand can be placed on the system at
the same time, in this case, scalability is a more general measure.

The important task in this step is the analysis of the performance models,
according to the performance objectives, for obtaining results. We present such
results in Section 5. Next, we discuss implications of performance objectives
in the project and how these measures are computed in the GSPN models.

4.3.1 Responsiveness

From the user’s perspective, the response time is the number of seconds re-
quired to response to a user request. Basic advice regarding response times
has been studied by Miller (1968) and Card et al (1991), among others. The
Usability Engineering principles, proposed by Nielsen (1993) establish the fol-
lowing intervals:

14 E. Gómez-Mart́ınez et al.

– 0.1 second is about the limit for having the user feel that the system is
reacting instantaneously.

– 1.0 second is about the limit for the user’s flow of thought to stay uninter-
rupted, even though the user will notice the delay.

– 10 seconds is about the limit for keeping the user’s attention focused on
the dialogue. Users should be given feedback indicating when the computer
expects to be done.

Although target audience in our system has special needs, the response
times must be similar to users without those needs6 if we do not consider the
time spent by the disabled people to operate the target device. Then, in our
architecture, all the expected response times should be within these intervals.
Pragmatically, we will assume quantities around ten seconds as acceptable
response times. Nevertheless, we know that response time may also depend
on the kind of impairment the user has and on the kind of target device or
service the user wants to control. For example, elderly people could request
commands in their personal telecare device at a rate of few seconds. However,
for a blind person it could last much more time to operate for instance the
washing machine. On the other hand, it is important to note that slow response
times could prove frustrating for a person with cognitive disabilities, it also
has serious consequences for the usability of the system.

Computation of measures in the GSPN models We compute all the measures
(response time, utilization and scalability) under steady state assumption.
Steady state means that the system reaches an equilibrium, so, measures ob-
tained will continue in the future, which is a more general assumption than
transient state. In a GSPN, steady state analysis can be carried out when
the net is cyclical. However, the translation of a UML sequence diagram pro-
duces an acyclical GSPN, it starts with a resource place (see in Figure 4, place
$nUsers) and ends with a transition for the last scenario message (see in Fig-
ure 4, transition end cycle). Therefore, we need to add an arc from this last
transition to the starting place, then achieving a cyclical net (see the red arc in
Figure 4). Now, the scenario can be analyzed under steady state assumption.

Computation of responsiveness in the GSPN models The response time of a
scenario is calculated as the inverse of the throughput of the transition that
closes the entire execution cycle (see transition end cycle in Figure 4).

4.3.2 Utilization

Lazowska et al (1984) defined the utilization of a resource as the proportion of
time the resource is busy, or, equivalently, as the average number of customer
in service. From the SPE perspective, Smith and Williams (2002b) denote the
determination of software resource utilization to appropriately measure effect

6 For example, blind people interact with tactile interfaces by means of an immediate
audible feedback.

Assessment of an Architecture for People with Special Needs 15

of software as it scales in usage. Therefore, resource utilization analysis detects
resource saturation and potential bottlenecks when the system is highly popu-
lated and consequently, it permits to tune up the resource configuration. In our
project, apart from detecting bottlenecks, it is crucial an appropriate resource
utilization, since the architecture is planned to be deployed into cloud-based
infrastructures, which imply pay-per-use services. Being each new instance of
a thread independently invoiced, resource utilization must be optimized.

Computation of the utilization in the GSPN models Each resource, software or
hardware, is represented by a place in the GSPN. The number of tokens M in
the place represents the available copies of the resource. According to Sereno
and Balbo (1997), the utilization of a place is given by the steady state prob-
ability that the place is non-empty. On the other hand, the average number of
tokens in steady state represents the mean occupancy of the place n. Therefore,
the utilization U of a place p can be calculated as:

U(p) =
M − n

M

A resource is saturated when its utilization ratio is closed to 1. Neverthe-
less, Lazowska et al (1984) advice that percentages higher than 80% should be
analyzed.

4.3.3 Scalability

As discussed at the beginning of Section 4.3, depending on the environment,
the number of potential users in INREDIS could be small (e.g., smart home) or
large (e.g., intelligent buildings, public banking). Moreover, in an embedded
system, as our architecture, the scalability is not only conditioned by the
number of users but also for the internal demand of resources and services. As
such, the execution context is also crucial for scaling up the system.

Although implementations in large environments are not accomplished yet
in INREDIS, we strive for evaluating the scalability of the architecture also
in these contexts. In fact, as discussed in Section 3, SPE promotes evaluation
early in the life-cycle, before implementations. On the other hand, our archi-
tecture considers not only physical devices, but also software services available
on the Internet. Therefore, to cover all these cases, the system must support
requests from a large number concurrent users. We will parameterize such num-
ber through the system workload, taking into account that currently around
10 per cent of the total world population live with a disability, according to
United Nations7.

7 http://www.un.org/disabilities/default.asp?id=18

16 E. Gómez-Mart́ınez et al.

Computation of the architecture scalability in the GSPN models We deter-
mine the scalability of the system by calculating the response times using
future workload intensities (Smith and Williams 2002b). The closed workload
in the GSPN specifies the number of concurrent users, which is represented in
each scenario by the NUsers parameter. To study the system scalability, we
compute the system response time varying this parameter.

4.4 Performance Assessment

In the light of the analysis results, the aim of the assessment is to introduce
changes in the system for getting the best possible architecture configuration.
For each assessment iteration, we consider to apply at least: resource replica-
tion, performance patterns and performance antipatterns. Next, we describe
to which extend we use these techniques. Section 5 presents the results of
applying the techniques in our project.

4.4.1 Resource Replication

Utilization resource analysis detects resources which would be potential system
bottlenecks. In that case, resource replication is a choice. Software replication
relies on multithreading to serve multiple requests in parallel. Nevertheless,
this solution does not always work, since the bottleneck can be in the hard-
ware resources, such as I/O devices or CPU capacity. In the latter case, the
solution will be to add more CPU capacity (e.g., adding additional computa-
tional nodes).

Replication is modeled in the GSPN by populating the resource place with
new tokens.

4.4.2 Performance Patterns and Antipatterns

Gamma et al (1995) defined a pattern as a common solution to a problem
that occurs in many different contexts. Thereby, patterns provide generic solu-
tions for many architectural, design and implementation problems. Smith and
Williams (2002b) proposed performance patterns, which are inspired by de-
sign patterns and describe best practices for producing responsive and scalable
software. Table 2, in Appendix C, summarizes performance patterns, other im-
portant design patterns can be found in (Grand 1998, 2001; Lea 1999; Schmidt
et al 2000).

Antipatterns extend the notion of patterns to capture design errors and
their solution (Brown et al 1998). Smith and Williams (2000) defined perfor-
mance antipatterns as “bad practices” that affect software performance in a
negative way. Table 3, in Appendix C, summarizes some of the antipatterns
gathered and analyzed by Smith and Williams (2000, 2001, 2002a, 2003). Each
antipattern is characterized by its name, problem and textual solution descrip-
tion. Cortellessa et al (2012) formalized this description, by means of logical

Assessment of an Architecture for People with Special Needs 17

predicates, in order to systematize their identification. Thus, they built an
engine to automatically detect performance antipatterns and to refactorize
them. We follow Cortellessa’s approach to automatically identify performance
antipatterns in the INREDIS software architecture.

5 Results

This section develops our internal objective, hence, we pursue performance
results for assessing and eventually improving the INREDIS architecture. Our
first objective is the validation of the performance models. Later, we get results
from the valid models to assess an optimal system configuration according to
the performance objectives of the project.

5.1 Empirical Results and Validation of the Performance Models

In order to validate the architecture for running prototypes, some pivotal pieces
(modules) were implemented and tested within the INREDIS project. Tests
considered diverse users disabilities, preferences and profiles. Catalán and
Catalán (2010) tested the architecture experimentally, by using a set of user
controlled tests. The main challenge was to measure the satisfaction of the
user experience with diverse interaction modes of services and devices for peo-
ple with special needs. This level of satisfaction included usability aspects as
well as performance objectives. Additional experimental results can be found
in (INREDIS 2010).

As described in Section 2, the main modules making up the INREDIS
architecture are: Interface Generator, Knowledge Base, Assistive Technology
Server (ATS) and Adaptive Modelling Server (AMS). For experimental evalu-
ation, only the Interface Generator module was completely implemented. The
Knowledge Base module, which stores ontologies, was very low populated, only
with basic knowledge mechanisms, a minimum for experimentation. The ATS
was implemented to support only the users profiles and interaction modes
required for the tests. Finally, the basic functionality of the AMS was imple-
mented. These modules were executed to carry out the four system scenarios
(First Interaction, Navigation, Back to Top and Device Interaction), depicted
in Figure 2. The experimental tests were targeted to analyze the responsiveness
and scalability of the system. The tests were mainly focused on interoperabil-
ity and usability. Figure 5 shows the measured average response times of these
key performance scenarios in this user testing phase.

However, the burden of real experimentation with complex interoperable
architectures, elderly people, and people with special needs, raised quickly
and it greatly limited the evaluation. In this user testing phase, the number of
concurrent users never exceeded 5 due to the logistical difficulties of real ex-
perimentation, as Sainz et al (2011) described. On one hand, some of the users
needed caregiver or additional assistive products, also the Spanish Law fixes

18 E. Gómez-Mart́ınez et al.

directives for working with this kind of users. On the other hand, some tests
were made individually to specifically study user interactions. Finally, the cost
of the team for supporting the experiments and the facilities (e.g. smart home)
were also important issues for carrying out more complex experimentations.

Hence, experimentation problems and limitations of real implementations
advocated the use of models, specially in these initial phases of the system life-
cycle. Models can represent the system in a variety of hypothetical situations
and can perform analysis at a lower cost. SPE, as summarized in Section 3,
offers techniques and tools that can overcome these problems.

0

1

2

3

4

5

6

7

1 2 3 4 5

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Number of users

First Interaction

Navigation

Device Interaction

Back to Top

Fig. 5 Empirical response times for a set of test users.

0

10

20

30

40

50

60

70

1 10 20 30 40 50 60 70 80 90 100

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Number of users

First Interaction

Navigation

Device Interaction

Back to Top

Fig. 6 Response times for concurrent users using models.

We then reproduced these experiments using the performance models ob-
tained by the second step of the methodology. We got the results in Figure 6.
Note that using models we obtained results for one hundred users, which was
enough for our purposes. We could have obtained results for larger populations
using the same GSPN models by changing the workload.

Table 5.1 compares for each scenario the results obtained in real experi-
mentation (Real rows) with those obtained by our GSPN models (Model rows)

Assessment of an Architecture for People with Special Needs 19

We appreciate that differences (Var. rows) between our models and real ex-
perimentation are around a five percent in most cases, differences never went
beyond ten per cent, except for the Device Interaction scenario in the case of
three concurrent users. In this latter case we assume that the variation might
be caused by the accuracy level in the computation of the GSPN models.
Moreover, we observed that tendencies in the graphs were similar. So, we can
assume that our performance models can be useful to address experiments
initially not feasible to carry out with the real implementations.

Table 1 Results in seconds for each scenario

Number of users
Scenario 1 2 3 4 5 10 50 100
First Real 1.983 2.644 3.966 5.287 6.609 NE NE NE
Interaction Model 1.841 2.674 3.776 4.912 6.210 7.212 28.229 58.231

Var. ≃ 5% < 5% ≃ 5% > 5% > 5% - - -
Navigation Real 0.945 1.260 1.891 2.521 3.151 NE NE NE

Model 0.875 1.130 1.684 2.338 2.793 3.109 3.520 4.470
Var. > 5% ≃ 10% ≃ 10% ≃ 10% ≃ 10% - - -

Device Real 1.732 2.310 3.465 4.619 5.774 NE NE NE
Interaction Model 1.808 2.351 2.994 3.937 3.380 4.752 11.114 17.648

Var. ≃ 5% ≃ > 10% ≃ 10% ≃ 10% - - -
Back to Real 1.596 1.679 2.519 3.359 4.199 NE NE NE
Top Model 1.497 2.121 2.745 3.369 3.993 6.488 27.013 54.093

Var. ≃ 5% ≃ 10% > 5% ≃ < 5% - - -
NE - The experiment could not be carried out

Discussion of the Results: Performance View

First, we note that, as requested in Subsection 4.3.1, the experiments (both,
real and GSPN) did not consider the time spent by the disabled people, neither
the time to operate the target device or service8.

The discussion about what could be considered a good response time
was introduced in Subsection 4.3.1 from the Usability Engineering point of
view (Nielsen 1993). Pragmatically, we decided that quantities around ten
seconds could be considered as acceptable response times. From results in
Figure 6, we observe that both Device Interaction and Navigation scenarios
have acceptable response times. The Navigation scenario never goes beyond
six seconds, while the Device Interaction scenario is below ten seconds until
it reaches forty concurrent users. However, Back To Top and First Interaction
scenarios perform poorly. The reason is that both of them must calculate the
user context perimeter, which depends on the number of devices or services,
and their corresponding available operations. Therefore, our assessment loop,
developed in next subsection, concentrates on how to decrease response in
these scenarios mainly.

8 Note that this is not a limitation to evaluate the architecture.

20 E. Gómez-Mart́ınez et al.

5.2 Results of the Performance Assessment

Alternatives discussed in Section 4.4 for improving responsiveness were: re-
source replication (using utilization resource analysis) and application of per-
formance patterns and antipatterns. In the following, we conduct the study
following these alternatives for getting an “optimal system configuration”.

5.2.1 Resource Replication

Utilization resource analysis detects those resources/tasks9 which would be
potential system bottlenecks. Sub-section 4.4.1 explained how we compute
utilization in the GSPNs. Our analysis considered that some resources were
shared between several scenarios (e.g., the Adaptive Modelling Server (AMS),
which appears in the Back To Top and in the First Interaction scenarios).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
ti
liz

a
ti
o

n

Number of Users

First Interaction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
ti
liz

a
ti
o

n

Number of Users

Navigation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
ti
liz

a
ti
o

n

Number of Users

Device Interaction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
ti
liz

a
ti
o

n

Number of Users

Back To Top

KB ATS AMS Interoperability Gateway Target Service/Device

Fig. 7 Resource utilization of each key scenario.

Then, for each of the four key scenarios, we obtained the utilization of
all resources involved. However, Figure 7 depicts only the utilization of some

9 We recall that resources are represented: a) in the sequence diagrams by life-lines, b) in
the GSPN by shared places, highlighted in red in Figures.

Assessment of an Architecture for People with Special Needs 21

151015202530

0

5

10

15

20

25

30

5
10

15
20

25

AMS
threads

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Interoperability
Gateway
threads

Fig. 8 Response times when multithreading AMS and Interoperability Gateway.

resources, to avoid cluttering. As we can observe, in the First Interaction and
Back To Top scenarios, both Interoperability Gateway and AMS resources are
highly saturated, with maximum utilizations of 94% and 98% respectively.

We replicated resources (added threads) for the AMS and the Interoper-
ability Gateway and computed response times for the Back to Top scenario.
Figure 8 presents results obtained for the case of 50 users (which is represen-
tative of all the experiments we performed). We can observe that the response
time does not improve, it is around 30 seconds, same as in Figure 6 where no
replication was introduced. We thought that saturation could be caused not
only because of these resources. Therefore, we computed resource utilizations,
for all the possible multithreading situations, in the Back to Top scenario.

Figure 9 presents only a representative part of these results. It depicts the
case of 50 users, with a variable number of threads of the Interoperability
Gateway and the AMS, for the rest of the resources it considers one thread
only. As observed, the AMS and the Interoperability Gateway are no longer
saturated. However, the Target Service/Device becomes saturated. This re-
source, although not initially considered, appears in different scenarios, e.g.
Device Interaction (in Figure 24) or Perimeter Calculation (in Figure 20).

We performed all the experiments again, from one to one hundred users,
in the Back to Top scenario. In this case, replicating threads for the AMS, the
Interoperability Gateway and the Target Service/Device. Figure 10 shows the
results for the case of 50 concurrent users. Now, the response time has reached
an acceptable threshold according to the usability principles, around 5 seconds
in the best situations. We perform experiments, although not depicted in the
figure, and observed that, from 30 threads on, the system did not perform
better.

22 E. Gómez-Mart́ınez et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
ti
liz

a
ti
o

n

Number of Threads

Knowledge Base

ATS

AMS

Interoperability Gateway

Target Service/Device

Fig. 9 Resource utilization when threading Interoperability Gateway and AMS.

151015202530

0

5

10

15

20

25

30

5
10

15
20

25
AMS

threads

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Interoperability Gateway and WS
threads

Fig. 10 Response times when multithreading AMS, Interoperability Gateway and Target
Service/Device.

Finally, once we had identified all critical resources (AMS, IG and Tar-
get Service/Device), we replicated them, according to our investigations, and
computed response times in all the scenarios. Figure 11 presents these results,
it shows that the response times have significantly improved.

5.2.2 Performance Patterns

Although the results obtained satisfied the usability principles, our objective,
at this stage, was to discover whether we could improve system responsiveness
and scalability. We then aim at applying some performance patterns to the
architecture design. We used the algorithm proposed by Bergenti and Poggi
(2000) and applied it throughout the architecture. As a result, we found that

Assessment of an Architecture for People with Special Needs 23

0

1

2

3

4

5

6

7

8

9

1 10 20 30 40 50 60 70 80 90 100

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Number of users

First Interaction

Navigation

Device Interaction

Back to Top

Fig. 11 Response times when multithreading AMS, Interoperability Gateway and Target
Service/Device for concurrent users.

the Fast Path performance pattern could be applied for improving the Perime-
ter Calculation process, one of the processes most used in the system. In fact,
this pattern caters to the centering principle, which means to focus atten-
tion on the performance of the scenarios that are exercised the most or have
large performance impact. The Fast Path pattern is summarized in Table 2 in
Appendix C.

Perimeter Calculation, depicted in Figure 20, is a process used by the First
Interaction and Back to Top scenarios, which were compromising system re-
sponsiveness. The perimeter represents the list of devices and services available
and this process updates the status of each device and service by consulting
the Interoperability Gateway. This is shown by the two consecutive loops in
the sequence diagram in Figure 20. Therefore, if the number of available de-
vices is x and each of them has f functionalities on average, the second loop
is executed x × f times. The Fast Path can be applied here for providing
an alternative execution path which minimizes the steps of execution or dedi-
cates more resources here than to other scenarios. Consequently, response time
should improve.

One manner to apply the Fast Path pattern in the INREDIS architecture
is to request only those functionalities that will be displayed (e.g., if a user
would like to control the air conditioning, it would be not necessary to load
leisure services). In other words, the user’s context (or locality) must be taken
into account in order to calculate the perimeter. According to the deployment
tested, which had a total of 30 target devices or services and each of them
had about 2 or 3 functionalities, if the Fast Path pattern is applied, then the
number of times that loops are executed is reduced around 60% on average,
which significantly reduces the response time.

We applied the Fast Path pattern in our architecture design and obtained
new performance models for the First Interaction and Back to Top scenar-
ios. We carried out the whole set of experiments with the new performance
models, but without taking into account the multithreading discussed in pre-

24 E. Gómez-Mart́ınez et al.

0

10

20

30

40

50

60

70

80

1 10 20 30 40 50 60 70 80 90 100

R
e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

Number of users

First Interaction

0

10

20

30

40

50

60

70

80

1 10 20 30 40 50 60 70 80 90 100

R
e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

Number of users

Back To Top

Original Model

Applying the pattern

Fig. 12 Comparison of response times when applying Fast Path pattern: baseline and new
results.

vious section, since we wanted to know how much, by itself, the performance
pattern could improve system responsiveness. Figure 12 shows these results.
If we compare them with those in Figure 6, we observe that response times,
although not fitting the usability principles yet, are less than half.

5.2.3 Performance Antipatterns

As mentioned in Section 4.4.2, we used the logical predicates defined by Cortel-
lessa et al (2012) in order to systemize the identification of performance an-
tipatterns in our architecture. After applying all these logical predicates, we
detected The Ramp antipattern in the Assistive Selection Software Mecha-
nism (ASSM)10. The problem arises since the ASSM searches incrementally
in the Knowledge Base. The ASSM was completely developed in the INRE-
DIS project, however it was populated with only ten Assistive Products in the
testing phase11. Figure 13 depicts the response times for the ASSM obtained
in the user testing phase.

The Ramp antipattern, summarized in Table 3 in Appendix C, occurs

when processing time increases as the system is used. Cortellessa et al (2012)
formalized it as follows:

∃OpI ∈ O |

∑
1≤t≤n |FRT (OpI, t)− FRT (OpI, t− 1)|

n
> ThOpRtV ar (1)

∧

∑
1≤t≤n |FT (OpI, t)− FT (OpI, t− 1)|

n
> ThOpThV ar

where:

10 The ASSM process was introduced in Section 2 and it is detailed in Appendix A.5.
11 According to EASTIN (www.eastin.eu), the principal Assistive Technology Information
Network in Europe, the number of Assistive Products available in the EU increased to more
than 39.221 products in 2009.

Assessment of an Architecture for People with Special Needs 25

0,00

0,10

0,20

0,30

0,40

0,50

0,60

1 2 3 4 5 6 7 8 9 10

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Number of users

ASSM

Fig. 13 Empirical response times for the Assistive Software Selection Mechanism.

– OpI is an operation instance whose response time increases along n time
slots,

– O represents the set of all operation instances in the system,
– FRT and FT are functions that respectively compute the mean response

time and throughput of an operation instance observed in a time slot,
– ThOpRtV ar and ThOpThV ar are thresholds for the response time and

throughput, respectively.

The Ramp occurs when the average response time and throughput of the
operation increases in n consecutive time slots and the increments overmatch
some predefined thresholds.

The critical operation, in the ASSM, is the incremental search in the
Knowledge Base. The ASSM process affects all four key performance scenarios
since it is called by two subscenarios, Initial Interface Generation and Interface
Generation. The former subscenario belongs to the First Interaction scenario,
while the latter is present in the Navigation, Device Interaction and Back to
Top scenarios.

On the other hand, Smith and Williams (2002a) determined the following
relation in The Ramp:

RT =
i · ds

dt
· s

1−X · (i · ds
dt

· s)
(2)

where:

– RT is the response time of the operation,
– i is the number of items in the data set of the operation,
– s is the amount of service time required to process a single item,
– ds

dt
is the slope of the ramp,

– X is the arrival rate of queries to the operation.

Combining equations 1 and 2, we get the response time for the operation:

26 E. Gómez-Mart́ınez et al.

RTOpI =
i · (FRT (OpI, t)− FRT (OpI, t− 1)) · FRT (OpI, 1)

1−X · (i · (FRT (OpI, t)− FRT (OpI, t− 1)) · FRT (OpI, 1))
(3)

Taking the experimental results obtained for the ASSM in Figure 13 and
applying equation 3, we calculated response times, in the four key scenarios, for
100 users. As it can be observed in Figure 14, The Ramp antipattern greatly
impacts in the response times. The reader should note that estimated response
times in Figure 6 did not take into account the effect of The Ramp, since the
Knowledge Base was very few populated, only with ten Assistive Software (AS)
products. Therefore, we detected the impact in this phase since the Knowl-
edge Base was populated with ten thousand AS products12. Consequently, the
response times in Figure 14 are so different from those in Figure 6.

0

500

1000

1500

2000

2500

1 10 20 30 40 50 60 70 80 90 100

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Number of users

First Interaction

Navigation

Device Interaction

Back to Top

Fig. 14 Impact analysis of The Ramp antipattern in the response times of key scenarios.

To solve this antipattern, both Smith and Williams (2002a) and Dugan-
Jr. et al (2002) propose to select another search algorithm more appropriate
for large amount of data. The ASSM is based on a simple filtered search in
SPARQL. This search can be improved by changing the recommender process
and using a specific “recommend” operator, as Levandoski et al (2011) suggest.
Thus, the response time for a search performs better in 33%, independently
of the number of users. We then recalculate response times for the scenarios
considering the improvement in the search algorithm. Figure 15 shows the
results, which considerably improve those in Figure 14.

5.3 Optimal Configuration

Once all the alternatives for improvement were analyzed, we applied them to
the original configuration of the INREDIS architecture, in order to achieve an
optimal configuration. These improvements are summarized in the following:

12 From all the Assistive Products in the marketplace, we considered those that can be
integrated into the architecture, i.e., Assistive Software products.

Assessment of an Architecture for People with Special Needs 27

0

10

20

30

40

50

60

1 10 20 30 40 50 60 70 80 90 100

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Number of users

First Interaction

Navigation

Device Interaction

Back to Top

Fig. 15 Response time applying specific “recommend” operator in search algorithm of
ASSM.

– Utilization and Multithreading : We detected the AMS, the Interoperability
Gateway and the Target Service/Device resources as bottlenecks. They
were mitigated by adding threads as indicated in Figure 11.

– Performance patterns : Applying performance patterns helps to improve the
software design and the system performance. We identified the Perimeter
Calculation subscenario as candidate for the Fast Path pattern, then we
refactorized this scenario in order to apply the pattern.

– Performance antipatterns : We detected The Ramp antipattern using the
logical predicates in (Cortellessa et al 2012). Then, we analyzed its poten-
tial consequences and changed the search algorithm in ASSM process.

Figure 16 depicts the response times when we applied to the system model
all the aforementioned alternatives for improvement. As it can be observed, all
these improvements help to meet performance objectives based on Usability
Principles. Otherwise, another iteration of the assessment loop would have
been necessary.

0

1

2

3

4

5

6

7

8

1 10 20 30 40 50 60 70 80 90 100

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Number of users

First Interaction

Navigation

Device Interaction

Back to Top

Fig. 16 Response time for the optimal configuration of the INREDIS Interoperable archi-
tecture.

28 E. Gómez-Mart́ınez et al.

5.4 Validation of the Performance Assessment

Once our assessment has produced an optimal design of the architecture, we
are committed to apply the improvements to our initial prototype. By doing
so we want to assess whether the results of the model match the results of
the architecture. Next we detail the important issues in the new prototype
implementation:

– Resource replication: We fully applied to the initial prototype all the pro-
posed improvements. We replicated the resources and applied multithread-
ing to overcome all detected bottlenecks.

– Performance patterns : We satisfactorily applied the Fast Path pattern for
perimeter calculation, then modifying the location of services and target
devices. Hence, this assessment was also completely applied.

– Performance antipatterns : We could not apply this assessment in the pro-
totype since the update of the search algorithm was very complex and
affected other processes (out of scope of the INREDIS project). However,
the effects of the assessed antipattern were almost negligible in the results
of the initial prototype because the Knowledge Base was populated with
only ten Assistive Products, as previously explained.

Figure 17 (last line in the caption) plots the response times of this optimal
prototype. The prototype was deployed in the same servers as the initial one
and the experiments replicated in the same facility (automation house). As
described in Section 5.1, the experiments were very difficult to carry out due
to several issues (legal, logistic or user selection among others), in this case the
situation was even worst since we were out of budget. We could involve three
concurrent users, hence the results were extrapolated for five users through
a linear function. We observe in Figure 17 that the results of our optimal
model and those of the optimal prototype are very similar. In some scenarios
our model is slightly more optimistic but slightly more pesimistic in others. As
mentioned in Section 5.1, these low variations between empirical and predicted
results might be mainly caused by the accuracy in the computation of the
GSPN models.

5.5 Comparison of Results

Figures 17 and 18 have been introduced to depict a throughout comparison of
all the results obtained so far. Figure 17 plots for each scenario the following
information:

– The empirical results obtained with the initial prototype, i.e., it replicates
the information presented in Figure 5.

– The results we obtained using the initial model, i.e., it replicates the infor-
mation presented in Figure 6, but for five users only, due to the aforemen-
tioned limitations of experimental user tests.

Assessment of an Architecture for People with Special Needs 29

– The results we obtained using the optimal model -the model of the optimal
configuration-, i.e., it replicates the information presented in Figure 16, but
for five users only.

– The results obtained with the optimal prototype. The optimal prototype
is the initial prototype plus the improvements obtained by our assessment.
Subsection 5.4 explained how we developed the optimal prototype.

Initial Prototype

Initial Model

Optimal Model

First Interaction

0

1

2

3

4

5

6

7

8

1 2 3 4 5

R
e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

Number of users

Optimal Prototype

Navigation

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5
R

e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

Number of users

Device Interaction

0

1

2

3

4

5

6

7

1 2 3 4 5

R
e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

Number of users

Back To Top

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5

R
e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

Number of users

Fig. 17 Comparison between initial results (prototype and model) and results of the opti-
mal configuration (prototype and model).

Figure 17 shows, for all the four scenarios, that the results given by the
optimal model improves both, the initial empirical results and the initial model
prediction.

The low differences between empirical and predicted results might be
mainly caused due to the accuracy in the computation of the GSPN mod-
els. Nevertheless, although empirical and predicted data have similar trend for
almost all graphs, it is observed that they differ for the Navigation and Device
Interaction with the initial prototype, particularly in the latter case. However,
for the optimal prototype the trend is the same in all scenarios. We guess that
this could be due to imprecisions in gathering data during the testing phase
session, corresponding to the initial prototype, since there were great vari-
abilities in all actions carried out by users. However, for getting data from the
models we do not express such variability since we only used average execution
times. All in all, in the first user testing phase, the number of users involved

30 E. Gómez-Mart́ınez et al.

was small but they had not any restriction to interact with the system. How-
ever, tests with the optimal prototype were more controlled. Therefore, the
quality, more than the quantity, of the empirical data used determined the
worth of the predicted results.

Figure 18 extends results in Figure 17 for 100 users, the information em-
pirically obtained with both prototypes is missing since it could be obtained
only for 5 users. Figure 18 shows that the results of the optimal model are far
better than those of the initial model. These figures clearly demonstrate that
the changes, due to the application of the SPE approach, have improved the
models to the degree of compliance with the performance requirements for a
large number of users.

Initial Model

Optimal Model

0

10

20

30

40

50

60

70

1 10 20 30 40 50 60 70 80 90 100

R
e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

Number of users

First Interaction

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 10 20 30 40 50 60 70 80 90 100

R
e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

Number of users

Navigation

0

2

4

6

8

10

12

14

16

18

20

1 10 20 30 40 50 60 70 80 90 100

R
e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

Device Interaction

0

10

20

30

40

50

60

1 10 20 30 40 50 60 70 80 90 100

R
e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

Number of users

Back To Top

Fig. 18 Comparison between results of the initial and optimal models.

6 Discussion

The assessment of software architectures is a process that is acquiring in-
creasing importance in industrial practice. The work carried out allowed us to
determine an optimal configuration and, therefore, to improve the final prod-
uct. In the following, as suggested by Runeson and Höst (2009), we discuss
limitations of the results obtained, lessons learned and issues disclosed while
applying the assessment process, we also explain some of the consequences of
all these matters.

Assessment of an Architecture for People with Special Needs 31

The outcomes of this research can be interpreted from two perspectives.
First, we discuss the outcomes explicitly related to the assessment methodol-
ogy, what we denoted as external objective. Second, we analyze the collected
data obtained by applying the methodology in order to achieve an optimal
configuration, what we called the internal objective.

6.1 External Objective

Section 4 carried out the external objective, which meant to carefully revise
each step of the methodology to teach practitioners how we applied these steps,
but also to offer a blueprint of the INREDIS project that could be used as a
guide for practitioners in future applications.

We discuss issues of the methodology according to the evaluation criteria
proposed by Isa and Jawawi (2011), which consider: process related aspects
and modeling related aspects. Finally, we also consider issues related to the
tools used.

Concerning the process for performance assessment, the SPE methodology
is intended to support general-purpose domains. The methodology explicitly
influences the development process by focusing on performance properties. In
particular, the assessment process manages the system performances from the
requirements and analysis phases until the design phase by analyzing a set
of key performance scenarios. The methodology systematically defines all the
steps needed to discover potential performance problems and how to mitigate
them.

Another aspect related to the process concerns to the tradeoffs that the
engineer needs to consider for achieving performance. Bass et al (2005) defend
that quality attributes can never be achieved in isolation, the achievement
of any one will have an effect, sometimes positive and sometimes negative,
on the achievement of others. In fact, this happened when we applied the
SPE methodology, the improvement of system performance influenced other
quality attributes, such as maintainability or cost, and in the worst case, the
improvement of performance decreased other quality attributes. In particular,
for improving performance we introduced performance patterns, in this case
the tradeoff positively influenced the maintainability of the system since it is
widely recognized the benefit of using design patterns for this quality of the
system. Regarding antipatterns we can say the same. They capture design
errors, therefore, by using them we not only gain in system performance but
eventually in maintainability and system testability. On the other hand, when
we replicated resources, we incurred in a cost, i.e., the influence of improving
performance was negative. For example, replication of CPU capacity implies
a monetary cost, while multithreading implies a software more difficult to test
and maintain.

Concerning the modeling criterion, it analyses how the performance re-
quirements and system functionalities are specified and developed. Being the
approach centered on the architectural level, it perfectly captures the system

32 E. Gómez-Mart́ınez et al.

structure model definition and the behavioral issues, then allowing assessment
of the complete software architecture. As mentioned, we used a simplified ver-
sion of the PUMA methodology (Woodside et al 2005, 2013), which addresses
a systematic performance modeling with the support of UML, which allows
annotations with MARTE profile for the performance properties. Neverthe-
less, the application of the complete PUMA approach is limited, mainly due
to the characteristics of the INREDIS project. One of these characteristics is
the discrete number of users and resources, thus, the workload identification
only considers closed ones with discrete values. A similar situation occurs with
resources, since we did not model some low level issues, such as random access
memory, disk storage or cache memory.

Concerning the tools, we used ArgoSPE (Gómez-Mart́ınez and Merseguer
2006), an ArgoUML13 plugin, to partly automate the assessment process in
a transparent way for software architects. Unfortunately, performance anno-
tations supported by ArgoSPE are not in MARTE, but in UML-SPT (2005)
profile format. Thereby, we had the choice of translating the annotations into
UML-SPT or to introduce some performance parameters in the GSPN man-
ually. For example, the number of system resources, we solved it looking at
the GSPN places representing resources, such as pATS, pWS or pKB in Fig-
ure 4, then populating them with as many tokens as resources indicated in the
MARTE annotation resMult (Figure 1).

ArgoSPE internally calls GreatSPN (Chiola et al 1995) to analyze or sim-
ulate GSPNs. We used simulation programs since the large size of the models
prevented the analysis programs. The problem stems from the reachability
graph of the GSPN. Simulation outcomes can be obtained almost immedi-
ately for simple samples. However, the computation times for some of the
results obtained in this paper consumed long time (several hours), even some
of them lasted for a couple of weeks. Concretely, those for which the number of
concurrent users was greater than 50 and some resources were multithreaded.
To reduce the computation times, we decreased the simulation default accu-
racy, i.e. the precision of the approximation in the parameters estimation. This
reduction affected the response times, i.e, the results we obtained, in the order
of ±10 milliseconds. Although this significantly decreased the computation
times, few of the experiments lasted for two or three hours yet.

Moreover, ArgoSPE lacks other plugins, such as tools for identifying perfor-
mance patterns and antipatterns automatically. Thus, we had to use external
applications manually, as those developed by Cortellessa et al (2012). There-
fore, ArgoSPE is still a very limited tool for performance assessment, specially
for complex case studies such as the INREDIS architecture. Consequently,
we have detected the need for developing a new framework which integrates
all these functionalities: UML modeling, GSPN simulation and analysis, pat-
terns and antipatterns detection in a transparent way to the user and efficient
computation times. This framework could also include assessment of other

13 http://argouml.tigris.org/

Assessment of an Architecture for People with Special Needs 33

functional and non-functional properties, such as dependability, security or
model checking.

6.2 Internal Objective

The internal objective, developed in Section 5, tried to reveal how good the
architecture proposed by the INREDIS software engineers was, from the per-
formance point of view exclusively. The performance results demonstrated that
the original architecture and configuration fitted for limited contexts with very
few concurrent users. This usage scenario might occur, for example, when users
interact with electronic devices at smart homes or students in a classroom.
Nevertheless, our results disclosed that this configuration performs poorly
in contexts with several concurrent users. Thus, we systematically assessed
system performance by changing the software design and the configuration,
concretely adding threads and refactoring some components. These improve-
ments helped to meet performance objectives as well as to scale the system
in more challenging performance usage scenarios, such as web services, ur-
ban networking, hospital and/or retirement homes, where multiple users with
different capabilities can simultaneously access the system.

However, some limitations are still unsolved. First of all, in real imple-
mentations, the Knowledge Base had not been fully populated with users
preferences and capabilities, Assistive Software products in the ASSM and
interaction modes. Therefore, a specific sensitivity performance analysis of the
Knowledge Base and ASSM would be desirable.

A more detailed study of the target devices or services would also be desir-
able, since both their usage and their corresponding functionalities can affect
the architecture. In this paper, we have assumed that this time is negligible,
since it is independent of the architecture (e.g., the whole cycle time of a wash-
ing machine is very different from a TV set), and obviously we have to take it
as an external and non-controllable part of our system. However, real imple-
mentations did not consider increments in the number of devices or services
in the user perimeter. Thus, as noted in Sec. 5.2.2 through our experiments,
the number of nested iterations in the Perimeter Calculation depends on the
amount of available target devices and services and their functionalities.

Finally, as above mentioned, the architecture was implemented considering
most flexible and cutting-edge technologies at that moment. However, some
of the communication protocols used had poor performance, such as the ESB
(Enterprise Service Bus) architecture designed by Chappell (2004) combined
with services implemented in SOAP (Liu et al 2007). A similar situation can
be found in the Knowledge Base component, as observed by Liang et al (2009).
Consequently, our performance models considered the measured times of these
prototype implementations. In particular, we used them as host demands for
the Petri net transitions. However, it would be feasible to include an additional
stage in our performance assessment proposal, which carries out sensitivity
analysis to assess technological alternatives for implementation.

34 E. Gómez-Mart́ınez et al.

7 Related Work

Software architecture assessment constitutes an important stage in the soft-
ware design process, in order to guarantee non-functional requirements. Nev-
ertheless, to the best of our knowledge, there are very few initiatives to assess
architectures based on SPE principles at industrial level. An exception is the
PASA (Performance Assessment of Software Architectures) method, proposed
by Williams and Smith (2002).

PASA, focussed on performance scenarios, is a performance-based software
architecture analysis method that provides a framework for the whole assess-
ment process. PASA inspired us in order to automatically systematize the
process to detect performance issues, as well as to propose the corresponding
potential solutions. As in PASA, our methodology, carries out performance
analysis considering responsiveness, but also resource utilization and scalabil-
ity. Moreover, we have included automatic detection of performance patterns
and antipatterns, by considering the work of Cortellessa et al (2012). As above
stated, PUMA (Woodside et al 2005, 2013) also guided our work.

Pooley and Abdullatif (2010) defined Continuous Performance Assessment
of Software Architecture (CPASA). This method adapts PASA to the agile
development process. To the best of our knowledge, CPASA has not been
applied to an industrial case yet.

Regarding industrial experience reports that assess performance at archi-
tectural level, we have found a few:

– Kauppi (2003) conducted a case study using PASA for analyzing mobile
communication software systems. They used Rate Monotonic Analysis and
layered queuing networks (LQN, Woodside et al 1995) instead of Petri nets
for system analysis. Results of improvements were not explicitly given due
to the confidentiality of the project.

– Koziolek et al (2012) reported their experience on performance and relia-
bility analysis in a large-scale control system. They applied the method Q-
ImPrESS (2009) (Quality Impact Predictions for Evolving Service-oriented
Systems), which is supported by an IDE that combines tools for creating
and editing models, performing predictions, and conducting a tradeoff anal-
ysis. LQNs were used for performance prediction, results were impressive
for throughput estimation since they deviated only around 0.2 percent. The
authors explain that such good results were obtained because resources
were not saturated.

– Huber et al (2010) described an industrial case study where they applied
the Palladio Component Model (Becker et al 2009) to a storage system. A
model was firstly implemented, next they conducted several experiments
on a prototype to derive the resource usage of each model component
and finally, the model was calibrated with realistic resource demands and
validated.

– Kounev (2006) modelled a new industry-standard benchmark for measur-
ing the performance and scalability of J2EE hardware and software plat-
forms. In this work Petri nets are used as performance model. The method-

Assessment of an Architecture for People with Special Needs 35

ology is also based on SPE principles, however they did not explicitly use
patterns and antipatterns, as we do. They could implement the system and
the models accurately reflected the real system performance.

– The work of de Gooijer et al (2012) re-architects a legacy system, for re-
motely diagnose industrial devices, in ABB company. The goal was to
improve system performance and scalability. The problems addressed to
re-architect a system for performance are very different, although not eas-
ier, to those to design for performance from scratch, as it was our case. They
could start from real system measurements to calibrate their models, which
were constructed using the Palladio Component Model and translated to
LQNs. They used the PerOpteryx (Koziolek et al 2011) tool to find new
architectural candidates, in contrast we used patterns and antipatterns.

– Jin et al (2007) developed an approach that combines benchmarking, mon-
itoring and performance modeling for database-centric legacy information
systems. As in the work previously analysed, important challenges relate
to measuring the production system to calibrate the model. They could
not match their predictions with the planned system since the implemen-
tation was not ready, but established an accuracy of their models within
8%. This work uses a performance model different to ours, in particular
they use LQNs. Also different is the application domain, concretely they
target the approach towards “legacy systems” in the database field.

– Liu et al (2005) developed a methodology for component-based applications
to predict their performance under various workloads. As in our approach
patterns play an important role, but at architectural level in this case.
Patterns are modeled by means of UML activity diagrams, however system
scenarios are modeled using UML sequence diagrams as in our approach.
Queuing networks were used for prediction. To verify the approach they
implemented different systems and stablished errors of prediction around
11 and 15 percent.

Concerning related work about the application domain of the INREDIS
architecture, i.e, adaptive interfaces for people with special needs, we have
found the following:

– The INREDIS architecture further develops the idea of Universal Control
Hub (UCH) proposed by Zimmermann and Vanderheiden (2007)(which
is also aligned with the initial ideas that Llinás et al (2009) propose on
how disabled people can take advantage of adaptative interfaces from the
ubiquitous computing perspective).

– Kadouche et al (2009) proposed a semantic framework to enhance envi-
ronment services for people with special needs, namely the SMF (Seman-
tic Matcher Framework). Our proposal bares similarity with this work,
but even though we share the use ontologies for representing the elements
(both implemented in the OWL (W3C 2012) representation language), on
the one hand our approach makes the reasoning at a class level to reason
with taxonomies of concepts and relationships; and the other hand, we take
into account assistive software in our process whereas the SMF does not.

36 E. Gómez-Mart́ınez et al.

– The work of Chi et al (2012) is related to the presented work since they use
different Artificial Intelligence techniques for similar tasks, but they provide
a solution just for the problem of assistive software selection based on a
decision; Cortés et al (2003) propose the use of a Multi-Agent System to
controlling and configuring a very specific assistive technology instance, an
electric wheelchair, and the intelligent environment that surrounds it; and
finally, Woodcock et al (2012) propose a decision support system developed
to assist in the planning and evaluation of assistive technology, but not like
our approach for end users in usage scenarios, but for assistive technology
market stakeholders decision support.

Finally, to the best of our knowledge, there is no literature concerning the
performance of such architectures that realize adaptive interfaces for people
with special needs.

8 Conclusion

We have assessed the INREDIS architecture for performance. This software
architecture tries to provide a global solution for universal access to disabled
and elderly people with special needs. It automatically adapts user interfaces
for both UCH devices and web services, according to users’ needs and prefer-
ences, improving their accessibility. The results of the external objective lead
us to conclude that the SPE methodology effectively helps the software archi-
tect to improve designs. Besides, UML and MARTE are languages that can
address performance specification challenges, however, tools for specification
and analysis are not mature enough. The integration of the specification and
analysis tools, to carry out the whole cycle, is also a weak point. The results
of the internal objective helped to improve the system response time by refac-
toring extensive parts of the design. The initial design, proposed by INREDIS
software engineers, only met performance requirements in one out of the four
main system scenarios. After the refactoring process, all system scenarios met
the required response time. For the case of one hundred users, the better re-
sults were obtained in the First Interaction and Back to Top scenarios. The
former was reduced from 60 seconds to 6, while the latter from 55 to less than
5 seconds.

We believe that the results gathered in this report are relevant for both,
researchers and SPE practitioners. From the research viewpoint, we provide
evidence that the ideas and theory behind SPE can be applied for assess-
ing and improving a large software architecture in an industrial project. SPE
practitioners, which are the target of our work, can use this industrial report
as a blueprint, it can help them to develop a strategy, for assessing the per-
formance of a software architecture, according to the needs of their projects.
Furthermore, other target audience can be interested in this paper, such as
accessibility experts or user experience designers.

Assessment of an Architecture for People with Special Needs 37

Acknowledgements The research described in this paper arises from a Spanish research
project called INREDIS (INterfaces for RElations between Environment and people with
DISabilities). INREDIS is led by Technosite and funded by CDTI (Industrial Technology
Development Centre), under the CENIT (National Strategic Technical Research Consortia)
Programme, in the framework of the Spanish government’s INGENIO 2010 initiative. The
opinions expressed in this paper are those of the authors and are not necessarily those of
the INREDIS project’s partners or of the CDTI.
José Merseguer has been supported by CICYT DPI2010-20413 and GISED (partially co-
financed by the Aragonese Government (Ref. T27) and the European Social Fund).
We would like to thank José Antonio Gutiérrez for his work in the experimental tests and
Marta Alvargonzález, Esteban Etayo and Fausto Sainz for their help. Last but not least, the
authors thank the anonymous reviewers for their valuable help to improve this work.

References

Abrams M, Phanouriou C, Batongbacal AL, Williams SM, Shuster JE (1999)
UIML: An Appliance-Independent XML User Interface Language. Com-
puter Networks 31(11-16):1695–1708

Ajmone Marsan M, Balbo G, Conte G, Donatelli S, Franceschinis G (1995)
Modelling with Generalized Stochastic Petri Nets. J. Wiley

Alvargonzález M, Etayo E, Gutiérrez JA, Madrid J (2010) Arquitectura ori-
entada a servicios para proporcionar accesibilidad. In: Proc. 5th Jornadas
Cient́ıfico-Ténicas en Servicios Web y SOA (JSWEB’10), In Spanish

Bass L, Clements P, Kazman R (2005) Software Architecture in Practice. SEI
Series in Software Engineering, Addison-Wesley

Becker S, Koziolek H, Reussner R (2009) The Palladio component model for
model-driven performance prediction. J Syst Softw 82(1):3–22

Bergenti F, Poggi A (2000) Improving UML Designs Using Automatic Design
Pattern Detection. In: In Proc. 12th. Int. Conf. on Softw Engineering and
Knowledge Engineering (SEKE’00), pp 336–343

Bernardi S, Merseguer J (2007) Performance evaluation of UML design with
Stochastic Well-formed Nets. J Syst Softw 80(11):1843–1865

Brown W, Malveau R, McCormick H, Mowbray T (1998) AntiPatterns: Refac-
toring Software, Architectures, and Projects in Crisis. John Wiley

Card SK, Robertson GG, Mackinlay JD (1991) The information visualizer:
An information workspace. In: Proc. SIGCHI Conf. on Human Factors in
Computing Systems (CHI’91), ACM, pp 181–186

Catalán E, Catalán M (2010) Performance Evaluation of the INREDIS frame-
work. Technical report, Departament d’Enginyeria Telemàtica, Universitat
Politècnica de Catalunya

Chappell D (2004) Enterprise Service Bus. O’Reilly Media, Inc.
Chi CF, Tseng LK, Jang Y (2012) Pruning a Decision Tree for Selecting
Computer-Related Assistive Devices for People With Disabilities. IEEE
Trans on Neural Systems and Rehabilitation Eng 20(4):564–573

Chiola G, Franceschinis G, Gaeta R, Ribaudo M (1995) GreatSPN 1.7: GRaph-
ical Editor and Analyzer for Timed and Stochastic Petri Nets. Perform Eval
24:47–68

38 E. Gómez-Mart́ınez et al.

Cortellessa V, Di Marco A, Inverardi P (2011) Model-Based Software Perfor-
mance Analysis. Springer

Cortellessa V, Di Marco A, Trubiani C (2012) An approach for modeling
and detecting software performance antipatterns based on first-order log-
ics. Softw & Syst Modeling pp 1–42

Cortés U, Annicchiarico R, Vázquez-Salceda J, Urdiales C, Cañamero L, López
M, Sànchez-Marrè M, Caltagirone C (2003) Assistive technologies for the
disabled and for the new generation of senior citizens: the e-Tools architec-
ture. AI Commun 16(3):193–207

Distefano S, Scarpa M, Puliafito A (2011) From UML to Petri Nets: The
PCM-Based Methodology. IEEE Trans Softw Eng 37(1):65–79

Dugan-Jr RF, Glinert EP, Shokoufandeh A (2002) The Sisyphus Database
Retrieval Software Performance Antipattern. In: Proc. 3rd Int. Workshop
on Software and Performance (WOSP’02), ACM, pp 10–16

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements
of Reusable Object-Oriented Software. Addison–Wesley

Giménez R, Pous M, Rico-Novella F (2012) Securing an Interoperability Ar-
chitecture for Home and Urban Networking: Implementation of the Secu-
rity Aspects in the INREDIS Interoperability Architecture. In: Proc. 26th
Int. Conf. on Advanced Information Networking and Applications Work-
shops(WAINA’12), IEEE Computer Society, vol 0, pp 714–719

Gómez-Mart́ınez E, Merseguer J (2006) ArgoSPE: Model-based software per-
formance engineering. In: Proc. 27th Int. Conf. on Applications and Theory
of Petri Nets and Other Models of Concurrency (ICATPN’06), Springer-
Verlag, LNCS, vol 4024, pp 401–410, http://argospe.tigris.org

Gómez-Mart́ınez E, Merseguer J (2010) Performance Modeling and Analysis of
the Universal Control Hub. In: Proc. 7th European Performance Engineering
Workshop (EPEW’10), Springer, LNCS, vol 6342, pp 160–174

Gómez-Mart́ınez E, Ilarri S, Merseguer J (2007) Performance Analysis of Mo-
bile Agents Tracking. In: Proc. 6th Int. Workshop on Software and Perfor-
mance (WOSP’07), ACM, pp 181–188

Gómez-Mart́ınez E, Linaje M, Iglesias-Pérez A, Sánchez-Figueroa F, Preciado
JC, González-Cabero R, Merseguer J (2013) Interacting with Inaccessible
Smart Environments: Conceptualization and evaluated recommendation of
Assistive Software Submitted to publication

González-Cabero R (2010) A Semantic Matching Process for Detecting and
Reducing Accessibility Gaps in an Ambient Intelligence Scenario. In: Proc.
4th Int. Symposium of Ubiquitous Computing and Ambient Intelligence
(UCAmI’10), IBERGACETA Publicaciones, pp 315–324

de Gooijer T, Jansen A, Koziolek H, Koziolek A (2012) An Industrial Case
Study of Performance and Cost Design Space Exploration. In: Proc. 3rd
ACM/SPEC Int. Conf. on Performance Engineering (ICPE’12), ACM, pp
205–216

Grand M (1998) Patterns in Java, volume 1: a catalog of reusable design
patterns illustrated with UML. John Wiley & Sons, Inc.

Assessment of an Architecture for People with Special Needs 39

Grand M (2001) Java Enterprise Design Patterns: Patterns in Java Volume 3.
John Wiley & Sons, Inc.

Hermanns H, Herzog U, Katoen JP (2002) Process algebra for performance
evaluation. Theoretical Computer Science 274(1-2):43 – 87

Huber N, Becker S, Rathfelder C, Schweflinghaus J, Reussner RH (2010) Per-
formance Modeling in Industry: a Case Study on Storage Virtualization.
In: Procs. 32nd ACM/IEEE Int. Conf. on Software Engineering (ICSE’10),
ACM, pp 1–10

INREDIS (2010) Deliverable-78.2.1. Final Guide to a Generic Platform De-
ployment

International Standard Organization (2009) ISO 24756:2009–Framework for
specifying a common access profile (CAP) of needs and capabilities of users,
systems, and their environments

International Standard Organization (2011) ISO 9999:2011–Assistive products
for persons with disability – Classification and terminology

Isa MA, Jawawi DNA (2011) Comparative Evaluation of Performance Assess-
ment and Modeling Method for Software Architecture. In: Software Engi-
neering and Computer Systems, Communications in Computer and Infor-
mation Science, vol 181, Springer-Verlag, pp 764–776

Jin Y, Tang A, Han J, Liu Y (2007) Performance Evaluation and Prediction
for Legacy Information Systems. In: Proc. 29th Int. Conf. on Software En-
gineering (ICSE’07), IEEE Computer Society, pp 540–549

Kadouche R, Abdulrazak B, Giroux S, Mokhtari M (2009) Disability Centered
Approach in Smart Space Management. Int Journal of Smart Home 3(3):13–
26

Kauppi T (2003) Performance analysis at the software architectural level.
Technical Report 512, VTT Technical Research Centre of Finland

Kounev S (2006) Performance Modeling and Evaluation of Distributed
Component-Based Systems Using Queueing Petri Nets. IEEE Trans Softw
Eng 32(7):486–502

Koziolek A, Koziolek H, Reussner R (2011) PerOpteryx: Automated Applica-
tion of Tactics in Multi-Objective Software Architecture Optimization. In:
Proc. 7th Int. Conf. on the Quality of Software Architectures (QoSA’11),
ACM, pp 33–42

Koziolek H, Schlich B, Becker S, Hauck M (2012) Performance and Reliability
Prediction for Evolving Service-Oriented Software Systems. Empir Softw
Eng pp 1–45

Lazowska E, Zahorjan J, Scott G, Sevcik K (1984) Quantitative System Per-
formance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall

Lea D (1999) Concurrent Programming in Java. Second Edition: Design Prin-
ciples and Patterns, 2nd edn. Addison-Wesley Longman Publishing Co., Inc.

Levandoski JJ, Ekstrand MD, Ludwig M, Eldawy A, Mokbel MF, Riedl J
(2011) RecBench: Benchmarks for Evaluating Performance of Recommender
System Architectures. PVLDB 4(11):911–920

40 E. Gómez-Mart́ınez et al.

Liang S, Fodor P, Wan H, Kifer M (2009) OpenRuleBench: an analysis of the
performance of rule engines. In: Proc. 18th Int. Conf. on World Wide Web,
ACM, pp 601–610

Liu Y, Fekete A, Gorton I (2005) Design-Level Performance Prediction of
Component-Based Applications. IEEE Trans Softw Eng 31(11):928–941

Liu Y, Gorton I, Zhu L (2007) Performance prediction of service-oriented ap-
plications based on an enterprise service bus. In: Proc. 31st Annual Int.
Computer Software and Applications Conf. (COMPSAC’07), IEEE Com-
puter Society, pp 327–334

Llinás P, Montoro G, Garćıa-Herranz M, Haya P, Alamán X (2009) Adaptive
Interfaces for People with Special Needs. In: Proc. 10th Int. Work-Conf.
on Artificial Neural Networks: Part II: Distributed Computing, Artificial
Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living
(IWANN’09), Springer-Verlag, pp 772–779

Miller RB (1968) Response time in man-computer conversational transactions.
In: Proc. AFIPS Fall Joint Computer Conf. (AFIPS’68), vol 33, pp 267–277

Murua A, González I, Gómez-Mart́ınez E (2011) Cloud-based Assistive Tech-
nology Services. In: Proc. Federated Conf. on Computer Science and Infor-
mation Systems (FedCSIS’11), pp 985–989

Nielsen J (1993) Usability Engineering. Morgan Kaufmann
Object Management Group (OMG) (2011) A UML profile for Modeling
and Analysis of Real Time Embedded Systems (MARTE) Version 1.1.
http://www.omgmarte.org/

Petriu DC, Woodside CM (2002) Software Performance Models from System
Scenarios in Use Case Maps. In: Proc. 12th Int. Conf. on Computer Perfor-
mance Evaluation, Modelling Techniques and Tools (TOOLS’02), Springer-
Verlag, pp 141–158

Phanouriou C (2000) UIML: A Device-Independent User Interface Markup
Language. Tech. rep., Virginia Polytechnic Institute and State University

Pooley RJ, Abdullatif AAL (2010) CPASA: Continuous Performance Assess-
ment of Software Architecture. In: Proc. 17th IEEE Int. Conf. and Work-
shops on the Eng of Computer-Based Systems (ECBS’10), IEEE Computer
Society, pp 79–87

Pous M, Serra-Vallmitjana C, Giménez R, Torrent-Moreno M, Boix D (2012)
Enhancing accessibility: Mobile to ATM case study. In: Proc. IEEE Con-
sumer Communications and Networking Conf. (CCNC’12), IEEE Computer
Society, pp 404–408

Prud’hommeaux E, Seaborne A (2006) SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/

Q-ImPrESS (2009) Q-ImPrESS Consortium: Project website. http://www.q-
impress.eu

QoSA (2005-2013) Int. ACM Sigsoft Conf. on the Quality of Software Archi-
tectures, SIGSOFT

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study
research in software engineering. Empir Softw Eng 14(2):131–164

Assessment of an Architecture for People with Special Needs 41

Sainz F, Casacuberta J, Dı́az M, Madrid J (2011) Evaluation of an Accessi-
ble Home Control and Telecare System. In: Proc. 13rd Human-Computer
Interaction (INTERACT’11), LNCS, vol 6949, Springer-Verlag, pp 527–530

Schmidt DC, Stal M, Rohnert H, Buschmann F (2000) Pattern-Oriented Soft-
ware Architecture: Patterns for Concurrent and Networked Objects, 2nd
edn. John Wiley & Sons, Inc.

Sereno M, Balbo G (1997) Mean Value Analysis of Stochastic Petri Nets.
Perform Eval 29(1):35–62

Smith CU (1990) Performance Engineering of Software Systems. Addison–
Wesley

Smith CU, Williams LG (2000) Software Performance Antipatterns. In: Proc.
2nd Int. Workshop on Software and Performance (WOSP’00), ACM, pp
127–136

Smith CU, Williams LG (2001) Software performance antipatterns; common
performance problems and their solutions. In: Proc. 27th Int. Conf. Com-
puter Measurement Group (CMG’01), pp 797–806

Smith CU, Williams LG (2002a) New software performance antipatterns: More
ways to shoot yourself in the foot. In: Proc. 28th Int. Conf. Computer Mea-
surement Group (CMG’02), pp 667–674

Smith CU, Williams LG (2002b) Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software. Addison–Wesley

Smith CU, Williams LG (2003) More new software antipatterns: Even more
ways to shoot yourself in the foot. In: Proc. 29th Int. Conf. Computer Mea-
surement Group (CMG’03), pp 717–725

Stephanidis C (2001) Adaptive Techniques for Universal Access. User Model-
ing and User-Adapted Interaction 11:159–179

Tribastone M, Gilmore S (2008) Automatic Translation of UML Sequence
Diagrams into PEPA Models. In: Proc. 5th Int. Conf. on the Quantitative
Evaluation of Systems (QEST’08), pp 205–214

UML-SPT (2005) UML Profile for Schedulabibity, Performance and Time
Specification. Version 1.1, formal/05-01-02

W3C (2012) OWL 2 Web Ontology Language. http://www.w3.org/TR/owl2-
overview/

Williams LG, Smith CU (2002) PASASM : A Method for the Performance As-
sessment of Software Architectures. In: Proc. 3rd Int. Workshop on Software
and Performance (WOSP’02), ACM, pp 179–188

Woodcock A, Fielden S, Bartlett R (2012) The user testing toolset: a decision
support system to aid the evaluation of assistive technology products. Work:
A Journal of Prevention, Assessment and Rehabilitation 41:1381–1386

Woodside C, Petriu D, Petriu D, Shen H, Israr T, Merseguer J (2005) Perfor-
mance by Unified Model Analysis (PUMA). In: Proc. 5th Int. Workshop on
Software and Performance (WOSP’05), ACM, pp 1–12

Woodside CM, Neilson JE, Petriu DC, Majumdar S (1995) The Stochastic
Rendezvous Network Model for Performance of Synchronous Client-Server-
like Distributed Software. IEEE Trans Comput 44(1):20–34

42 E. Gómez-Mart́ınez et al.

Woodside M, Franks G, Petriu DC (2007) The Future of Software Perfor-
mance Engineering. In: Future of Software Engineering (FOSE’07), IEEE
Computer Society, pp 171–187

Woodside M, Petriu DC, Merseguer J, Petriu DB, Alhaj M (2013) Transfor-
mation challenges: from software models to performance models. Softw &
Syst Modeling In Press

XHTML (2010) eXtensible HyperText Markup Language.
http://www.xhtml.org/

Zimmermann G, Vanderheiden GC (2007) The Universal Control Hub: An
Open Platform for Remote User Interfaces in the Digital Home. In: Proc.
12th Int. Conf. Human-Computer Interaction (HCI’07), Springer, LNCS,
vol 4551, pp 1040–1049

Assessment of an Architecture for People with Special Needs 43

A Design of the System

A.1 First Interaction Scenario

First Interaction, depicted in the UML sequence diagram (SD) in Figure 19, consists in
the creation of the INREDIS initial interface, which acts as the access medium to the
environment for the user. It lists all the available devices and services along with their
current state and related information; and allows the user to select which one she wants to
interact with. Its creation involves two processes detailed in the following sections:

– The calculation of the INREDIS parameter for that concrete user (Perimeter
Calculation).

– The generation of the initial interface in terms of this newly calculated perimeter
(Initial Interface Generation).

sd First Interaction

 : Servlet
<<control>>

 : UI
<<boundary>>

 : StartingPoint
<<control>>

 : interfaceGenerator
<<control>>

 : AMS
<<control>>

initiate()

initInredis()

requestProcess()

finalInterface

ref

Initial Interface Generation

setAbsoluteLocation()

ref

Perimeter Calculation

getInitialInterface()

Interface

 absoluteLocation

<<gaCommStep>>
{hostDemand=(65.7,unit=ms,
statQ=mean,source=assm)}

<<gaCommStep>>
{hostDemand=(0.6,unit=ms,
statQ=mean,source=assm)}

<<gaCommStep>>

{msgSize=((value=$s1,unit=Mb,statQ=min),

 (value=$s2,unit=Mb,statQ=max))

<<gaStep>>
{hostDemand=(18.00,unit=ms,

statQ=mean,source=assm)}

Fig. 19 UML SD representing the user’s first interaction

A.1.1 Perimeter Calculation Process

The user perimeter represents the list of devices and services available to the user in a given
moment. This kind of information is stored in the KB, but its calculation is made by the
AMS. This module makes the necessary updates in the KB, keeping updated the situation of
the user, the state of the surrounding devices, and the current state and information of the
available services. Figure 20 shows the SD describing this process.

This task involves the following steps: First it must update the current location of the
user. It starts with the setAbsoluteLocation() method that updates the information
about the user in the KB. After setting the current location of the user, the AMS updates
the current status of each device in the user’s INREDIS perimeter. It first requests the

44 E. Gómez-Mart́ınez et al.

sd Perimeter Calculation

 : AMS
<<control>>

 : KB
<<control>>

 : Servlet
<<control>>

 : InteroperabilityGateway
<<control>>

 : Info External Services
<<control>>

TargetDevice
<<boundary>>

setAbsoluteLocation()

setAbsoluteLocation()

getUserPerimeterServices()

ServiceList

getState()

setState()

getServiceInfo()

setAmbient()

setValue()

alt

[isUCHTarget]

[isWS]

invokeWS()

for each serviceloop

for each targetloop

<<gaCommStep>>
{hostDemand=(258.6,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(81,96,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=Target,resUnits=1}

<<gaAcqStep>>
{relRes=Target,resUnits=1}

<<gaStep>>
{hostDemand=(257.6,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=WS,resUnits=1}

<<gaAcqStep>>
{relRes=WS,resUnits=1}

<<gaCommStep>>
{hostDemand=(1.27,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(269.5,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(11.9,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(15.5,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=assm)}

<<gaCommStep>>
{hostDemand=(65.7,unit=ms,
statQ=mean,source=assm)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=assm)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=assm)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=assm)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=AMS,resUnits=1}

<<gaAcqStep>>
{relRes=AMS,resUnits=1} <<gaAcqStep>>

{acqRes=interopGateway,resUnits=1}

<<gaAcqStep>>
{relRes=interopGateway,resUnits=1}

<<gaAcqStep>>
{acqRes=infoExternal,resUnits=1}

<<gaAcqStep>>
{relRes=infoExternal,resUnits=1}

<<gaStep>>
{prob=0.1}

<<gaStep>>
{prob=0.9}

Fig. 20 UML SD showing the Perimeter Calculation process.

list of device and services in the user’s perimeter (the KB getUserPerimeterServices()
method) and for each of these devices:

– It requests to the Interoperability Gatewaymodule the current state of each device
(the getState() method). The Interoperability Gateway obtains this informa-
tion no matter whether the device is exposed as a Web service or for UCH Target in a
transparent fashion.

– It updates their current state on the KB accordingly (the KB setState() method).

A similar process is performed for the services in the user’s INREDIS parameter:

– It requests to the services in the perimeter information about their current state (the
getServiceInfo() method).

– It updates the current state of the KB accordingly (the KB setState() method).

Assessment of an Architecture for People with Special Needs 45

A.1.2 Initial Interface Generation Process

Once the system has ensured that the interaction is possible, the first interface is created,
see Fig 21.

sd Initial Interface Generation

 : KB
<<control>>

 : Servlet
<<control>>

 : interfaceGenerator
<<control>>

 : Adaptor
<<control>>

 : ATS
<<control>>

 :Container
<<control>>

 : Injector
<<control>>

 : Context
<<control>>

 : Generator
<<control>>

 : InitialCreator
<<control>>

 : Decisor
<<control>>

getInitialInterface()

AskAT()

getProfiles()

profiles
configATList

chooseAdaptationTransformation()

getTransformations()

transformations

adaptations

adaptInitialInterface()

Interface

applyATTransformation()

finalInterface

finalInterface

getUserPerimeterServices()

devicesPerimeter

getInteractionGeneratorContext()

<<create>>

context()

generateInterface()
generateInterface()

abstractInterface

concretizeInterface()

concreteInterface

chooseAdaptationParameters()

getUser()

userInstance

parameters

adaptedInterface

getInitialInterface()

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(166.6,unit=ms,

statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(34.14,unit=ms,

statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(1.6,unit=ms,
statQ=mean,source=assm)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(199.6,unit=ms,

statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(6.4,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(969,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(0.1,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(27.8,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(3.4,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(10.6,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(9.6,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(1.6,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=ATS,resUnits=1}

<<gaAcqStep>>
{relRes=ATS,resUnits=1}

Fig. 21 UML SD modelling the Initial Interface Generation.

Before creating the initial interface the system has firstly to guarantee that the user
is able to interact with its controller device. In consequence, it is necessary to determine
the assistive technology that is necessary to enable such interaction. The ATS is the mod-
ule responsible of such task; and also of determining how this software should be configured
(method AskAT()). Using the user URI (Uniform Resource Identifier) the ATSmakes queries
to the KB to obtain user’s profile, which is according to CAP (International Standard Organi-
zation 2009). With such profile, the ATS creates the list of the necessary assistive technology
along with its configuration. The next step is the creation of the interface generator context
where the variables are stored, such as the user URI, the controller device URI, navigation
graph and its variables. Now the initial interface is created. As we have stated, in order
to define interfaces we use a set of UIML interfaces. The case of the initial interface is no
exception, but instead of having a static UIML document, in the case of the first interaction
the UIML interface definition is generated, a UIML document that contains all the available
devices and services, allowing the user to choose among of them. The Generator module,

46 E. Gómez-Mart́ınez et al.

the module that generates the UIML documents, delegates the creation of such interface to
the Initial Creator module.

The Initial Creator creates what we refer as an abstract interface. It is a UIML
document that still includes some context-dependent variables that have not been substi-
tuted, and a set of initialization rules that have not been performed. Such interfaces are
made concrete by the Injector module (method concretizeInterfaze()). This module
executes the initialization rules and retrieves context related values from the IG context.

Once the UIML interface has been made concrete, it is time to determine the process
that transforms this UIML document in to an accessible XHTML user interface. For that we
use a collection of XSLT transformations that address different UIML components and users
special needs, which after being applied to the UIML document translate it into an XHTML
document tailored to user concrete needs. The Decisormodule of the Interface Generator in
charge of determining the set of transformations (chooseAdaptationTransformation()
method). It does so by communicating with the KB (getTransformations() method) that
given a user URI and the user’s controller URI determines which is the proper transformation
to be applied. The selection of this transformation takes into account many orthogonal
aspects, such as user’s special needs, preferences and the controller interaction capabilities,
see (González-Cabero 2010).

Once the concrete UIML interface has been generated and the proper XSLT transfor-
mations have been selected, there are a set of parameters that are needed to tailor the
transformations. We call them the adaptation parameters, and they include the final in-
terface language and other lower-level implementation topics. They are determined in an
analogous manner to what we did for selecting the XSLT transformation.

The Decisor module (chooseAdaptationParameters() method) gathers such in-
formation asking to the KB for information about the user, and it also takes into account
information contained in the IG context. Once the IG posses all the necessary information
(i.e. the initial interface as a concrete UIML interface, the set of transformations, and the
adaptation parameters) it invokes the adaptInitialInterface()method of the Adaptor
module. It returns the XHTML document that represents the initial user interface.

Finally, there may be some transformations that must be applied to the initial interface
XHTML document that stem from the set of assistive software provided and configured
by the ATS. They are applied by the Adaptor module (the applyATTransformation()
method). After these transformations have been applied, the final version of the interface
has been created and can be delivered to the user’s controller device.

A.2 Navigation Scenario

As we have already stated users interaction with a device often implies navigating through
different atomic interfaces. Figure 22 shows the SD of the Navigation process.

The interaction starts with the interface requesting a navigation to the Starting
Point that acts as a gateway between the user interface and the system. The Interaction
Enacter is the module that handles the navigation between interfaces. It is so because the
Navigation activity is considered a subclass of the Device Interaction activity, as from a user
perspective, the kind of buttons that perform device interaction activities are the same as
those that allow the user navigate within the complex interface. In the request Interaction
Enacter accesses to the navigation graph of the complex interface and determines which
is the next interface that should be generated. This information is stored in the context of
the IG. Finally, a new interface generation process starts. As the context of the IG has been
updated with the next interface to be rendered, this is the one that is rendered.

A.2.1 Interface Generation Process

INREDIS devices UIML interfaces are composed of two types of documents:
– Views, a set of UIML documents that describe structure and its interaction elements of

each atomic interface. As described in (Abrams et al 1999), the use of UIML allows the
abstract and platform-independent definition of user interfaces.

Assessment of an Architecture for People with Special Needs 47

<<gaCommStep>>

<<gaCommStep>>

<<gaStep>>

<<gaStep>>

<<gaStep>>

Fig. 22 UML SD modelling a simple navigation

– Navigability graph, which defines the how and on what conditions the complex interfaces
navigates throw the different views. Only one view at a time is shown, we refer to it as
the current view.

Generating an interface for a user means to transform the current view of an interface into
an accessible XHTML document taking into account the characteristics of the user and the
needed assistive technology. Most part of the process is identical to the one defined for the
first interaction. The difference is that this process does not adapt the initial interface, but it
transforms the current view of the device interface that the user is using at present (which
like in the case of the initial interface created by the Initial Creator is a abstract UIML
interface).

The first part of the diagram, the one related with the detection of accessibility gaps
and the determination of the necessary assistive technology, is the same as the one defined
for the first interaction with the INREDIS system. When the Generator module receives the
petition of generating an interface by means of the generateInterface() module the first
step is to determine which is the current view of the interface. This information is stored in
the context of the IG (getCurrentView() method). The current view is a URL that points
to the location of the abstract UIML document that should be used as the starting point
of the final user interface. The Generator module invokes the retrieveXMLSource()
method of the helper class Resource Manager, and retrieves an abstract UIML interface.

The rest of the steps of the generation of the interface are exactly as the ones described
for the first interaction. Instead of using the abstract UIML interface created by the Initial
Creator, they use the abstract UIML interface retrieved by the Resource Manager from
the interface current view URL.

A.3 Device Interaction Scenario

The interactions with devices, and services are realized by the Interaction Enacter, see
the SD in Figure 24.

This module once initialized executes the action involved in the device/service interac-
tion. In order to do so it invokes the executeAction() method of the Interoperability
Gateway, which is a class that decouples the Interaction Enacter from the underneath
technology used to interact with the device. The executeAction() method may result in:

48 E. Gómez-Mart́ınez et al.

sd Interface Generation

 : KB
<<control>>

 : Servlet
<<control>>

 : Interface Generator
<<control>>

 : Adaptor
<<control>>

 : ATS
<<control>>

 : Decisor
<<control>>

 :Container
<<control>>

 : Injector
<<control>>

 : Context
<<control>>

 : Generator
<<control>>

 : ResourceManager
<<control>>

getInterface()

AskAT()

getProfiles()

profiles
configATList

chooseAdaptationTransformation()

getTransformations()

transformations

adaptations

applyATTransformation()

finalInterface

finalInterface

getInteractionGeneratorContext()

generateInterface()

getCurrentView()

abstractInterfaceURL
retrieveXMLSource()

abstractInterface

concretizeInterface()

injectContextVariables()
getAttributeValue()

attributeValue

applyInitRules()

chooseAdaptationParameter()

parameters

adaptInterface()

adaptedInterface

adaptedInterface

getUser()

userInstance

getInterface()

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(110.1,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(16.1,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(3.1,unit=ms,
statQ=mean,source=assm)}

<<gaCommStep>>
{hostDemand=(2.1,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(0.6,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(51.1,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(6,unit=ms,

statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(1303.5,unit=ms,

statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(0.1,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(0.1,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(0.1,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(50.1,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(10,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(50.1,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(60.2,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{hostDemand=(3.4,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=ATS,resUnits=1}

<<gaAcqStep>>
{relRes=ATS,resUnits=1}

Fig. 23 UML SD modelling the Interface Generation process

– setValue() method invocation, in case that the device is exposed as a UCH target.
The user interaction is translated into the change of one or more values of the UCH
Target.

– invokeWS() method invocation, in case that the device is exposed as a Web service (or
when there is no device and we are dealing with a Web service invocation)

The result is stored in the context of the IG, for later use in case of need. Once the interaction
has been carried out, a new interface is generated (invoking the Orchestrator method
getInteface()). This new interface is generated to make sure that it reflects the changes
and latest state after the interaction with the device.

A.4 Back to Top Scenario

This process, illustrated in the SD of Figure 25, means going back to the device initial
interface.

As in the case of the navigation, the Interaction Enacter is the module that handles
the back to top process. It is so because this activity is considered a subclass of the Device

Assessment of an Architecture for People with Special Needs 49

sd Device Interaction

 : Servlet
<<control>>

 : InteroperabilityGateway
<<control>>

 : UI
<<boundary>>

 : StartingPoint
<<control>>

 : InteractionEnacter
<<control>>

TargetDevice
<<boundary>>

 : Orchestator
<<control>>

DoInteraction

InitInteractionEnacter

processRequest()

executeAction()

setValue()

actionResponse

inredis()

finalInterface

ref

Interface Generation

alt

[isUCHTarget]

[isWS]

invokeWS()

ack

getInterface()

Interface

<<gaStep>>
{hostDemand=(13.7,unit=ms,
statQ=mean,source=assm)}

<<gaCommStep>>
{hostDemand=(0.1,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(283.7,unit=ms,
statQ=mean,source=assm)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=(1.6,unit=ms,
statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=($tuch,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=UCH,resUnits=1}

<<gaAcqStep>>
{relRes=UCH,resUnits=1}

<<gaStep>>
{hostDemand=($tws,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=WS,resUnits=1}

<<gaAcqStep>>
{relRes=WS,resUnits=1}

<<gaCommStep>>
{msgSize=((value=$s1,unit=Mb,statQ=min),

 (value=$s2,unit=Mb,statQ=max))

<<gaStep>>
{hostDemand=(13.73,unit=ms,
statQ=mean,source=assm)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=assm)}

<<gaCommStep>>
{hostDemand=(0.01,unit=ms,
statQ=mean,source=assm)}

<<gaAcqStep>>
{resRes=interopGateway,

resUnits=1}

<<gaAcqStep>>
{acqRes=interopGateway,

resUnits=1}
<<gaAcqStep>>
{resRes=AMS,

resUnits=1}

<<gaAcqStep>>
{acqRes=AMS,

resUnits=1}

<<gaStep>>
{prob=0.1}

<<gaStep>>
{prob=0.9}

Fig. 24 UML SD representing a user’s device interaction

Interaction activity, as from a user perspective, the kind of buttons that perform device
interaction activities are the same as those that allow going back to the device top interface.
In order to keep all the information in the KB up-to-date we begin updating the location
of the device and we recalculate the information about the user’s INREDIS perimeter .The
next step is to generate top interface of the device, which is made using the Interface
Generation process that we have already described in Section A.2.1.

A.5 Assistive Software Selection Mechanism

Assistive technology is the hardware or software that is added or incorporated within a
system than increases accessibility for an individual, as defined in International Standard
Organization (2011). Assistive Software (AS) is understood as a piece of software used to
increase our ability to manage some kind of information in a digital device. The AS selection
mechanism (ASSM) makes the environment able to automatically select the most suitable AS
for a given interaction with a specific electronic target device taking advantage of the user’s
context (user, controller device and target device) and considering the possible discrepancies
between the user and the environment, namely in the case of functional diversity.

The ASSM uses different knowledge based on ontologies to achieve this goal, so this
process consists of five main activities, one of them split into six, see the UML activity
diagram in Figure 26. The complete AS selection mechanism (ASSM) is described by Gómez-
Mart́ınez et al (2013). The following is a summarized description of each activity.

50 E. Gómez-Mart́ınez et al.

<<gaCommStep>>

<<gaCommStep>>

<<gaStep>>

<<gaStep>>
<<gaStep>>

<<gaCommStep>>

Fig. 25 UML SD representing the back-to-top process.

Detecting discrepancies The first activity detects any accessibility issues that might
prevent the user from being able to use a controller. In order to detect discrepancies we use
a set of specific rules stored in the KB that compare the characteristics of the interaction
that the user is able to perform with those that the controller is able to emit/receive. The
complete catalogue of rules is specified by González-Cabero (2010).

Checking feasibility Each discrepancy found in the previous step, is analyzed to deter-
mine whether mediation by the AS can enable the interaction. The following activities are
intended to ascertain which AS is most appropriate.

Matching by History log When the user has already employed the system to interact
with the same target using the same context, it is possible to retrieve the most suitable AS
without further reasoning, just by querying the KB and retrieving the matching set from the
AS History.

Matching by score This activity triggers the reasoning process where four subsets of con-
cepts are simultaneously queried in the KB using parallel activities. This activity is divided
into the next activities:

– Retrieve Standard Fulfillment. This activity performs an evaluation where the best scor-
ing AS will be those that follow worldwide accessibility standards established by recog-

nized accessibility entities.
– Retrieve Privacy. This activity checks that the AS complies with the data protection

measures issued by security bodies. It is important to note that, according to many
laws in different countries, when an AS complies with a data protection act level, it
also complies some data protection measures. This is taken into account here via rules
to assert those facts in the KB. This is the case for e.g., Federal Data Protection and
Information Commission of Switzerland or Ley Orgánica de Protección de Datos in
Spain.

Assessment of an Architecture for People with Special Needs 51

Detecting discrepancies

Checking feasibility

List of AS AS

Matching by Historic Log

Sorting

Weighted Matching

Retrieve Standard Fullfillment

Retrieve Privacy

Retrieve Ballot

Retrieve Deploy Method

Retrieve Setup Utilities

Matching by Score

Error

[>1]

[=1]error: [=0]

[not found]

[found]

<<gaStep>>
{prob=$p3}

<<gaStep>>
{prob=$p1}

<<gaStep>>
{hostDemand=($t4,unit=ms,statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=($t5,unit=ms,statQ=mean,source=assm)}

<<gaStep>>
{prob=$p4}

<<gaStep>>
{prob=$p5}

<<gaStep>>
{hostDemand=($t6,unit=ms,statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=($t7,unit=ms,statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=($t8,unit=ms,statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=($t1,unit=ms,statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=($t2,unit=ms,statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=($t9,unit=ms,statQ=mean,source=assm)}

<<gaStep>>
{hostDemand=($t10,unit=ms,statQ=mean,source=assm)}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaAcqStep>>
{acqRes=KB,resUnits=1}

<<gaAcqStep>>
{relRes=KB,resUnits=1}

<<gaStep>>
{prob=$p2}

<<gaStep>>
{hostDemand=($t3,unit=ms,statQ=mean,source=assm)}

<<gaScenario>>
{respT=(expr=$RT,unit=’s’,statQ=mean,source=pred)}

<<gaWorkloadEvent>>
{pattern=(closed(population = $NUser))}

Fig. 26 UML Activity Diagram of the AS selection process

– Retrieve Ballot. This activity increases the score for those AS with the best user reviews.
These reviews are drawn from all the system’s users but they are not linked to any
individual user, to maintain privacy about users’ functional diversity.

52 E. Gómez-Mart́ınez et al.

– Retrieve Deploy Method. The scoring is the simplest, just to foster the use of AS de-
ployed as SaaS (Software as a Service).

– Retrieve Setup Utilities. This activity needs the output of Retrieve Deploy Method, so it
is not executed in parallel with the others. All of the concepts are scored in this activity
to take into account the ease of access and use of the AS.

– Weighted Matching. This is the final activity of matching by score. It focuses on adapting
the matching to the user’s preferences and the Domain Experts’ assumptions.
The user has been previously asked to state its level of importance by means of the
user profile stored in the KB. With the weighting system, all the roles involved in the
selection are taken into account (i.e., domain experts, the user, and all system users at
once using the reviews).

Sorting This is the final activity of the whole process. This activity orders the set of AS
products/services of the weighted matching activity in descending order.

B GSPN Overview

A PN system is a tuple N = (P, T,Pre,Post,M0), where P and T are the sets of places
and transitions, Pre and Post are the |P |×|T | sized, natural valued, pre- and post- incidence
matrices. For instance, Post[p, t] = w means that there is an arc from t to p with multiplicity

w. When all weights are one, the PN is ordinary. Graphically, places and transitions are
respectively represented by circles and bars, arcs are shown by arrows.

C = Post − Pre is the incidence matrix of the net. For pre- and postsets we use the
conventional dot notation, e.g., •t = {p ∈ P : Pre[p, t] ≥ 1}, that can be extended to sets
of nodes. If N ′ is the subnet of N , defined by P ′ ⊆ P and T ′ ⊆ T , then Pre′ = Pre[P ′, T ′],
Post′ = Post[P ′, T ′] and M′

0
= M0[P ′]. Subnets defined by a subset of places (transitions),

with all their adjacent transitions (places), are called P- (T-) subnets.
A marking M is a |P | sized, natural valued, vector and M0 is the initial marking

vector. A transition is enabled in M iff M ≥ Pre[P, t]; its firing, denoted by M
t
→ M′,

yields a new marking M′ = M + C[P, t]. The set of all reachable markings is denoted as
RS(N ,M0). An occurrence sequence from M is a sequence of transitions σ = t1 . . . tk . . .

such that M
t1→ M1 . . .Mk−1

tk→ Given σ such that M
σ
→ M′, and denoting by σ the

|T | sized firing count vector of σ, then M′ = M+C · σ is known as the state equation of N .
A GSPN is a tuple G = (N ,Π,Λ, r), where N is a PN system and the set of transitions

T is partitioned in two subsets Tt and Ti of timed and immediate transitions, respectively.
Timed transitions are depicted as thick white bars, immediate ones are depicted as thin
black bars.

Π is a natural valued, |T | sized, vector that specifies a priority level of each transition;
timed transitions have zero priority, immediate transitions have priority greater than zero.
A transition t ∈ T , enabled in marking M, can fire if no transition t′ ∈ T : Π[t′] > Π[t] is
enabled in M.

Immediate transitions fire in zero time. Instead, the firing of a timed transition is a
random variable, distributed according to a negative exponential probability distribution
function with rate parameter λ (i.e., mean 1

λ
). Then Λ is the non negative real valued, |Tt|

sized, vector associated to the transition firing rates (accordingly, the transition firing delay
is the inverse of the corresponding firing rate). The positive real valued vector r is |Ti| sized,
and specifies the weights of the immediate transitions for probabilistic conflict resolution.

Assessment of an Architecture for People with Special Needs 53

C List of Performance Patterns and Antipatterns

Table 2 Performance patterns

Pattern Description Principle
Fast Path Identify dominant workload functions and stream-

line the processing to do only what is necessary.
Centering

First Things First Focus on the relative importance of processing
tasks to ensure that the least important tasks will
be the ones omitted if everything cannot be com-
pleted within the time available.

Centering

Coupling Match the interface to objects with their most fre-
quent uses.

Centering, Lo-
cality, Process-
ing versus Fre-
quency

Batching Combine requests into batches so the overhead
processing is executed once for the entire batch
instead of for each individual item.

Processing ver-
sus Frequency

Alternate Routes Spread the demand for high-usage objects spa-
tially, that is, to different objects or locations.

Spread-the-
Load

Flex Time Spread the demand for high-usage objects tempo-
rally, that is, to different periods of time.

Spread-the-
Load

Slender Cyclic
Functions

Minimize the amount of work that must execute
at regular intervals.

Centering

Table 3: Performance antipatterns

Antipattern Problem Solution
Circuitous
Treasure Hunt

Occurs when an object must look in
several places to find the information
that it needs.

Refactor the design to provide
alternative access paths that
do not require a Circuitous
Treasure Hunt (or to reduce
the cost of each “look”)

Blob or “god”
Class

Occurs when a single class performs
most of the work of the system, relegat-
ing others classes to minor, supporting
roles.

Refactor the design to dis-
tribute intelligence uniformly
over the application’s top-level
classes, and to keep related
data and behaviour together.

Concurrent
Processing
Systems

Occurs when processing cannot make
use of available processors.

Restructure software of change
scheduling algorithms to en-
able concurrent execution.

“Pipe and Fil-
ter” Architec-
tures

Occurs when the slowest filter in a
“pipe and filter” architecture causes
the system to have unacceptable
throughput.

Break large filters into more
stages and combine very small
ones to reduce overhead.

Extensive Pro-
cessing

Occurs when extensive processing in
general impedes overall response time.

Move extensive processing so
that it does not impede high
traffic or more important work.

Continued on next page

54 E. Gómez-Mart́ınez et al.

Table 3 – continued from previous page
Antipattern Problem Solution

Empty Semi
Trucks

Occurs when an excessive number of
request is required to perform a task.
It may be due to inefficient use of avail-
able bandwidth, and inefficient inter-
face, or both.

The Batching performance
pattern combines items into
messages to make better use
of available bandwidth.

Roundtripping Occurs when many fields in a user in-
terface must be retrieved from a re-
mote system.

Buffer all the calls together and
make them in one trip. The
Facade design pattern and the
distributed command bean ac-
complish this buffering.

Tower of Babel Occurs when processes excessively con-
vert, parse, and translate internal data
into a common exchange format such
as XML.

The Fast Path performance
pattern identifies paths that
should be streamlined. Mini-
mize the conversion, parsing,
and translation on those paths.

One-Lane
Bridge

Occurs at a point in execution where
only one, or a few, processes may con-
tinue to execute concurrently. Other
processes are delayed while they wait
for their turn.

To alleviate the congestion, use
the Shared Resources Principle
to minimize conflicts.

Excessive Dy-
namic Alloca-
tion

Occurs by the overhead required when
an application unnecessarily creates
and destroys large number of objects
during its execution.

1) “Recycle” objects (via an
object “pool”) rather than cre-
ating new ones each time they
needed. 2) Use the Flyweight-
pattern to eliminate the need
to create new objects.

The Ramp Occurs when processing time increases
as the system is used.

Select algorithms or data
structures based on maximum
size or use algorithms that
adapt to the size.

Traffic Jam Occurs when one problem causes a
backlog of jobs that produces wide
variability in response time which per-
sists long after the problem has disap-
peared.

Begin by eliminating the origi-
nal cause of the backlog. If this
not possible, provide sufficient
processing power to handle the
worst-case load.

More is Less Occurs when a system spends more
time “thrashing” than accomplish-
ing real work because there are too
many processes relative to available re-
sources.

Quantify the thresholds where
thrashing occurs (using mod-
els or measurements) and de-
termine if the architecture can
meet its performance goals
while staying below the thresh-
olds.

Sisyphus
Database
Retrieval

Occurs when performing repeated
queries that need only a subset of the
results.

Use advanced search tech-
niques that only return the
needed subset.

Continued on next page

Assessment of an Architecture for People with Special Needs 55

Table 3 – continued from previous page
Antipattern Problem Solution
Falling Domi-
noes

Occurs when one failure causes perfor-
mance failures in other components.

Make sure that broken pieces
are isolated until they are re-
paired.

Unnecessary
Processing

Occurs when processing is not needed
or not needed at that time.

Delete the extra processing
steps, reorder steps to detect
unnecessary steps earlier, or
restructure to delegate those
steps to a background task.

D GSPN Models of the System

init_doNavigation ini_getInterface

doNavigation

request_doNavigation

adaptTargetDeviceInterface

getTransformations

getProfiles

askAT

chooseAbstractInterface

applyATTransformation

chooseAdaptationTransformation

getInterfaceend_cycle

acq_ATS

acq_KB

res_KB

res_ATS

acq_KB

res_KB

end_getInterface

pATS

pKB

$nUsers

Fig. 27 GSPN representing Navigation scenario.

56 E. Gómez-Mart́ınez et al.

pUCH pWS

pKB

pinteropGateway

ini_deviceInteraction

getInterface

askAT

getProfiles

chooseAbstractInterface

getTransformations

adaptTargetDeviceInterface

setServiceState

getState

end_getInterface

res_KB

acq_ATS

acq_KB

res_KB

res_ATS

acq_KB

acq_KB

res_interopGateway

res_KB

acq_interpGateway

isUCH

acq_UCH

end_cycle

end_deviceInteraction

invokeUCH

res_UCH

acq_WS

isWS

invokeWS

res_WS

acq_KB

request_deviceInteraction

servlet_deviceInteraction

$nUsers

res_KB

applyATTransformation

pATS

ini_getInterface

Fig. 28 GSPN representing Device Interaction scenario.

Assessment of an Architecture for People with Special Needs 57

ini_perimeterCalculation

ini_getInterfaceini_backToTop

getInterface

askAT

getProfiles

chooseAbstractInterface

getTransformations

adaptTargetDeviceInterface

setAmbient

getServiceInfo

setServiceState

getState

setAbsoluteLocation

getUserPerimeterServices

setAbsoluteLocationKB

call_perimeterCalculation

end_getInterface

res_KB

acq_ATS

acq_KB

res_KB

res_ATS

acq_KB

end_perimeterCalculation

res_AMS

acq_KB

res_KB

acq_infoExternal

acq_KB

res_interopGateway

res_KB

acq_interpGateway

isUCH

acq_UCH

acq_AMS

acq_KB

res_KB

end_cycle

end_backToTop

invokeUCH

res_UCH

acq_WS

isWS

invokeWS

res_WS

acq_KB
request_backToTop

InteractionEnacter

$nUsers

res_KB

applyATTransformation

pATS

pInfoExternal

pWSpUCH

pInteropGateway

pAMS

pKB

Fig. 29 GSPN representing Back To Top scenario.

