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_ Abstract— Timed Continuous Petri Net (TCPN) systems are constraints can be found in the literature, it has been found
piecewise linear models with input constraints that can ap- difficult to apply those ta'C PN systems. Thus there exists
proximate the dynamical behavior of a class of timed discret necessity for searching more control techniques for this

event systems. This paper concentrates in the development . . .
of a control structure for TCPN that transfers the system Particular model. For instance, classic works ([4] , [S]pde

from the initial state to another desired one. The resulting With controllability and stabilization problems for syste

control law consists in a Linear Programming Problem, which  with bounded inputs, however, in those works the input can
is solved on-line, and a set of gain matrices, one for each take negative values, which is prohibitive in our model. In
configuration. This approach allows the use of any classicgole [6] the controllability on linear systems with nonnegative

assignment technique for the computation of the gain matries. . . . .
Furthermore, convergence to the desired marking and input NPUtS is addressed. Regarding ®3V'L systems, in [7] a

boundedness are demonstrated. problem concerning production systems is formulated as a
H, control problem for a piecewise affine system; there, an
. INTRODUCTION optimization program subject to LMI constraints is prophse

!5(1 [8], the control design problem foPW L systems is
studied through quadratic Lyapunov functions and convex
r%otimization. However, in [9] it was shown th&CPN

In the literature, many of results related to performanc
evaluation analysis and control synthesis (schedulinggtha

on Discrete Event Systems (DES) can be found. Applicatio . .
y ( ) Pp ystems are not controllable in the classical sense, threref

involve a wide range of systems including manufacturin h i 4 techni ¢ be directl lied t
process, telecommunication, traffic and logistic system ,UC concepts and techniques cannot be directly applied to

etcetera. The computational complexity of analysis an ur model. Despite such result, in [10] it was proved that

synthesis problems for such systems makes very importa{ {Some conditions are fulfilled then there exists a set of

searching for relaxations where computational improvetlsnen'm.erestlng points (the sgt of possible stat!opary opegatl
nts of the model) in which the system exhibits the control

are significant and, at the same time, the induced erroEl%l.t Wi tate of h set i h i
are small enough to be useful in engineering. Fluidificatio ity property, 1.€. any state of such set 1s reacha '
apy other one in it. In order to study such property, a local

constitutes a relaxation technique to study discrete eve
systems through a continuous approximated model, th
avoiding the state explosion problem, furthermore, usin
fluid models, more analytical techniques can be used for t
analysis of some interesting properties.

gntrollability concept was proposed fafC PN systems,

nd sufficient and necessary conditions for controllagbilit
ere introduced.

An interesting approach for the Control synthesis on
Piecewise-Affine systems was provided in [11]. For the sys-

In Petri Nets PN), fluidification has been introduced | . :
: . : . tems considered in such work, the continuous state evolves
from different perspectives ([1], [2]). Here, timed conigus T o )
as an affine linear system inside simpleces (polytopes bf ful

Petri net 'CPN) models under infinite server semantics’..

are considered, since it has been found that in most Cas%gwensmn with a minimum number of vertices), associated

this semantics provides a better approximation [3]. The coﬁo discrete sates. The control problem addressed in those

tinuous model thus obtained has three main characteristi Sapers consists in the synthesis of an affine linear control

1) it is piecewise linear RWL), 2) the input must be aw, for each of the simpleces, that ensures that the con-

nonnegative and upper bounded by a function of the stafiguous stat(?’ does ”not I_eave the current §|mp!ex by crossing
desirable "facets”, which at the underlying discretdesys

(constrained), and 3) models with some real meaning atd! . . . .
high-order systems (with tens or even hundreds of Statdieans blocking undesirable events. The solution propased i

. %ased on directing the field vector, of the closed-loop syste
variables). ) T T . X
: . towards suitable directions (inside or outside to the sampl
Even if a lot of research related to controllability and : . .
. - depending the case) at the vertices of the simplex. Even
control design forPW L systems and control with input : . .
when TCPN systems can be viewed as such piecewise-
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4), then it is necessary to consider different approaches f¢consistent For reachability, the limit concept is used, and
controlling continuous net systems. a marking reached in the limit of an infinitely long sequence
Taking advantage of the particular estructurel@f PN, is considered reachable [15].
control laws for these systems have been proposed by usingA Timed Continuous Petri NefTCPN) is a continuous
different techniques. In [12] a solution based on ModePN with a vector\ e RI;‘FO'. Here,infinite server semantics
Predictive Control was proposed, finding computational-coms considered (sometimes calledriable speedsee [2] for
plexity problems for the explicit approach that make itslapp an introduction to semantics used in TCPN), thus the flow
cation prohibitive. In [13] a tracking control approach viias through a timed transition is the product of the rate\[¢]
troduced, considering step and ramp references and low-arzhd enab(t, m), the instantaneous enabling representing the
high gain controllers. Local stability and input boundeskie number of active serves, i.(m)[t] = A[t] - enab(t, m) =
were proved for a class of PNs. In those papers all transitiot\[t] - min,c+;{m[p]/Pre[p,t]}. For the flow to be well
are assumed to be controllable. Uncontrollable transtiordefined we will assume thatt € T,|*t| > 1. The “min”
were considered in [14], where a gradient-based controllér the definition leads to the concept abnfigurations
was proposed for driving the output towards the desired configuration assigns to each transition one place that
value. However, since the input constraints are not consitle for some markings will control its firing rate (i.e. it is
for the minimization of the cost function, convergence i$ noconstraining that transition). The number of configuragion
guaranteed. is upper bounded b¥[, . [*t|.
In this paper, uncontrollable transitions are considered. The flow through the transitions can be written in a
In order to reduce computational complexity problems andectorial form asf(m) = AII(m)m, whereA is a diagonal
to provide feasibility and effectiveness, we propose irs thimatrix whose elements are those &®f and II(m) is the
case a classical approach by adapting the well-known lineeonfiguration operator matrix ah, defined by elements as
feedback control structure. Since the system is piecewise
linear, for each linear mode (corresponding to a particular o 1 if p; is constraining;
configuration) a stabilizing gain matrix is considered. §qhe  II(m)[i,j] = { Pre[pé’m (j)therwise
can be computed by using any pole assignment technique. In
order to guarantee the boundedness of the input, suitable lhmore than one place is constraining the flow of a transition
termediate target markings (states) are computed by gplviat a given marking, any of them can be used, but only one
on-line a LPP, obtaining thus a piecewise-linear constcin is taken.
control structure. Convergence to the required marking and Control action may only be a reduction of the flow through
boundedness of the input are demonstrated, whenever the transitions. That is, transitions (machines for exanpl
system fulfills some controllability conditions introdute  cannot work faster than their nominal speed. Transitions in
[10]. which a control action can be applied are calbedtrollable
This paper is organized as follows: in Secti@nan The effective flow through a transition which is being con-
overview of continuous an@’CPN is presented, while in trolled can be represented ag;(7) = A[t;] - enab(7) [t;] —
Section 3, some previous results related to controllabilityu(7)[t:], where0 < u(7)[t;] < A(t;) - enab(7)[t;]. The
are recalled. In Section the case in which the initial and control vectoru € R/l is defined s.tu; represents the
desired markings belong to the same region is considereg@ntrol action ory;. If ¢; is not controllable them; = 0. The
and next, in Sectiors, the case with different regions is forced flow vector is expressed a§m, u) = ATI(m)m —

studied. Conclusions are presented in Section u. The set of all controllable transitions is denoted By
and the set of uncontrollable transitionsTlis, = T — T..
Il. BASIC CONCEPTS The behavior of a TCPN forced system is described by

The structure\N = (P, T, Pre, Post) of continuous PN the state equation:
is the same as the structure of discrete PN, Reand T’ .
are finite disjoint sets of places and transitions, respelgti m = CAII(m)m — Cu (1)
Pre andPost are|P| x |T'| sized, natural valuegyre- and 0 <u<Al(m)m
post- incidence matrices A control action that fulfills the required constraints,.i.e
The main difference is in the evolution rule, since invt; € T, u; = 0 and0 < u < AII(m)m, is called
continuous PN firing is not restricted to integer amountssuitable boundeds.b.). If an input is not s.b. then it cannot
and so the markingn is not forced to be integer. More be applied. A markingn for which Ju s.b. atm such that
precisely, a transitiont is enabledat m iff for every p € m = C[AII(m)m — u] = 0 is calledequilibrium marking

°t, m[p] > 0, and itsenabling degrees enab(t,m) = andu andw(m,u) are said to be itequilibrium inputand
minyes:{mp]/Pre[p, t]}. The firing oft in a certain amount flow, respectively.

a < enab(t, m) leads to a new markingy’ = m+a-C[P, ], Marking m; is said to be reachable from, if Ju s.b. that
whereC = Post — Pre is the token-flow matrix. transfers the system from; to m, in either finite or infinite

Right and left rational annulers af are calledT- and time (lim-reachable). Ifim; is the initial marking thenm,
P-flows respectively. If there existy > 0 (x > 0) s.t. is simply called reachable. The set of reachable markings
yC = 0 (Cx = 0), the net is said to b&onservative can be defined for autonomous continuous PN and TCPN



m(p,)

systems [15]. In the sequel, the term reachabilitways

refers to timed systems. 2 -
BN
[1l. CONTROLLABILITY = 4 4

In this section, some controllability concepts are rechlle
from [10]. Ry

If y is a P-flow, then for any reachable markinm, TR
y’m = yTmg. So, whenever a TCPN system h&s _ iy
flows linear dependencies between marking variables appea Y6 05 m(p,)
introducing token conservation laws, a class of state invar
ants. Therefore, systems with P-flows are not controllable Fig. 1. The setfyS, and subsetsZ; and E;'.

in the classical sense. However, we are interested in the

controllability “over” this invariant. In the sequel, thitate

invariant will be denoted a€'lass(mg). Notice that every ing m? € E; with an equilibrium inputu? such that

reachable marking belongs €ass(my), but the reverse is [AIL;m%; > uj > 0. In other caset; is said to be

not true for timed models. This set is divided into subsetgartially controllable. The set of fully (partially) cowttable

of markings associated to the same configuration, whidnansitions atF; is denoted ad;, (7;,).

are namedegions Then, for each particular configuration Definition 4: The subset of;, in which the equilibrium

matrix IT; there is its correspondingegion *; = {m € flow can be positive, is defined as

Cla_ss(mo)|1_[(m) = IL}. _The Cla_ss(mo) and all the E* — {m? € Fi[3u? such thatw? > 0}

regionsare convex sets. Inside eadgionthe state equation i . .

- . : ) : In order to clarify the sense of these definitions, see the

(1) is linear {I(m) is constant). Notice that conﬂguranonsf lowing example

(sets of arcs that constraint transitions) are defined at net 9 pe.. , .
Example 1:Consider the system of fig. 1 with = I

level, configuration matrices at the algebraic level and re_ndT = {tx.t2). There exist two possible configurations:
ions at the state space level. In the sequel, let us denote ¢ — L B2 . :
9 b d that in whicht, is constrained by, (related toR;) and the

int(Class(mo)) andint(R;) the sets of interior markings other in whicht, is constrained bys (related toR;). Fig.

of Class(mg) and R;, respectively (considering the space ) ;
generated by the columns 6f). 1 also shows th&'lass(my) (the marking ofp; andps is

. enough to determine a reachable marking, since this net has

Now, let us remark that the classical controllability defini ) .
tion cannot be applied to TCPN systems because the settW P-semiflows). The whole grey triangle corresponds to
ﬁl. Actually, in this exampleE; = E,S and B, = @. A

reachable markings (a subset@fass(mg)) never compose S

a vector space, and also the input must be suitable bound%gnerator Off, is given by

(i.e. 0 < u < AII(m)m). Therefore, an adaptation of the 1, -1, 1,

classical controllability definition was proposed in [10]. G = —1, 1, 1, -1
Definition 1: The TCPN system\/, A, mg) is control-

lable with bounded input (BIC) ovef C Class(my) if for

any two markingan;, ms € S there exists an input that

transfers the system fromm; to my in finite or infinite time,

and it is suitable bounded along the marking trajectory.
The controllability in TCPN systems is studied over se . i 1

of equilibrium markings because they represent "the std2 € controllable transitions;, =7 and 7, = @.

tionary operating points” of the modeled system. The set I_n th_e sequel, let us denote % andC;, the m_gtnce_s
of all equilibrium markings is defined asz,S = {m ¢ built with the columns ofC related to the transitions in

Class(mg)|Ju s.b. atm s.t. C(AII(m)m — u) = 0}. T and T, resp_ectively. Next cor_o_llary, prove_d in [10],
The set of all equilibrium markings in the i-th region isintroduces conditions for controllability over a gives'".
defined asE; = {mm € E,S N R;}. Since the system .CoroIIaryl+: Let (N, Avf‘0>, be a TCPN system. Con-
is linear inside each region, the controllability is lingar Sider SOme£;™ such that,” Nint(R;) # 0 and letG, be a
studied first over each;. Now, let us introduce some useful 9énerator of it. Consider the matrix functictnt* (A, B) =
definitions related tds;. B, AB, ... A"BJ. Then:
Definition 2: A Generatorof F; # @ is a kind of basis 1) If 3X such thatCOTlt‘P|’1(CAHi,Cif) X = Gy,

_11%

The column vectors o& 1, scaled and restricted g andps,

are represented by; andd; in fig. 1. The triangle without
the upper edge (that in whictu(ps) = 2) corresponds to
E; . Furthermore, since for any marking in the interior of the
t‘,g)riangle its equilibrium input is positive at the entrietated

for it, formally defined as a full column rank matr{x; that then the system is controllable ovEf". Furthermore,

fulfills: if Tg'f = T, then it is also a necessary condition for
a) Vm;, my € E;, (m; —msy) is in the range ofG;. controllability overEi*, considering all the marking
b) G; is minimal (if one of its columns is removed then trajectories ink;.

ais false). 2) If #X such thaCont!”I=1(CAII;, C.)-X = G;, then
Definition 3: A controllable transitiont; is said to be the system is not controllable ovel', considering all

fully controllable atE; if there exists an equilibrium mark- marking trajectories ;.



Finally, next proposition (proved in [10]) introduces sulffi

cient conditions for controllability over the union of setf 1)
equilibrium markings of different regions.

Proposition 1: Let (N, A, mo) be a TCPN system. Con-
sider equilibrium set&;", E5 ,..., E; as defined above. If the
system is BIC over each one and their union (Uétl E) 2)

is connected, then the system is BIC over the union.

IV. CONTROLLING INSIDE ONEREGION

In this section, a control law structure is proposed for the
case in which the initial and desired markings, denoted as
m, andm, respectively, belong to a common regitn and
both are equilibrium markings.

In the sequel it is assumed that the system fulfills the
sufficient condition for controllability of Corollary 1 6.
3X s.t. Cont!PI=1(CAIL, Ci;)X = Gy), so the system is
controllable over;" using only fully controllable transitions
Tcif. According to this, control will be applied only to these
transitions, while other controllable ones (thoself)) will
be considered as uncontrollable.

Now, the classical feedback control law (for instance see
[16]) is given by

u=uy+ Ke 2
whereK is a gain matrixuy is the equilibrium input related
to the desired markingn; ande = m — my is the marking
error.

Under these assumptions, if a negative and unbounded
input could be applied to the system them; would be
reachable by means of a control law like (2), but this is
not the case because MC' PN systems the input must be
suitably bounded in order to be applied. However, as it will
be proved next, given a stabilizing feedback gain maix
is possible to compute antermediatedesired markingn,,
in the segment defined bgn, and m, but close enough
to my, s.t. the input thus defined is suitably bounded along
the trajectory, and this one lies ;. Computing several of
theseintermediatemarkings,my can be reached by jumping
through them. Based on this idea, a control procedure is
proposed, whose effectiveness and feasibility are fosmall
proved through this section, but before that, let us intoedu
some useful notation.

Let up anduy (wo and wy) be the equilibrium inputs
(equilibrium flows) of mg and my, respectively fny, and
my are equilibrium markings). Define the constant vectors
eyp = mg — my and Au = ug — ug, and consider the error
e = m — my. Consider a giveintermediatetarget marking
m/; in the segment defined by, andm,. This marking can
be expressed as\/, = my + Bey, where( is a scalar that
belongs t0[0, 1]. By linearity, m/; is an equilibrium marking
and one of its equilibrium inputs is given Y, = ugs+3Au.
The equilibrium flow ofm/, and the error defined from it are
given bye’ = m —m/, = e — feg andw/, = wq + B(wo —
wq) = AIL;m/, — u/;, respectively.

3)

4)

Control procedure:

Compute a stabilizing feedback gain matkxs.t. the
controllable eigenvalues of the closed-loop state matrix
(CAII, — CK) are different, real and negative, and the
rows of K, non related with transitions ifi;, are null.
Givenm, anintermediatedesired markingn/;, which
belongs to the segment defined ly, and my, is
computed as follows

3
where 3 is obtained by solving the following LPP

m), = my + e

8 =min -~y subject to
c1 +neg(A)T; e+ (c2 — neg(A)T; 'eg) >0
7=0

(4)

T; is a similarity transformation matrix s.t. the trans-

formed errorT;le is nonnegative and decreasing in
the closed-loop system (i.e.= [CAII; — CK]e), the

functionneg(A) is defined by elements as
. Aij if Aij <0

neg(A)i; = { 0 otherwise

and the constants are defined as

®)

Uy K

AIL; — K
].__[1 — Hz) my A= ].__[Jl — i

IT

€ = ( J Ti

I - I

Wp — Wq

oo | (M-

II1" — Hl €0
L (17 - 1L) ©
considering all the configuratiorﬂ} -, II7 whose
corresponding regionﬁ},...ﬂ%; are neighbors off;.
Roughly speaking, first constant termg;( K andAu)
ensure thath > 0, second terms ensure that > 0
and last terms guarantee that the trajectory will lie in
R;.
By means of the application of

()

the system is transferred towards; and the input is
s.b. along the trajectory, which lies ;.

At any posterior time, a newintermediate desired
marking m/, is computed, closer tan, than the
previous one, by solving again the LPP (4) (it is not
required to reach the previous/, in order to compute
the new one). Then, the system is driven towards this
new intermediatemarking by means of the application
of the corresponding control law (7), which is s.h.
along the trajectory and this one lies ).

u=u,+ K (m-—m))



5) lterating the previous step, thatermediatedesired arein{—1,1} (soS = S~1!) in such a way thaSV‘le’10 >

marking will be eventually computed as; (i.e.m/, = 0. Then, defining the similarity transformation
my), which means that the system will asymptotically VS 0
reachm,. T; = Tra [ 0o I } 9)

In order to prove the effectiveness of this control approach .
we proceed as follows: in Proposition 2 the existence df¢ original closed-loop system (8) can be transformed as
K and T;, as they were previously defined, is proved. . y D VS)-1A ,
In Proposition 3 it is proved that the LPP (4) actually T;'e' = [ 1| = { (VS)™ As } {51 }

! !
provides the nexintermediatetarget marking, i.e. that the 2 , 0 Az €2
correspondingn/, is reached by means of)(and this input T;leg =¢) = 5/10 } >0
is s.b.. Finally, in Proposition 4 it is proved that this LPP €20 (10)
ha/s alwails a solution, and this convergesgto= 0 (i.e. Sincesl, = e,y = 0, the solution of such state equation
m; =1mg).

o . ) L b
Proposition 2: Consider a givenm/, € int(R;). The is given by

controllable poles of the closed-loop system can be arfbijtra

assigned by means of a proper gain matkx whose

rows non related to transitions dfi, are null. If such ~ Therefores, >&'(r) >0

poles are real, different and negative then the markigfg 4€'0:

is locally asymptotically stable in the closed-loop system ] u

Moreover, there exists a similarity transformati@y s.t. the In the sequel, let us assume tfttis s.t. the controllable

transformed errofl’; 'e’ is nonnegative and decreasing.  Poles of the closed-loop system are real, different and
Proof: Denoting asK’; the matrix built with the rows negative. . o _ .

of K related to the transitions iﬁz‘f’ thenCK — Cifo;f Proposn!on 3: Consider the initial and d(_eswed markings

and K’ fully determinesK. Applying the control law 0,™Md € int{R;}. Suppose that at some time, m(r;)

expressed in (7), the following closed-loop state equatith{%,i} and. a soluti_onﬁ for the LPP_ (4) is_ computed.
Consider theintermediatedesired marking as in (3). If the

<

T, and the error converges to

is obtained . . . . .
. . input (7) is being applied them!/, will be reached through
e =(m-m)) = {CAIL- — Cf:fo:f} e (8) atrajectory insideRr;. Moreover, such input will be suitable
. N _ bounded along the marking trajectory.
Consider the Kalman decompositidhy,; (see, for in- Proof: According to (4) and denoting (1;) = e(r) —
stance, [16]), so Beo
, ¢1 + Bea +neg(A)T; e/ (1) > 0 11
T} CAIL Ty = [ Au i” ],Tk;lc;f = [ B ] 1+ Bz +neg(A) () 1
0 22 0 Now, since the control law (7) is being applied, ac-

and the paifA,;, B) is controllable in the classical sense.cording to Proposition 2 the error of the closed-loop sys-
Then, the eigenvalues ¢f;; — BKy.) can be arbitrarily tem fulfils T;'e/(m) > T;'e(r) > 0 for 7 >
assigned by a proper choice of a gain malkix,;. Assume 71, SO, neg(A)T; 'e/(n) < neg(A)T; '€ (r) (because
that K., places those eigenvalues as real, different arfeg(A) < 0 by definition), furthermore, sinca&; 'e’(r) >
negative. Consider the gain matrix of the original systetm s.0, then nleg(A)T;le/(T)l < AT;'e(r). Therefore
K!; = [ Kia 0] T}, so the controliable eigenvalues”¢g(A)T; e'(1) < AT;"€(7), so, substituting into (11)

of [CATI; — CK] are equal to those assigned Ky,,;. The W€ obtain

—1_
transformed closed-loop system is given by &1+ ez + AT e/(7) 2 0

VT >7
L] L] _ !/
¢ =T e = [ (An OBK’““) 212 ]e’, € = [ €10 } Substituting the constants (6) and using the definitions
= €20 of ¢, w/, and m/, it can be demonstrated that previous
where ¢) = T;le). Now, by controllability hypothe- inequalities are equivalent to
sis G; € Spar{Cont!”I"(CAIL;, C)}, so T;,,G; € u(r) >0
Span{Cont!"|=1(T, L CATL; Ty, T;alle:f)}, which is AILm(7) — u(r) > 0
equivalent to (IT} — IT;) m(7) > 0
J 2 -
|P|-1 :
r e s ([ B AuB o AR ) i

Since T; ey € Span{T};G;} theney, = 0, i.e. the vr>m

transformed initial error is null at the uncontrollable par  Therefore,u(r) is s.b. for all future time and the system
Now, consider a modal decomposition(@;; —BKj.;), i.e. lies in ;. [ |

a modal matrixV s.t. V-1 (A;; — BKy,)V = D whereD The LPP (4) can be solved very efficiently on-line, because
is diagonal, and compute a diagonal maSiwhose elements it can be reduced to the problem of finding the minimum



m(p) m(p,)
3’ 0 3’

entry of some computed vector. Furthermore, some of the 60

inequalities are always fulfilled and can be eliminated gtho

involving uncontrollable transitions and null constants)
Proposition 4: Suppose that the initial and desired mark-

ings (mo and m,) belong toint(R;) N E;", and that the SOR OO .
entries ofuy anduy are positive for all the fully controllable .4 mo
transitions. Then, there exists solutignfor the LPP (4) at ROEYOENG, st R‘ﬂ;"“’ﬂ
my. Moreover, if the control procedure previously introduced (@
is being applied then there will exist solutighat all future 0 :
markings. Furthermore, the closer the marking isig, the 1 P ;
lower is this solution, until obtaining a value 6f o 5 6 [ATipm1,
Proof: Consider the inequality of (4) but reorderitas uy
2
“1(, _ > 0.2
c1 + ez + neg(A)T; " (e —veg) > 0 (12) i e i e TR T T

First consider a givery € [0, 1]. In this way, the marking
m/, = m, + e is in the segment defined by, andm,, © @

S0, it belongs tant(R;) and the vector ) N o
Fig. 2. a) TCPN system controllable ovef; . b) Projections of

u’ Class(mg) on the planesim(ps), m(p3)] and [m(p1), m(p3)], the

W‘/i dashed line isE;r while the continuous one is the trajectory of the closed-
1 d , loop system (both coincide in the second projection)). cinfated value
€1+ e = (Hj - Hi) m, for 3, d) input signalu and flow (AII2m) of ¢4 during the closed-loop
evolution.
(H; — Hi) m/,

is positive at the relevant entries (those that correspond t Example 2:C0|':jsider the system of fig. 2(‘1)_ withy, =

non null rows of A). Therefore, for a small enough value”'2 — Az = 1an . /\4_ =2 LetT, = {.t4}' T 1S system

of (e — veo) = ¢, i.e. for m close enough tan’,,  is a has two synchronizations and oryfeasible regions (there

solution for (12). A particular case occurs iy, (iin which Would be 4 but p; and p, cannot constraint their output

(e — veo) = (1 —7)ey = € (i.e. a value ofy close enough transitions simultaneously). Projections 6flass(mg) on

to 1 makese’ be small enough, and then suglis a solution the planesim(ps), m(p3)] and [m(p1), m(p3)] are shown

for (12) and the LPP) in fig. 2(b) (the marking of only three places is required
Now, suppose that .at time, a solutiong, is computed. to defined a reachable marking, then two projections are

Substitutingy — 3 — A~ into (12) and reordering the terms sufficient for representing@’lass(my)). The initial mark-

we obtain ing is my = [5, 5, 5, 55, 5, 5|7 while the desired one is
¢+ PBicet neg(A)Ti_l(e — Bieg)—

m, = [5,5,55,5,5,5]7. Both markings belong to the
Ay [e2 = neg(A)T; 'eo] > 0

(13) same regiorit,.
First, we will show, through this example, that the control
Consider a future time, > ;. If the control law (7) is problem of TC PN systems is not trivial. Suppose that we
being applied (with3 = 3;) thenT; /() < T; 'e/(r;), would like to apply a classical feedback control law (2) rthe
which implies thateg(A)T; '€/ (3) > neg(A)T; 'e’(r1), we would find that the rank of the controllability matrix for
s0, atr, there will existA~ > 0 that fulfills (13), i.e. asm  this configuration i, so the system is not controllable in
approximates to the intermediate marking a lower solutiothe classical sense and it could be impossible to raagh
is obtained. according to the classical theory. However, the uncorztbdd
Finally, notice that a lower solutiofi, cannot be obtained poles are stable, at least it is possible to stabilize theesy;s
only if either the current one is null (i.e3; = 0) or it so we compute a feedback gain mati that places the
fulfills that ¢, + 31 c2 has null elements at the relevant entriescontrollable poles of the closed-loop system-dt and —2.
However, this last condition implies thah/, = m; + 81ep  With such control law, the input at the initial marking is
belongs to the frontier of; and/or there is a null entry of computed as, = —95, which cannot be applied. Even when
u/, related to a transition i, but under the hypothesis, we can computed another gain matrices and eventually we
it never occurs. Therefore, the solutigh = 0 will be could obtain a positive value at the initial marking, it wdul
eventually obtained. Em not guarantee the input to be suitable bounded along the
The computation ofg can be done at every samplingwhole trajectory (not only at the initial marking), and that
or just at some of them. Moreover, any pole assignmetthis one would lie inks. Following a different approach, let
technique can be used for computikg It can be proved us try to apply the techniques proposed in [11]. In such case,
that this control approach can also be applied in the case® need to compute values for the input at the verticeg.of
in which my; or my belongs to the frontier of the region, that direct the field vector into the same region. The problem
and/oruy or ug have null entries related to fully controllable in our system is that for some vertices the input must be null.
transitions. That occurs for the vertex = [0, 10,0, 60,10,0]7 drawn



in fig. 2(b), therefore, for all the admissible inputs thediel In order to solve this problem, consider the LPP (4) for
vector is given by = CAII,v = [-10,10,0,0,—10,10]7.  $; with m;,, as the desired markingdu = ug; — W

It can be seen in fig. 2(b) that is directed toward$R; and without the inequalities > 0 and that which involves
(vector v is scaled in fig. 2(b)) then it is not possible toIl; — IT;. Then, this new LPP is obtained

guarantee that the system will remain insiite by using

the results introduced in [11] and so, the control law cannot & = min Y subject to

-1 -1
be computed. This kind of problem occurs very frequently ¢ +neg(A)T e+~ (Cz —neg(A)T; eO) z 014
in TCPN systems, since for all the transitions there exists ~ (14)
a "facet” of the Class(mg) in which its enabling degree Wint K
is null, then the field vector cannot be directed at the Wint AT, - K,y
; ; (Hl —1II ) m; Il —1I

corresponding vertices. G = J )Mt | -~ A = J LT

Now, let us come back to the techniques developed in this : :
work. The_ set of equilibrium markings iy, i.e. E;r is_ (H§ _ Hl) my,; I, - I,
shown in fig. 2(b) as a dashed line. A generator for it is given r " Au
by G2 = [0, 0, 1, =1, 0, 0] For this case7. = T and W01 — Wing
the system is controllable o.veEQr (according to qullary_ o | (I} —1,) Au
1). The control procedure, introduced through this segtion "2 — )
was applied to this system. For that, we considered the same :
feedback gain matri¥X, that places the controllable poles of | (IT} —1II,) Au
the closed-loop system atl and—2, and also, we computed (15)

the required similarity transformation matrik,. The LPP WhereII},...IT; are related to all the neighbor regions of
was continuously solved (at each simulation time step). Figt:» €xceptinglly.

2(c) shows the evolution of the value computed forThe Notice that, if at a given markingn(r;), close enough
closed-loop trajectory is drawn in fig. 2(b) (continuous)in 10 m;,;, a value of3 < 0 were computed, then the target
It can be seen that this control law successfully transfer tHnarkingmy = fmo; + (1 — 3)m;,; would belong toR..
state frommy, to my through a trajectory int,, moreover, N such case, the control law (7) would transfer the system

it can be seen in fig. 2(d) that the input is s.b.. from m(r) € % to somem(rz) € R N R4, and once the
marking would reach the frontier, the previously introddice
V. CONTROLLING BETWEEN REGIONS control procedure could be applied in order to finally reach

This section is devoted to advance the ideas leading a2 € Ra. It is easy to prove that a valye < 0 can be
the generalization of the previously introduced contret la computed if the entries of;,, related to transition of},,
structure. In our experience, it always has been found (bate positive. Furthermore, it can be demonstrated that this
still not proved) that sef,S is connected. In such case,property is fulfilled for several cases (for example, moro-T
a generalization of the control law for different regions issemiflow nets whose configurations "contain” P-flows).
reduced to the problem of transferring the system from an Now, denote the solution for the modified LPP (14) as
equilibrium markingmg; € R; to another onamng, € R2, B1 and the solution for the LPP (4) defined fils as (..
where ; and X, are neighbor regions, which is studiedA simple way to guarantee that a solutigh < 1 will
in this section. It is assumed in the sequel that the systebe computed once the system reach the common frontier,
fulfills the sufficient conditions for controllability oveE,”  consists in computing botl#; and ., simultaneously when
and E; of Corollary 1. Also, it is assumed that there existshe marking is approximating to the frontier, and adding a
an equilibrium markingm,,,; that belongs taZ;" N E; but  new rule: if 3; < 0 but 5, > 1 then considep3; as zero for
not to another region (if£,S is connected thedm;,, € the computation ofnj;. In this way, an input for crossing the
E1 N Es). border is computed (i.¢#; < 0is considered) only ifiz < 1,
Under the established hypothesis, a control law for eadgtherwise, the system will be transferred towards,; and
region can be computed by using the control law scheniewill remain in #;, until reaching a neighborhood ai;,,;
introduced before. In this way, a first idea is to computén which such values can be computed (such neighborhood
and apply a control law that transfers the marking fronexists becausg, < 1 and/; < 0 can be obtained a;,).
my; € R to m,,, through a trajectory insidét;, and Finally, the system will probably cross the frontier at a non
another control law that transfers the marking fram,,; equilibrium marking, then the error of the uncontrollabéetp
to mgo € Ry, through a trajectory insid&,. However, the (for the system ak,) may not be null, in such case, we have
first control law will transfer the marking towards,,,; in  to ask for the non controllable poles (non related to P-flows)
infinite time, so the second control law will never be appliedto be stable.
Then, the problem can be reduced to the computation of aExample 3:Consider the system of fig. 3(a) with =
control law that transfers the marking from anye ®; in 1. Let T. = {t;}. This system has one synchroniza-
a neighborhood ofn;,, to an equilibrium markingn/,, € tion, which leads to2 regions that are denoted a8,
Ro — R41. Such control law exists because the system fulfill§in which ps is constraining t5) and %, (in which
the conditions of Proposition 1. pg 1S constraining¢s). The initial marking ismy =



(1]
(2]

6 7 8 9 10

(3]

Fig. 3. a) TCPN system controllable OVE\iJrUE;r. b) Marking of places
for the trajectory described by the closed-loop system.

(4]
(5]

(12, 4, 4, 4, 26, 4, 8] which belongs tdR,. Consider a de-
sired markingm, = [56, 2, 2, 2, 8, 12, 4]7, which belongs
to ;. There exists an interface equilibrium marking,,; =
[22, 4, 4, 4, 16, 4, 8]T s.t. m;,; € E;f N ES. This system
fulfills the conditions of Proposition 1 for the controlléiby
over B U E . In this way, stabilizing gain matrices were
computed for each region. The equilibrium input of the inter
face markingm,,,; is given byu;,.; = [5, 0, 0, 0, 0, 0]7, i.e.

it is positive at the entry related tQ (the only controllable
transition), so, the control law approach introduced irs thi
section can be used for transferring the system through tﬁ%]
region’s frontier. Applying this, the system is succedsgful
transferred fromm, to m, through a trajectory in which

the input is s.b.. The markings of the places through this
trajectory are shown in fig. 3(b), where the vertical lingiyj
denotes the change of region (frdi to R;).

(6]
(7]

(8]

El

VI. CONCLUSIONS [12]

This work addresses the computation of control laws for
timed continuous Petri netl{CPN) systems with uncon-
trollable transitions. The main contribution is the adépta
of the classical state feedback control law approach toetheB4]
systems. The implementation of this control law consists in
the computation of a suitable gain matrix for each regiod, an
the resolution of a LPP during its application for computingl5]
suitable intermediate target markings that guarantees the
boundedness of the input, obtaining thus a piecewiseflinea
constrained control structure. Moreover, it is proved thath  [16]
control law can always be computed, and it transfers the
marking towards the desired one, whenever the conditions

for controllability are fulfilled (Corollary 1 and Propogih
1) and there exist suitable interface markings between the
regions.
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