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Abstract— Timed Continuous Petri Net (TCPN) systems are
piecewise linear models with input constraints that can ap-
proximate the dynamical behavior of a class of timed discrete
event systems. This paper concentrates in the development
of a control structure for TCPN that transfers the system
from the initial state to another desired one. The resulting
control law consists in a Linear Programming Problem, which
is solved on-line, and a set of gain matrices, one for each
configuration. This approach allows the use of any classicalpole
assignment technique for the computation of the gain matrices.
Furthermore, convergence to the desired marking and input
boundedness are demonstrated.

I. I NTRODUCTION

In the literature, many of results related to performance
evaluation analysis and control synthesis (scheduling) based
on Discrete Event Systems (DES) can be found. Applications
involve a wide range of systems including manufacturing
process, telecommunication, traffic and logistic systems,
etcetera. The computational complexity of analysis and
synthesis problems for such systems makes very important
searching for relaxations where computational improvements
are significant and, at the same time, the induced errors
are small enough to be useful in engineering. Fluidification
constitutes a relaxation technique to study discrete event
systems through a continuous approximated model, thus
avoiding the state explosion problem, furthermore, using
fluid models, more analytical techniques can be used for the
analysis of some interesting properties.

In Petri Nets (PN ), fluidification has been introduced
from different perspectives ([1], [2]). Here, timed continuous
Petri net (TCPN ) models under infinite server semantics
are considered, since it has been found that in most cases
this semantics provides a better approximation [3]. The con-
tinuous model thus obtained has three main characteristics:
1) it is piecewise linear (PWL), 2) the input must be
nonnegative and upper bounded by a function of the state
(constrained), and 3) models with some real meaning are
high-order systems (with tens or even hundreds of state-
variables).

Even if a lot of research related to controllability and
control design forPWL systems and control with input
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constraints can be found in the literature, it has been found
difficult to apply those toTCPN systems. Thus there exists
necessity for searching more control techniques for this
particular model. For instance, classic works ([4] , [5]) deal
with controllability and stabilization problems for systems
with bounded inputs, however, in those works the input can
take negative values, which is prohibitive in our model. In
[6] the controllability on linear systems with nonnegative
inputs is addressed. Regarding toPWL systems, in [7] a
problem concerning production systems is formulated as a
H∞ control problem for a piecewise affine system; there, an
optimization program subject to LMI constraints is proposed.
In [8], the control design problem forPWL systems is
studied through quadratic Lyapunov functions and convex
optimization. However, in [9] it was shown thatTCPN
systems are not controllable in the classical sense, therefore,
such concepts and techniques cannot be directly applied to
our model. Despite such result, in [10] it was proved that
if some conditions are fulfilled then there exists a set of
interesting points (the set of possible stationary operating
points of the model) in which the system exhibits the control-
lability property, i.e. any state of such set is reachable from
any other one in it. In order to study such property, a local
controllability concept was proposed forTCPN systems,
and sufficient and necessary conditions for controllability
were introduced.

An interesting approach for the Control synthesis on
Piecewise-Affine systems was provided in [11]. For the sys-
tems considered in such work, the continuous state evolves
as an affine linear system inside simpleces (polytopes of full
dimension with a minimum number of vertices), associated
to discrete sates. The control problem addressed in those
papers consists in the synthesis of an affine linear control
law, for each of the simpleces, that ensures that the con-
tinuous state does not leave the current simplex by crossing
undesirable ”facets”, which at the underlying discrete system
means blocking undesirable events. The solution proposed is
based on directing the field vector, of the closed-loop system,
towards suitable directions (inside or outside to the simplex,
depending the case) at the vertices of the simplex. Even
when TCPN systems can be viewed as such piecewise-
affine systems, there exist two major problems for applying
the results introduced in that work. The first is that the input
in TCPN is not constrained to a polytope, but it is upper
bounded by a function of the state. The second problem, and
most important, is that inTCPN systems it is very frequent
to find ”polytopes” having vertices at which the input must
be null, becoming impossible to direct the field vector in the
required direction (a simple example is provided in Section



4), then it is necessary to consider different approaches for
controlling continuous net systems.

Taking advantage of the particular estructure ofTCPN ,
control laws for these systems have been proposed by using
different techniques. In [12] a solution based on Model
Predictive Control was proposed, finding computational com-
plexity problems for the explicit approach that make its appli-
cation prohibitive. In [13] a tracking control approach wasin-
troduced, considering step and ramp references and low-and-
high gain controllers. Local stability and input boundedness
were proved for a class of PNs. In those papers all transitions
are assumed to be controllable. Uncontrollable transitions
were considered in [14], where a gradient-based controller
was proposed for driving the output towards the desired
value. However, since the input constraints are not considered
for the minimization of the cost function, convergence is not
guaranteed.

In this paper, uncontrollable transitions are considered.
In order to reduce computational complexity problems and
to provide feasibility and effectiveness, we propose in this
case a classical approach by adapting the well-known linear
feedback control structure. Since the system is piecewise
linear, for each linear mode (corresponding to a particular
configuration) a stabilizing gain matrix is considered. These
can be computed by using any pole assignment technique. In
order to guarantee the boundedness of the input, suitable in-
termediate target markings (states) are computed by solving
on-line a LPP, obtaining thus a piecewise-linear constrained
control structure. Convergence to the required marking and
boundedness of the input are demonstrated, whenever the
system fulfills some controllability conditions introduced in
[10].

This paper is organized as follows: in Section2 an
overview of continuous andTCPN is presented, while in
Section 3, some previous results related to controllability
are recalled. In Section4 the case in which the initial and
desired markings belong to the same region is considered,
and next, in Section5, the case with different regions is
studied. Conclusions are presented in Section6.

II. BASIC CONCEPTS

The structureN = 〈P, T,Pre,Post〉 of continuous PN
is the same as the structure of discrete PN, i.e.P and T
are finite disjoint sets of places and transitions, respectively,
Pre andPost are |P | × |T | sized, natural valued,pre- and
post- incidence matrices.

The main difference is in the evolution rule, since in
continuous PN firing is not restricted to integer amounts,
and so the markingm is not forced to be integer. More
precisely, a transitiont is enabledat m iff for every p ∈
•t, m[p] > 0, and its enabling degreeis enab(t,m) =
minp∈•t{m[p]/Pre[p, t]}. The firing oft in a certain amount
α ≤ enab(t,m) leads to a new markingm′ = m+α·C[P, t],
whereC = Post− Pre is the token-flow matrix.

Right and left rational annulers ofC are calledT- and
P-flows, respectively. If there existsy > 0 (x > 0) s.t.
yC = 0 (Cx = 0), the net is said to beconservative

(consistent). For reachability, the limit concept is used, and
a marking reached in the limit of an infinitely long sequence
is considered reachable [15].

A Timed Continuous Petri Net(TCPN) is a continuous
PN with a vectorλ ∈ R

|T |
>0 . Here, infinite server semantics

is considered (sometimes calledvariable speed, see [2] for
an introduction to semantics used in TCPN), thus the flow
through a timed transitiont is the product of the rateλ[t]
andenab(t,m), the instantaneous enabling representing the
number of active serves, i.e.,f(m)[t] = λ[t] · enab(t,m) =
λ[t] · minp∈•t{m[p]/Pre[p, t]}. For the flow to be well
defined we will assume that∀t ∈ T, |•t| ≥ 1. The “min”
in the definition leads to the concept ofconfigurations:
a configuration assigns to each transition one place that
for some markings will control its firing rate (i.e. it is
constraining that transition). The number of configurations
is upper bounded by

∏

t∈T |•t|.
The flow through the transitions can be written in a

vectorial form asf(m) = ΛΠ(m)m, whereΛ is a diagonal
matrix whose elements are those ofλ, and Π(m) is the
configuration operator matrix atm, defined by elements as

Π(m)[i, j] =

{ 1
Pre[pj ,ti]

if pj is constrainingti
0 otherwise

If more than one place is constraining the flow of a transition
at a given marking, any of them can be used, but only one
is taken.

Control action may only be a reduction of the flow through
the transitions. That is, transitions (machines for example)
cannot work faster than their nominal speed. Transitions in
which a control action can be applied are calledcontrollable.
The effective flow through a transition which is being con-
trolled can be represented as:wi(τ) = λ[ti] · enab(τ) [ti]−
u(τ)[ti], where 0 ≤ u(τ)[ti] ≤ λ(ti) · enab(τ)[ti]. The
control vectoru ∈ R|T | is defined s.t.ui represents the
control action onti. If ti is not controllable thenui = 0. The
forced flow vector is expressed asw(m,u) = ΛΠ(m)m−
u. The set of all controllable transitions is denoted byTc,
and the set of uncontrollable transitions isTnc = T − Tc.

The behavior of a TCPN forced system is described by
the state equation:

•
m = CΛΠ(m)m − Cu

0 ≤ u ≤ ΛΠ(m)m
(1)

A control action that fulfills the required constraints, i.e.
∀ti ∈ Tnc ui = 0 and 0 ≤ u ≤ ΛΠ(m)m, is called
suitable bounded(s.b.). If an input is not s.b. then it cannot
be applied. A markingm for which ∃u s.b. atm such that
ṁ = C[ΛΠ(m)m − u] = 0 is calledequilibrium marking,
andu andw(m,u) are said to be itsequilibrium inputand
flow, respectively.

Markingm2 is said to be reachable fromm1 if ∃u s.b. that
transfers the system fromm1 to m2 in either finite or infinite
time (lim-reachable). Ifm1 is the initial marking thenm2

is simply called reachable. The set of reachable markings
can be defined for autonomous continuous PN and TCPN



systems [15]. In the sequel, the term reachabilityalways
refers to timed systems.

III. C ONTROLLABILITY

In this section, some controllability concepts are recalled
from [10].

If y is a P-flow, then for any reachable markingm,
yT m = yT m0. So, whenever a TCPN system hasP-
flows, linear dependencies between marking variables appear,
introducing token conservation laws, a class of state invari-
ants. Therefore, systems with P-flows are not controllable
in the classical sense. However, we are interested in the
controllability “over” this invariant. In the sequel, thisstate
invariant will be denoted asClass(m0). Notice that every
reachable marking belongs toClass(m0), but the reverse is
not true for timed models. This set is divided into subsets
of markings associated to the same configuration, which
are namedregions. Then, for each particular configuration
matrix Πi there is its correspondingregion ℜi = {m ∈
Class(m0)|Π(m) = Πi}. The Class(m0) and all the
regionsare convex sets. Inside eachregion the state equation
(1) is linear (Π(m) is constant). Notice that configurations
(sets of arcs that constraint transitions) are defined at net
level, configuration matrices at the algebraic level and re-
gions at the state space level. In the sequel, let us denote by
int(Class(m0)) and int(ℜi) the sets of interior markings
of Class(m0) andℜi, respectively (considering the space
generated by the columns ofC).

Now, let us remark that the classical controllability defini-
tion cannot be applied to TCPN systems because the set of
reachable markings (a subset ofClass(m0)) never compose
a vector space, and also the input must be suitable bounded
(i.e. 0 ≤ u ≤ ΛΠ(m)m). Therefore, an adaptation of the
classical controllability definition was proposed in [10].

Definition 1: The TCPN system〈N , λ,m0〉 is control-
lable with bounded input (BIC) overS ⊆ Class(m0) if for
any two markingsm1,m2 ∈ S there exists an inputu that
transfers the system fromm1 to m2 in finite or infinite time,
and it is suitable bounded along the marking trajectory.

The controllability in TCPN systems is studied over sets
of equilibrium markings because they represent ”the sta-
tionary operating points” of the modeled system. The set
of all equilibrium markings is defined as:EqS = {m ∈
Class(m0)|∃u s.b. atm s.t. C(ΛΠ(m)m − u) = 0}.

The set of all equilibrium markings in the i-th region is
defined asEi = {m|m ∈ EqS ∩ ℜi}. Since the system
is linear inside each region, the controllability is linearly
studied first over eachEi. Now, let us introduce some useful
definitions related toEi.

Definition 2: A Generatorof Ei 6= ∅ is a kind of basis
for it, formally defined as a full column rank matrixGi that
fulfills:

a) ∀m1,m2 ∈ Ei, (m1 − m2) is in the range ofGi.
b) Gi is minimal (if one of its columns is removed then

a is false).
Definition 3: A controllable transitiontj is said to be

fully controllable atEi if there exists an equilibrium mark-

Fig. 1. The setEqS, and subsetsEi andE+

i .

ing mq ∈ Ei with an equilibrium inputuq such that
[ΛΠim

q]j > u
q
j > 0. In other case,tj is said to be

partially controllable. The set of fully (partially) controllable
transitions atEi is denoted asT i

cf (T i
cp).

Definition 4: The subset ofEi, in which the equilibrium
flow can be positive, is defined as

E+
i = {mq ∈ Ei|∃u

q such thatwq > 0}
In order to clarify the sense of these definitions, see the

following example.
Example 1:Consider the system of fig. 1 withΛ = I

and Tc = {t1, t2}. There exist two possible configurations:
that in whicht2 is constrained byp2 (related toℜ1) and the
other in whicht2 is constrained byp3 (related toℜ2). Fig.
1 also shows theClass(m0) (the marking ofp1 and p3 is
enough to determine a reachable marking, since this net has
two P-semiflows). The whole grey triangle corresponds to
E1. Actually, in this exampleE1 = EqS and E2 = ∅. A
Generator ofE1 is given by

G1 =

[

1, −1, 1, −1
−1, 1, 1, −1

]T

The column vectors ofG1, scaled and restricted top1 andp3,
are represented byd1 andd2 in fig. 1. The triangle without
the upper edge (that in whichm(p3) = 2) corresponds to
E+

1 . Furthermore, since for any marking in the interior of the
triangle its equilibrium input is positive at the entries related
to the controllable transitions,T 1

cf = Tc andT 1
cp = ∅.

In the sequel, let us denote asCc andCi
cf the matrices

built with the columns ofC related to the transitions in
Tc and T i

cf , respectively. Next corollary, proved in [10],
introduces conditions for controllability over a givenE+

i .
Corollary 1: Let 〈N , λ,m0〉 be a TCPN system. Con-

sider someE+
i such thatE+

i ∩ int(ℜi) 6= ∅ and letGi be a
generator of it. Consider the matrix functionContk(A,B) =
[

B, AB, . . . AkB
]

. Then:

1) If ∃X such thatCont|P |−1(CΛΠi,C
i
cf) · X = Gi,

then the system is controllable overE+
i . Furthermore,

if T i
cf = Tc then it is also a necessary condition for

controllability over E+
i , considering all the marking

trajectories inℜi.
2) If ∄X such thatCont|P |−1(CΛΠi,Cc)·X = Gi, then

the system is not controllable overE+
i , considering all

marking trajectories inℜi.



Finally, next proposition (proved in [10]) introduces suffi-
cient conditions for controllability over the union of setsof
equilibrium markings of different regions.

Proposition 1: Let 〈N , λ,m0〉 be a TCPN system. Con-
sider equilibrium setsE+

1 , E+
2 ,...,E+

j as defined above. If the
system is BIC over each one and their union (i.e.

⋃j

i=1 E+
i )

is connected, then the system is BIC over the union.

IV. CONTROLLING INSIDE ONE REGION

In this section, a control law structure is proposed for the
case in which the initial and desired markings, denoted as
m0 andmd respectively, belong to a common regionℜi and
both are equilibrium markings.

In the sequel it is assumed that the system fulfills the
sufficient condition for controllability of Corollary 1 (i.e.
∃X s.t. Cont|P |−1(CΛΠi, Ci

cf )X = Gi), so the system is
controllable overE+

i using only fully controllable transitions
T i

cf . According to this, control will be applied only to these
transitions, while other controllable ones (those inT i

cp) will
be considered as uncontrollable.

Now, the classical feedback control law (for instance see
[16]) is given by

u = ud + Ke (2)

whereK is a gain matrix,ud is the equilibrium input related
to the desired markingmd ande = m−md is the marking
error.

Under these assumptions, if a negative and unbounded
input could be applied to the system thenmd would be
reachable by means of a control law like (2), but this is
not the case because inTCPN systems the input must be
suitably bounded in order to be applied. However, as it will
be proved next, given a stabilizing feedback gain matrixK it
is possible to compute anintermediatedesired markingm′

d,
in the segment defined bym0 and md but close enough
to m0, s.t. the input thus defined is suitably bounded along
the trajectory, and this one lies inℜi. Computing several of
theseintermediatemarkings,md can be reached by jumping
through them. Based on this idea, a control procedure is
proposed, whose effectiveness and feasibility are formally
proved through this section, but before that, let us introduce
some useful notation.

Let u0 and ud (w0 and wd) be the equilibrium inputs
(equilibrium flows) of m0 and md, respectively (m0 and
md are equilibrium markings). Define the constant vectors
e0 = m0 − md and∆u = u0 − ud, and consider the error
e = m−md. Consider a givenintermediatetarget marking
m′

d in the segment defined bym0 andmd. This marking can
be expressed asm′

d = md + βe0, whereβ is a scalar that
belongs to[0, 1]. By linearity,m′

d is an equilibrium marking
and one of its equilibrium inputs is given byu′

d = ud+β∆u.
The equilibrium flow ofm′

d and the error defined from it are
given bye′ = m−m′

d = e− βe0 andw′
d = wd + β(w0 −

wd) = ΛΠim
′
d − u′

d, respectively.

Control procedure:

1) Compute a stabilizing feedback gain matrixK s.t. the
controllable eigenvalues of the closed-loop state matrix
(CΛΠi−CK) are different, real and negative, and the
rows ofK, non related with transitions inT i

cf , are null.
2) Givenm0 an intermediatedesired markingm′

d, which
belongs to the segment defined bym0 and md, is
computed as follows

m′
d = md + βe0 (3)

whereβ is obtained by solving the following LPP

β = min γ subject to
c1 + neg(A)T−1

i e + γ
(

c2 − neg(A)T−1
i e0

)

≥ 0

γ ≥ 0
(4)

Ti is a similarity transformation matrix s.t. the trans-
formed errorT−1

i e is nonnegative and decreasing in
the closed-loop system (i.e.ė = [CΛΠi −CK]e), the
function neg(A) is defined by elements as

neg(A)i,j =

{

Aij if Aij < 0
0 otherwise

(5)

and the constants are defined as

c1 =















ud

wd
(

Π1
j − Πi

)

md

...
(

Πr
j − Πi

)

md















A =















K

ΛΠi − K

Π1
j − Πi

...
Πr

j − Πi















Ti

c2 =















∆u

w0 − wd
(

Π1
j − Πi

)

e0

...
(

Πr
j − Πi

)

e0















(6)
considering all the configurationsΠ1

j ,..., Πr
j whose

corresponding regionsℜ1
j ,...,ℜr

j are neighbors ofℜi.
Roughly speaking, first constant terms (ud, K and∆u)
ensure thatu > 0, second terms ensure thatw > 0

and last terms guarantee that the trajectory will lie in
ℜi.

3) By means of the application of

u = u′
d + K (m − m′

d) (7)

the system is transferred towardsm′
d and the input is

s.b. along the trajectory, which lies inℜi.
4) At any posterior time, a newintermediatedesired

marking m′
d is computed, closer tomd than the

previous one, by solving again the LPP (4) (it is not
required to reach the previousm′

d in order to compute
the new one). Then, the system is driven towards this
new intermediatemarking by means of the application
of the corresponding control law (7), which is s.b.
along the trajectory and this one lies inℜi.



5) Iterating the previous step, theintermediatedesired
marking will be eventually computed asmd (i.e.m′

d =
md), which means that the system will asymptotically
reachmd.

In order to prove the effectiveness of this control approach,
we proceed as follows: in Proposition 2 the existence of
K and Ti, as they were previously defined, is proved.
In Proposition 3 it is proved that the LPP (4) actually
provides the nextintermediatetarget marking, i.e. that the
correspondingm′

d is reached by means of (7) and this input
is s.b.. Finally, in Proposition 4 it is proved that this LPP
has always a solution, and this converges toβ = 0 (i.e.
m′

d = md).
Proposition 2: Consider a givenm′

d ∈ int(ℜi). The
controllable poles of the closed-loop system can be arbitrarily
assigned by means of a proper gain matrixK, whose
rows non related to transitions ofT i

cf are null. If such
poles are real, different and negative then the markingm′

d

is locally asymptotically stable in the closed-loop system.
Moreover, there exists a similarity transformationTi s.t. the
transformed errorT−1

i e′ is nonnegative and decreasing.
Proof: Denoting asKi

cf the matrix built with the rows
of K related to the transitions inT i

cf , thenCK = Ci
cfK

i
cf

and Ki
cf fully determinesK. Applying the control law

expressed in (7), the following closed-loop state equation
is obtained

•

e′ =
•

(m − m′
d) =

[

CΛΠi − Ci
cfK

i
cf

]

e′ (8)

Consider the Kalman decompositionTkal (see, for in-
stance, [16]), so

T−1
kalCΛΠiTkal =

[

A11 A12

0 A22

]

, T−1
kalC

i
cf =

[

B

0

]

and the pair(A11,B) is controllable in the classical sense.
Then, the eigenvalues of(A11 − BKkal) can be arbitrarily
assigned by a proper choice of a gain matrixKkal. Assume
that Kkal places those eigenvalues as real, different and
negative. Consider the gain matrix of the original system s.t.
Ki

cf =
[

Kkal 0
]

T−1
kal, so the controllable eigenvalues

of [CΛΠi − CK] are equal to those assigned byKkal. The
transformed closed-loop system is given by
•

ǫ′ = T−1
kal

•

e′ =

[

(A11 − BKkal) A12

0 A22

]

ǫ′, ǫ′0 =

[

ǫ′10
ǫ′20

]

where ǫ′0 = T−1
kale

′
0. Now, by controllability hypothe-

sis Gi ∈ Span{Cont|P |−1(CΛΠi,C
i
cf)}, so T−1

kalGi ∈

Span{Cont|P |−1(T−1
kalCΛΠiTkal,T

−1
kalC

i
cf)}, which is

equivalent to

T−1
kalGi ∈ Span

{[

B A11B , ..., A
|P |−1
11 B

0 0 , ..., 0

]}

Since T−1
kale

′
0 ∈ Span{T−1

kalGi} then ǫ′20 = 0, i.e. the
transformed initial error is null at the uncontrollable part.
Now, consider a modal decomposition of(A11−BKkal), i.e.
a modal matrixV s.t.V−1(A11 −BKkal)V = D whereD

is diagonal, and compute a diagonal matrixS whose elements

are in{−1, 1} (soS = S−1) in such a way thatSV−1ǫ′10 ≥
0. Then, defining the similarity transformation

Ti = Tkal

[

VS 0

0 I

]

(9)

the original closed-loop system (8) can be transformed as

T−1
i

•

e′ =

•
[

ε′1
ε′2

]

=

[

D (VS)−1A12

0 A22

] [

ε′1
ε′2

]

T−1
i e′0 = ε′0 =

[

ε′10
ε′20

]

≥ 0

(10)
Sinceε′20 = ǫ′20 = 0, the solution of such state equation

is given by
ε′1(τ) = eDτε′10
ε′2(τ) = ε′20 = 0

Therefore,ε′0 ≥ ε′(τ) ≥ 0 ∀τ , and the error converges to
zero.

In the sequel, let us assume thatK is s.t. the controllable
poles of the closed-loop system are real, different and
negative.

Proposition 3: Consider the initial and desired markings
m0,md ∈ int{ℜi}. Suppose that at some timeτ1, m(τ1) ∈
int{ℜi} and a solutionβ for the LPP (4) is computed.
Consider theintermediatedesired marking as in (3). If the
input (7) is being applied thenm′

d will be reached through
a trajectory insideℜi. Moreover, such input will be suitable
bounded along the marking trajectory.

Proof: According to (4) and denotinge′(τ1) = e(τ1)−
βe0

c1 + βc2 + neg(A)T−1
i e′(τ1) ≥ 0 (11)

Now, since the control law (7) is being applied, ac-
cording to Proposition 2 the error of the closed-loop sys-
tem fulfills T−1

i e′(τ1) ≥ T−1
i e′(τ) ≥ 0 for τ ≥

τ1, so, neg(A)T−1
i e′(τ1) ≤ neg(A)T−1

i e′(τ) (because
neg(A) ≤ 0 by definition), furthermore, sinceT−1

i e′(τ) ≥
0, then neg(A)T−1

i e′(τ) ≤ AT−1
i e′(τ). Therefore

neg(A)T−1
i e′(τ1) ≤ AT−1

i e′(τ), so, substituting into (11)
we obtain

c1 + βc2 + AT−1
i e′(τ) ≥ 0

∀τ ≥ τ1

Substituting the constants (6) and using the definitions
of e′, w′

d and m′
d, it can be demonstrated that previous

inequalities are equivalent to

u(τ) ≥ 0

ΛΠim(τ) − u(τ) ≥ 0
(

Π1
j − Πi

)

m(τ) ≥ 0
...

(

Πr
j − Πi

)

m(τ) ≥ 0

∀τ ≥ τ1

Therefore,u(τ) is s.b. for all future time and the system
lies in ℜi.

The LPP (4) can be solved very efficiently on-line, because
it can be reduced to the problem of finding the minimum



entry of some computed vector. Furthermore, some of the
inequalities are always fulfilled and can be eliminated (those
involving uncontrollable transitions and null constants).

Proposition 4: Suppose that the initial and desired mark-
ings (m0 and md) belong to int(ℜi) ∩ E+

i , and that the
entries ofu0 andud are positive for all the fully controllable
transitions. Then, there exists solutionβ for the LPP (4) at
m0. Moreover, if the control procedure previously introduced
is being applied then there will exist solutionβ at all future
markings. Furthermore, the closer the marking is tomd, the
lower is this solution, until obtaining a value of0.

Proof: Consider the inequality of (4) but reorder it as

c1 + γc2 + neg(A)T−1
i (e − γe0) ≥ 0 (12)

First consider a givenγ ∈ [0, 1]. In this way, the marking
m′

d = md + γe0 is in the segment defined bym0 andmd,
so, it belongs toint(ℜi) and the vector

c1 + γc2 =















u′
d

w′
d

(

Π1
j − Πi

)

m′
d

...
(

Πr
j − Πi

)

m′
d















is positive at the relevant entries (those that correspond to
non null rows ofA). Therefore, for a small enough value
of (e − γe0) = e′, i.e. for m close enough tom′

d, γ is a
solution for (12). A particular case occurs atm0, in which
(e− γe0) = (1 − γ)e0 = e′ (i.e. a value ofγ close enough
to 1 makese′ be small enough, and then suchγ is a solution
for (12) and the LPP).

Now, suppose that at timeτ1 a solutionβ1 is computed.
Substitutingγ = β1−∆γ into (12) and reordering the terms
we obtain

c1 + β1c2+ neg(A)T−1
i (e − β1e0)−

∆γ
[

c2 − neg(A)T−1
i e0

]

≥ 0
(13)

Consider a future timeτ2 > τ1. If the control law (7) is
being applied (withβ = β1) thenT−1

i e′(τ2) ≤ T−1
i e′(τ1),

which implies thatneg(A)T−1
i e′(τ2) ≥ neg(A)T−1

i e′(τ1),
so, atτ2 there will exist∆γ > 0 that fulfills (13), i.e. asm
approximates to the intermediate marking a lower solution
is obtained.

Finally, notice that a lower solutionβ2 cannot be obtained
only if either the current one is null (i.e.β1 = 0) or it
fulfills that c1+β1c2 has null elements at the relevant entries.
However, this last condition implies thatm′

d = md + β1e0

belongs to the frontier ofℜi and/or there is a null entry of
u′

d related to a transition inT i
cf , but under the hypothesis,

it never occurs. Therefore, the solutionβ = 0 will be
eventually obtained.

The computation ofβ can be done at every sampling
or just at some of them. Moreover, any pole assignment
technique can be used for computingK. It can be proved
that this control approach can also be applied in the cases
in which md or m0 belongs to the frontier of the region,
and/orud or u0 have null entries related to fully controllable
transitions.

(a) (b)

(c) (d)

Fig. 2. a) TCPN system controllable overE+

2
. b) Projections of

Class(m0) on the planes[m(p5), m(p3)] and [m(p1), m(p3)], the
dashed line isE+

2
while the continuous one is the trajectory of the closed-

loop system (both coincide in the second projection)). c) Computed value
for β, d) input signalu and flow (ΛΠ2m) of t4 during the closed-loop
evolution.

Example 2:Consider the system of fig. 2(a) withλ1 =
λ2 = λ3 = 1 and λ4 = 2. Let Tc = {t4}. This system
has two synchronizations and only3 feasible regions (there
would be 4 but p3 and p4 cannot constraint their output
transitions simultaneously). Projections ofClass(m0) on
the planes[m(p5),m(p3)] and [m(p1),m(p3)] are shown
in fig. 2(b) (the marking of only three places is required
to defined a reachable marking, then two projections are
sufficient for representingClass(m0)). The initial mark-
ing is m0 = [5, 5, 5, 55, 5, 5]T while the desired one is
md = [5, 5, 55, 5, 5, 5]T . Both markings belong to the
same regionℜ2.

First, we will show, through this example, that the control
problem ofTCPN systems is not trivial. Suppose that we
would like to apply a classical feedback control law (2), then
we would find that the rank of the controllability matrix for
this configuration is2, so the system is not controllable in
the classical sense and it could be impossible to reachmd

according to the classical theory. However, the uncontrollable
poles are stable, at least it is possible to stabilize the system,
so we compute a feedback gain matrixK, that places the
controllable poles of the closed-loop system at−1 and−2.
With such control law, the input at the initial marking is
computed asu4 = −95, which cannot be applied. Even when
we can computed another gain matrices and eventually we
could obtain a positive value at the initial marking, it would
not guarantee the input to be suitable bounded along the
whole trajectory (not only at the initial marking), and that
this one would lie inℜ2. Following a different approach, let
us try to apply the techniques proposed in [11]. In such case,
we need to compute values for the input at the vertices ofℜ2

that direct the field vector into the same region. The problem
in our system is that for some vertices the input must be null.
That occurs for the vertexv = [0, 10, 0, 60, 10, 0]T drawn



in fig. 2(b), therefore, for all the admissible inputs the field
vector is given byv̇ = CΛΠ2v = [−10, 10, 0, 0,−10, 10]T.
It can be seen in fig. 2(b) thaṫv is directed towardsℜ1

(vector v̇ is scaled in fig. 2(b)) then it is not possible to
guarantee that the system will remain insideℜ2 by using
the results introduced in [11] and so, the control law cannot
be computed. This kind of problem occurs very frequently
in TCPN systems, since for all the transitions there exists
a ”facet” of the Class(m0) in which its enabling degree
is null, then the field vector cannot be directed at the
corresponding vertices.

Now, let us come back to the techniques developed in this
work. The set of equilibrium markings inℜ2, i.e. E+

2 , is
shown in fig. 2(b) as a dashed line. A generator for it is given
by G2 = [0, 0, 1, −1, 0, 0]T . For this case,Tc = T 2

cf and
the system is controllable overE+

2 (according to Corollary
1). The control procedure, introduced through this section,
was applied to this system. For that, we considered the same
feedback gain matrixK, that places the controllable poles of
the closed-loop system at−1 and−2, and also, we computed
the required similarity transformation matrixT2. The LPP
was continuously solved (at each simulation time step). Fig.
2(c) shows the evolution of the value computed forβ. The
closed-loop trajectory is drawn in fig. 2(b) (continuous line).
It can be seen that this control law successfully transfer the
state fromm0 to md through a trajectory inℜ2, moreover,
it can be seen in fig. 2(d) that the input is s.b..

V. CONTROLLING BETWEEN REGIONS

This section is devoted to advance the ideas leading to
the generalization of the previously introduced control law
structure. In our experience, it always has been found (but
still not proved) that setEqS is connected. In such case,
a generalization of the control law for different regions is
reduced to the problem of transferring the system from an
equilibrium markingm01 ∈ ℜ1 to another onemd2 ∈ ℜ2,
whereℜ1 and ℜ2 are neighbor regions, which is studied
in this section. It is assumed in the sequel that the system
fulfills the sufficient conditions for controllability overE+

1

andE+
2 of Corollary 1. Also, it is assumed that there exists

an equilibrium markingmint that belongs toE+
1 ∩ E+

2 but
not to another region (ifEqS is connected then∃mint ∈
E1 ∩ E2).

Under the established hypothesis, a control law for each
region can be computed by using the control law scheme
introduced before. In this way, a first idea is to compute
and apply a control law that transfers the marking from
m01 ∈ ℜ1 to mint, through a trajectory insideℜ1, and
another control law that transfers the marking frommint

to md2 ∈ ℜ2, through a trajectory insideℜ2. However, the
first control law will transfer the marking towardsmint in
infinite time, so the second control law will never be applied.
Then, the problem can be reduced to the computation of a
control law that transfers the marking from anym ∈ ℜ1 in
a neighborhood ofmint, to an equilibrium markingm′

d2 ∈
ℜ2 −ℜ1. Such control law exists because the system fulfills
the conditions of Proposition 1.

In order to solve this problem, consider the LPP (4) for
ℜ1 with mint as the desired marking,∆u = u01 − uint

and without the inequalitiesγ ≥ 0 and that which involves
Π2 − Π1. Then, this new LPP is obtained

β = min γ subject to
c1 + neg(A)T−1

1 e + γ
(

c2 − neg(A)T−1
1 e0

)

≥ 0
(14)

c1 =















uint

wint
(

Π1
j − Π1

)

mint

...
(

Πr
j − Π1

)

mint















, A =















K

ΛΠ1 − K1

Π1
j − Π1

...
Πr

j − Π1















T1

c2 =















∆u

w01 − wint
(

Π1
j − Π1

)

∆u
...

(

Πr
j − Π1

)

∆u















(15)
whereΠ1

j ,...,Πr
j are related to all the neighbor regions of

ℜ1, exceptingΠ2.
Notice that, if at a given markingm(τ1), close enough

to mint, a value ofβ < 0 were computed, then the target
markingm′

d = βm01 + (1 − β)mint would belong toℜ2.
In such case, the control law (7) would transfer the system
from m(τ1) ∈ ℜ1 to somem(τ2) ∈ ℜ2 ∩ ℜ1, and once the
marking would reach the frontier, the previously introduced
control procedure could be applied in order to finally reach
md2 ∈ ℜ2. It is easy to prove that a valueβ < 0 can be
computed if the entries ofuint, related to transition ofT 1

cf ,
are positive. Furthermore, it can be demonstrated that this
property is fulfilled for several cases (for example, mono-T-
semiflow nets whose configurations ”contain” P-flows).

Now, denote the solution for the modified LPP (14) as
β1 and the solution for the LPP (4) defined forℜ2 as β2.
A simple way to guarantee that a solutionβ2 < 1 will
be computed once the system reach the common frontier,
consists in computing both,β1 andβ2, simultaneously when
the marking is approximating to the frontier, and adding a
new rule: if β1 < 0 but β2 ≥ 1 then considerβ1 as zero for
the computation ofm′

d. In this way, an input for crossing the
border is computed (i.e.β1 < 0 is considered) only ifβ2 < 1,
otherwise, the system will be transferred towardsmint and
it will remain in ℜ1, until reaching a neighborhood ofmint

in which such values can be computed (such neighborhood
exists becauseβ2 < 1 andβ1 < 0 can be obtained atmint).
Finally, the system will probably cross the frontier at a non
equilibrium marking, then the error of the uncontrollable part
(for the system atℜ2) may not be null, in such case, we have
to ask for the non controllable poles (non related to P-flows)
to be stable.

Example 3:Consider the system of fig. 3(a) withΛ =
I. Let Tc = {t1}. This system has one synchroniza-
tion, which leads to2 regions that are denoted asℜ1

(in which p5 is constraining t5) and ℜ2 (in which
p6 is constraining t5). The initial marking is m0 =



(a) (b)

Fig. 3. a) TCPN system controllable overE+

1
∪E+

2
. b) Marking of places

for the trajectory described by the closed-loop system.

[12, 4, 4, 4, 26, 4, 8]T which belongs toℜ2. Consider a de-
sired markingmd = [56, 2, 2, 2, 8, 12, 4]T , which belongs
to ℜ1. There exists an interface equilibrium markingmint =
[22, 4, 4, 4, 16, 4, 8]T s.t. mint ∈ E+

1 ∩ E+
2 . This system

fulfills the conditions of Proposition 1 for the controllability
over E+

1 ∪ E+
2 . In this way, stabilizing gain matrices were

computed for each region. The equilibrium input of the inter-
face markingmint is given byuint = [5, 0, 0, 0, 0, 0]T , i.e.
it is positive at the entry related tot1 (the only controllable
transition), so, the control law approach introduced in this
section can be used for transferring the system through the
region’s frontier. Applying this, the system is successfully
transferred fromm0 to md through a trajectory in which
the input is s.b.. The markings of the places through this
trajectory are shown in fig. 3(b), where the vertical line
denotes the change of region (fromℜ2 to ℜ1).

VI. CONCLUSIONS

This work addresses the computation of control laws for
timed continuous Petri net (TCPN ) systems with uncon-
trollable transitions. The main contribution is the adaptation
of the classical state feedback control law approach to these
systems. The implementation of this control law consists in
the computation of a suitable gain matrix for each region, and
the resolution of a LPP during its application for computing
suitable intermediate target markings that guarantees the
boundedness of the input, obtaining thus a piecewise-linear
constrained control structure. Moreover, it is proved thatsuch
control law can always be computed, and it transfers the
marking towards the desired one, whenever the conditions

for controllability are fulfilled (Corollary 1 and Proposition
1) and there exist suitable interface markings between the
regions.
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