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Abstract: A Markovian Petri net is a stochastic discrete event system (DES) frequently used for
analysis and performance evaluation purposes. In the past, the fluidification has been proposed
in different DES’s as a relaxation technique for avoiding the ”state explosion problem”. Following
the same approach, in this paper a hybrid Petri net model is defined as a partial relaxation of an
original Markovian Petri net. It is shown through a simple example that such partial relaxation
can be worse than a full relaxation (given by a fully continuous Petri net). Therefore, the rest
of the paper is devoted to obtain sufficient conditions for guaranteeing the approximation of the
hybrid Petri net model to the original discrete system.
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1. INTRODUCTION

Different authors have proposed hybrid models based on
Petri nets (PN ). Alla & David (1998) deal with fluid and
hybrid Petri nets with constant and variable speeds, for
which they have explored their modeling capabilities. The
topic is revisited by Recalde & Silva, (2001). Following a
different approach, Trivedi and his group introduced the
so called Fluid Stochastic Petri Nets (Trivedi & Kulkarni
(1993)): stochastically timed hybrid models, which are an-
alyzed in their probability spaces. Alternative approaches
are provided by Valette et al. (1998) and Demongodin &
Koussoulas (1998), by adding continuous modeling capa-
bilities to PN ’s. For instance, in the Valette’s approach,
differential equations associated to places are introduced
(as a generalization to hybrid automata).

In this paper, an approach similar to that introduced by
Alla and David is considered. In (Silva & Recalde (2004);
Jiménez et al. (2004)) fluid and hybrid Petri nets are
introduced as a relaxation of an original discrete PN ,
rather than considering them as models per se. In this
way, the analysis of the relaxed version of the system can
provide information about the original one, but avoiding
the so called ”state explosion problem”, which frequently
appears in discrete event systems. In particular, here
we are interested in keeping quantitative information,
meaning that the average marking of the relaxed model
should approximate that of the original one. Moreover,
in the relaxed model it appears an interesting advantage:
techniques from both PN ’s and Control theories can
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be applied for analysis and design purposes (Vázquez,
Ramı́rez, Recalde & Silva (2008); Mahulea et al. (2008)).

Under such approach, the approximation of Markovian
Petri nets MPN (i.e., stochastic Petri nets under expo-
nential services assumption) by the corresponding fully
continuous PN was studied in (Vázquez, Recalde & Silva
(2008)). In the present paper, those results are extended to
partially relaxed models. The goal is to provide sufficiency
rules for guaranteing the approximation of a MPN system
by the corresponding hybrid relaxation.

This paper is structured as follows: In Section 2 some
basic concepts on continuous and Markovian Petri nets
are introduced. After that, results related to the approxi-
mation of timed continuous Petri nets to Markovian Petri
nets are recalled in Section 3. The hybrid Petri net model
under study is introduced in Section 4. The approximation
to MPN by the hybrid relaxation is analyzed in Section
5. Finally, sufficient conditions for the approximation are
provided as conclusions in Section 6.

2. BASIC CONCEPTS ON CONTINUOUS AND
MARKOVIAN PETRI NETS

We assume that the reader is familiar with PN ’s (
see for instance Silva (1993)). The structure N =
〈P, T,Pre,Post〉 of continuous Petri nets (ContPN) is
the same as the structure of discrete PNs. That is, P is
a finite set of places, T is a finite set of transitions with
P ∩ T = ∅, Pre and Post are |P | × |T | sized, natural
valued, pre- and post- incidence matrices. We assume that
N is connected and that every place has a successor, i.e.,
|p•| ≥ 1. The usual PN system, 〈N ,M0〉 with M0 ∈ N|P |,
will be said to be discrete so as to distinguish it from a
continuous PN system 〈N ,m0〉, in which m0 ∈ R|P |≥0 . In
the following, the marking of a ContPN will be denoted
in lower case m, while the marking of the corresponding
discrete one will be denoted in upper case M. The main



difference between both formalisms is in the evolution rule,
since in continuous PNs firing is not restricted to be done
in integer amounts. As a consequence the marking is not
forced to be integer. More precisely, a transition t is enabled
at m iff for every p ∈• t, m(p) > 0, and its enabling degree
is enab(t,m) = minp∈•t{m(p)/Pre(p, t)}. The firing of
t in a certain amount α ≤ enab(t,m) leads to a new
marking m′ = m + α · C, where C = Post − Pre is
the token-flow matrix. As in discrete systems, right and
left integer annullers of the token flow matrix are called
T- and P-flows, respectively. When they are non-negative,
they are called T- and P-semiflows. If there exists y > 0
such that y ·C = 0, the net is said to be conservative, and
if there exists x > 0 such that C · x = 0 the net is said to
be consistent. Here, we consider net systems whose initial
marking marks all P-semiflows.

A Markovian Stochastic Petri Net system (MPN) is a
discrete system in which the transitions fire at indepen-
dent exponentially distributed random time delays, where
conflicts are solved with a race policy. Then, the firing
time of each transition is characterized by its firing rate.
In this way, a MPN is a tuple 〈N ,M0,λ〉, where λ ∈ R|T |>0
represents the transition rates. Transitions (like stations
in queueing networks) are the meeting points of clients
and servers. In this paper, we will assume infinite server
semantics for all transitions. Then, the time to fire a
transition ti, at a given marking M, is an exponentially dis-
tributed random variable with parameter λi ·Enab(ti,M),
where the integer enabling degree is Enab(ti,M) =
minp∈•ti{bM(p)/Pre(p, ti)c}. Enab(ti,M) also represents
the number of active servers of ti at marking M. We
suppose that a unique steady-state behavior exists, and
we restrict our study to bounded in average and reversible
(therefore ergodic) MPN systems.

3. TIMED CONTINUOUS PETRI NETS AS AN
APPROXIMATION TO MPN

The approximation of a MPN by means of the corre-
sponding ContPN was studied in (Vázquez, Recalde &
Silva (2008)). There, the analysis is focused in the mark-
ing, rather than the throughput, since it constitutes an
state representation of the system. The main ideas are
recalled next.

3.1 Fundamental equation for Markovian Petri nets

Consider a MPN system with structure N , timing rates
λ, and initial marking M0. Denote the initial time as
τ0 and consider a particular transition ti. By definition,
at any marking the time to fire each active server of ti
is characterized by a random variable (r.v.) having an
exponential probability distribution function (p.d.f.) with
parameter λi. Now, consider a fixed time interval ∆τ .
If a server remains active during ∆τ then the number
of its firings (the number of jobs done) during ∆τ is
characterized by a r.v. having a Poisson p.d.f. with pa-
rameter λi · ∆τ . Furthermore, since we are considering
infinite server semantics, the number of firings of ti during
∆τ is the sum of the number of firings of each of its
servers during this time interval. If ∆τ is small enough
then the number of active servers of ti during this time
interval remains almost constant. Therefore, the number

of firings of ti, during the time interval (τ0, τ0+∆τ), can be
approximated by a r.v. ∆σi(∆F(ti, τ0)) having a Poisson
p.d.f. with parameter ∆F(ti, τ0) = ∆τ · λi · Enab(ti,M0),
where Enab(ti,M0) is the number of active servers of ti
at M0 (the sum of independent Poisson distributed r.v.’s
is also a Poisson distributed r.v., whose parameter is the
sum of the parameters of the summands).

Now, considering the firing count vector ∆σ(∆F(τ0)),
whose elements are the corresponding r.v.’s ∆σi(∆F(ti, τ0))
of each transition, the marking at time τ0 + ∆τ can be
approximated by using the fundamental equation, i.e.

M(τ0 + ∆τ) ' M0 + C ·∆σ(∆F(τ0))
which can be generalized as:

Mk+1 ' Mk + C ·∆σ(∆Fk) (1)
where Mk and ∆Fk denote M and ∆F at time τ0 + k∆τ ,
respectively. The parameters are given by ∆Fk(ti) = ∆τ ·
λi · Enab(ti,M(k)). This equation constitutes a useful
representation of the MPN .

3.2 Timed Continuous Petri nets

A Timed Continuous Petri Net (TCPN) is a continuous
PN together with a vector λ ∈ R|T |>0. Different semantics
have been defined for timed continuous transitions, the
two most important being infinite server or variable speed,
and finite server or constant speed. Here infinite server
semantics will be considered. Like in purely Markovian
discrete net models, under infinite server semantics the
flow through a timed transition ti is the product of
the rate, λi, and enab(ti,m), the instantaneous enabling
of the transition, i.e., fi(m) = λi · enab(ti,m) = λi ·
minp∈•ti{mp/Pre(p, ti)}. Observe that Enab(ti,M) ∈ N
while enab(ti,m) ∈ R≥0. For the flow to be well defined,
every transition must have at least one input place, hence
in the following we will assume ∀t ∈ T, |•t| ≥ 1. The ”min”
in the definition leads to the concept of configurations:
a configuration assigns to each transition one place that,
for some markings, will control its firing speed. An upper
bound for the number of configurations is

∏
t∈T |•t|. The

reachability space is divided into regions according to the
configurations. These regions are polyhedrons (in bounded
systems), and are disjoint, except on the borders.

The flow through the transitions can be written in a
vectorial form as f(m) = ΛΠ(m)m, where Λ is a diagonal
matrix whose elements are those of λ, and Π(m) is the
configuration operator matrix at m, which is defined such
that the i-th entry of the vector Π(m)m is equal to the
enabling degree of transition ti (more details can be found,
for instance, in Mahulea et al. (2008)). Therefore, the state
equation of a TCPN system, which is linear inside each
region, is given by:

•
m = CΛΠ(m)m (2)

3.3 Approximation of MPN by TCPN

In order to study the approximation of the MPN by
means of the TCPN , in (Vázquez, Recalde & Silva
(2008)) the continuous system was analyzed in discrete-
time, obtaining the following difference equation:

mk+1 ' mk + CΛΠ(mk)mk∆τ (3)



In that paper, it was proved that given m0 = M0, the
marking of a TCPN system 〈N , λ,m0〉 (3) approximates
the expected value of the marking of the MPN 〈N ,λ,M0〉
(1), during the time interval (τ0, τ0+n∆τ), if the following
conditions are fulfilled at Mk for any time step k in the
interval (τ0, τ0 + n∆τ):
Condition 1) The probability that each transition of the
MPN is enabled is near to one.
Condition 2) The probability that the marking is outside
the region of M0 is near to zero.

Even if the quality of the approximation decreases when
a change of regions occurs (i.e., Condition 2 does not
hold during certain time) and/or the transitions are not
enabled during certain time period (Condition 1), the ap-
proximation could be good enough for analysis and control
purposes. Then, both Conditions should be consider just
as sufficient for the mean value approximation.

In order to improve the approximation when Condition
2 does not hold, a noise column vector vk is added to
the flow of the TCPN model, leading to a Markovian
continous Petri net (MCPN). The noise vector has as
entries independent normally distributed random variables
with mean and covariance matrix:

E{vk} = 0, Σvk
= diag[ΛΠ(mk)mk∆τ ] (4)

Then the MCPN model is defined as:
mk+1 = mk + CΛΠ(mk)mk∆τ + Cvk (5)

By analyzing the moments of this system and applying the
Central Limit Theorem, it was shown that the first two
moments (mean value and covariance) of the marking of
the MCPN system (5) approximate those of the marking
of the corresponding MPN (1) during a time interval
(τ0, τ0 + n∆τ), if m0 = M0 and Condition 1 is fulfilled
(i.e, Condition 2 is no longer required).

4. MARKOVIAN HYBRID PETRI NET MODEL

According to the results of the previous section, if some
transitions are not enabled during all the time with a
probability near to 1 (Condition 1) then significant errors
may appear in the continuous approximation. In such case,
it makes sense to fluidify only those transitions for which
Condition 1 holds, obtaining thus a hybrid Petri net model.

Hybrid Petri nets were introduced by Alla & David (1998).
There, the discrete part of the hybrid PN model is
defined as a timed PN (i.e., with constant delays at the
transitions), while the continuous part is a continuous PN
with constant speed (finite server semantics). In order
to be consistent with the MPN model, the hybrid PN
system considered in this paper must include the random
behavior of the MPN at the discrete transitions, and the
infinite server semantics in the continuous part. Therefore,
the following hybrid model is proposed as a Markovian
timing for the autonomous hybrid PN already introduced
in (Silva & Recalde (2004)).
Definition 1. A Markovian hybrid Petri net (MHPN),
under infinite server semantics, is a tuple 〈N ,M0, λ〉. N
is the structure of the PN , in which the set of places P
(transitions T ) is partitioned into the set of continuous
P c (T c) and discrete P d (T d) ones (i.e., P = P c ∪ P d,

P c ∩ P d = ∅ and T = T c ∪ T d, T c ∩ T d = ∅). Since
the fluidification is introduced through transitions, it is
imposed in the model that fluid transitions only can have
input or output fluid places, and each fluid place must
have at least one input or output fluid transition, i.e.,
P c =• T c ∪ T c• (it is possible to make all the places
fluid by fluidifying only some transitions). M0 ∈ N|P |

represents the initial marking, and λ ∈ R|T |>0 represents the
transition rates. Each discrete transition ti ∈ T d fires in
discrete amounts with exponentially distributed random
time delays, with parameter λi · Enab(ti,M), as in the
MPN model. Each continuous transition ti ∈ T c fires with
the flow fi(m) = λi · enab(ti,m), as in the TCPN model.

Under this definition, the fundamental equation intro-
duced in subsection 3.1 can be used for representing the
behavior of the discrete part of the system (the firing of
discrete transitions), while (3) can be used for describing
the continuous behavior. Without loss of generality, let us
suppose that the first columns of matrix C are related to
the discrete transitions, while the last columns correspond
to fluid ones. Then the MHPN can be represented as:

Mk+1 ' Mk +
[
Cd Cc

] ·
[

∆σ(∆Fk)
ΛcΠ(Mk)Mk∆τ

]

where Mk represents the whole marking and Cd (Cc)
represents the restriction of C to the discrete (continuous)
transitions (i.e., C = [Cd Cc]). In the same way, the
firing rate matrix Λ is divided into a matrix for the
discrete transitions (Λd) and other one for the continuous
transitions (Λc). The firing count vector σ(∆Fk), having
as elements random variables with Poisson p.d.f. with
parameters ∆Fk = Λd · Enab(Mk) · ∆τ , is defined just
for the discrete transitions, while the configuration matrix
Π(·) is defined just for fluid transitions.

Now, let us suppose that the first rows of the incidence
matrix corresponds to the discrete places, while the last
rows to fluid ones. Then, the marking can be represented
as Mk = [µT

k mT
k ]T , where µk (mk) corresponds to

the marking of the discrete (fluid) places. In the same
way, the incidence matrices can be written as Cd =
[(dCd)T (cCd)T ]T and Cc = [(dCc)T (cCc)T ]T , where
dCd (cCd) represents the restriction of Cd to the discrete
(continuous) places, and both dCc and cCc are defined in
a similar way. However, since P d ∩ (•T c ∪ T c•) = ∅ then
dCc = 0. Therefore, the MHPN can be rewritten as two
different systems but connected:
µk+1 ' µk +d Cd ·∆σ(∆Fk)
mk+1 ' mk +c Cc ·ΛΠ(mk)mk∆τ +c Cd ·∆σ(∆Fk)

(6)
Notice that the flow of the fluid transitions only depends
on the marking at the fluid places. On the contrary, the
firing of discrete transitions depends on the marking of
both discrete and fluid places, because the parameters of
the Poisson random variables are ∆Fk = Λd ·Enab(Mk) ·
∆τ (i.e., is a function of the whole marking Mk).

In the system given by (6) discrete transitions fire with
random delays, while the continuous ones are deterministic
w.r.t. the fluid marking. However, it is possible to add
uncorrelated gaussian noise to the continuous transitions
in order to improve the approximation of the flow at these
(as done in TCPN model), obtaining the following system:



(a)

(b)

Fig. 1. a) A PN system with λ = [1 3 1 2]T . b)
Average marking trajectories of 1000 simulations. As
a hybrid model, nodes t1, t2, p4 and p5 are discrete.
E{M} corresponds to the original system MPN ,
while others represents the corresponding relaxations.

µk+1 ' µk +d Cd ·∆σ(∆Fk)
mk+1 ' mk +c Cc ·ΛΠ(mk)mk∆τ +c Cc · vk

+cCd ·∆σ(∆Fk)
(7)

where vk is defined for the fluid transitions as in (4). In
the sequel, model (7) will be denoted as MHPN + vk.

5. APPROXIMATION OF THE MPN MODEL BY
THE CORRESPONDING MHPN

The MHPN model is defined as a partial relaxation of
the MPN , so, one could think that the approximation
provided by the hybrid system to the original discrete one
should be better than that provided by the totally relaxed
continuous model. However, that is not always the case.

Consider for instance the PN system of fig. 1(a) with rates
λ = [1 3 1 2]T . This PN was simulated 1000 times as
a discrete, fluid and hybrid system, in order to obtain mean
trajectories of the marking at p1. As a hybrid model, nodes
t1, t2, p4, p5 are discrete, while others are continuous. Fig.
1(b) shows the resulting mean trajectories. It can be seen
that fluid models TCPN (3) and MCPN (5) provide a
better approximation to the Markovian PN (denoted as
E{M}) than hybrid models MHPN (6) and MHPN +
vk (7), i.e., a partial relaxation can be worse than a full
relaxation! Let us analyze this in the following subsection.

5.1 Approximation analysis

The dynamical behavior of the MPN is achieved by the
firing of its transitions, which is characterized by the
firing count vector ∆σ(∆Fk) in (1). In this way, if at
some time step k, the average marking of the MPN is
well approximated by the average marking of a given
relaxed model (either fluid or hybrid) and their transitions
fire in the same amount in both (the MPN and the

relaxed model), then the marking approximation will hold
for the next time step k + 1. Therefore, following an
inductive reasoning, if the initial condition of both systems
coincide and the firing count vector of the relaxed model
approximates that of the MPN system through the time,
then the marking approximation is achieved (errors are
not accumulated because, roughly speaking, the ergodicity
of the MPN implies asymptotic stability in the relaxed
model, i.e., early errors will not affect the long term
behavior). However, it is important to remember that the
firing count vector of the MPN is a random variable, then
the corresponding firing count vector of the relaxed model
should approximate the moments of the original one, i.e,
mean value and covariance. Let us focus first in the mean
value approximation through this subsection.

The mean value of the firing count vector of the MPN
is approximated by the flow (but multiplied by ∆τ) at
the continuous transitions in the relaxed fluid model. In
(Vázquez, Recalde & Silva (2008)) it was found that
such approximation is effective if Conditions 1 and 2 hold.
A similar reasoning holds for the fluid transitions in the
hybrid models, so no more analysis in these is required.

On the other hand, in the hybrid models, discrete transi-
tions can have as input places either discrete or continuous
ones. If discrete transitions have only discrete input places
no problem occurs (there is no relaxation, then the ap-
proximation is perfect at these transitions). However, if a
discrete transition has input continuous places then it can
lead to a bad approximation, as in the case of the system
of fig. 1(a). Now, consider the synchronization of fig. 2(a).
Transition t1 is a discrete transition having as input places
p1 ∈ P c and p2 ∈ P d. The expected number of firings of t1
during a time interval ∆τ is proportional to the expected
value of its enabling degree, i.e., E{∆σ(∆F(t1))} = λ1 ·
∆τ · E{Enab(t1)}, which can be computed by using the
total probability theorem for the MPN as:

E {Enab(t1)} =
= E{min(bM(p1)/Pre(p1, t1)c, bM(p2)/Pre(p2, t1)c)}
=

∑

SM2

∑

SM1

min(M1,M2) · Prob(M1|M2)Prob(M2)

(8)
and for the hybrid Petri net as:

E{Enab(t1)} =
∑

SM2

∫
min(bxc,M2)f1|2(x)dx · Prob(M2)

(9)
where SM1 (SM2) denotes all the possible values for the
marking at p1 (p2), and f1|2(·) is the probability density
function of the marking at fluid place p1 given M(p2) = M2

(M1,M2 denote fixed values for M(p1),M(p2)). Then, the
approximation of the firing count vector is achieved if the
fluid marking at p1 is representative of the marking (the
value of the marking, not the mean value of this) of the
original MPN w.r.t. the enabling degree function, i.e.,
if the value of

∑
SM1

min(M1,M2)Prob(M1|M2) in (8) is
close to the value of

∫
min(bxc,M2)f1|2(x)dx in (9). For

instance, in the synchronization of fig. 2(a), markings at
places p1 and p2 are random variables, but given the
current marking, for the most probable values of p1 and p2,
p2 will constraint t1, i.e., in (9)

∫
min(bxc,M2)f1|2(x)dx '

M2. Following a similar reasoning, in the original MPN



(a) (b)

Fig. 2. a) Discrete transition in a MHPN with a continu-
ous and a discrete input places. b) t1 only is enabled
only at infinite time as a hybrid model.

the probability that p1 constraints t1 is negligible, i.e.,
in (8)

∑
SM1

min(M1,M2) · Prob(M1|M2) ' M2, so the
enabling degree of t1, and thus the firing count, is well
approximated in the relaxed model. This case can be
generalized as a sufficient condition for obtaining a good
approximation, during a time interval (τ0, τ0 + n∆τ):
Condition 3) The probability that the discrete transitions
be constrained by discrete places at Mk, for any time step
k in the interval (τ0, τ0 + n∆τ), is near to 1.

Condition 3 implies that the arcs between fluid places and
discrete transitions are temporarily implicit (i.e., the dis-
crete subnet evolves independently of the marking at fluid
places). Furthermore, this condition can be generalized.
Consider again the discrete transition of fig. 2(a). If at the
current time step k the distribution of the marking at p1 in
the MPN were well approximated by the distribution of
the fluid marking for the same place but in the MHPN ,
then the expected enabling degree of t1 in both models
would be similar. Such condition can be stated as:

Prob(M1) '
∫ M1+1

M1

f1(x)dx ∀M1 ∈ SM1 (10)

In order to obtain such approximation, it is required that
the marking at p1 be large enough, i.e., that SM1 consists
in several probable values for the marking at p1, so the
marking approximation errors will be small w.r.t. their
mean values. Furthermore, it is very important that p1

at least enables t1 with probability near to 1, otherwise
a minimum error in the marking can lead to a big one
in the firing count. For instance, consider the PN of fig.
2(b). Notice that as a hybrid model t1 is enabled only at
infinite time (only in infinite time the marking at p1 is 1),
but in the discrete MPN t1 is enabled with a significant
probability (since the mean value of the marking in the
MPN is close to 0.9, the probability that M(p1) = 1 is
significant). Then, Condition 3 is generalized as:

Condition 4) Discrete transitions can be constrained by
either discrete or fluid places, but fluid places constraining
discrete transitions enable them with probability near to
1 at Mk, for any time step k in the interval (τ0, τ0 +n∆τ),
i.e., such output discrete transitions are always enabled.
The larger the marking at such fluid places, the better the
approximation.

For instance, consider again the system of figure 1(a)
with the same firing rates. The MPN and MHPN
systems have been simulated 1000 times for different initial
markings at p1, while the initial markings for the other
places remain as in fig. 1(a). Table 1 resumes the results
thus obtained. The first column represents the initial
marking. Columns 2 and 3 are the expected values at the

Table 1. Initial and steady state markings at
p1 for the MPN and MHPN of fig. 1(a)

M0(p1) MPN MHPN error P. C3

2 1.95 2.40 23.1% 0.42

3 2.54 2.74 7.87% 0.52

4 3.27 3.36 2.8% 0.65

5 4.04 4.02 0.5% 0.78

10 8.52 8.58 0.7% 0.98

M0(p1) = M0(p4) = 10 9.50 9.8 3.2% 0.01

steady state of p1 for the MPN and MHPN , respectively.
Next column deals with to the approximation error, while
the last column is the probability that p5 constraints t1
(i.e., Condition 3 for t1). As expected, the error is lower
when p1 does not constraint t1 (i.e., when P.C3 → 1). On
the other hand, in the last experiment an initial marking
of M0 = [10, 0, 0, 10, 0]T was used. It can be seen that
the approximation by the hybrid model is good, even if
the probability that p5, the discrete place, constraints t1
is almost 0, i.e., p1 constraints t1 so Condition 3 is not
fulfilled. However, in this last case the value of p1 is large
enough, which means that Condition 4 holds.

5.2 Improvement of MHPN by adding noise

As recalled in subsection 3.3, the addition of noise vk (4)
to the fluid transitions in the TCPN model improves the
approximation of the firing count of the discrete transitions
in the MPN , in particular when they represent synchro-
nizations (Vázquez, Recalde & Silva (2008)). Moreover,
the approximation is achieved not only at the mean value
but also at the covariance. Following a similar reasoning,
the addition of noise to the continuous transitions in the
MHPN model may improve the approximation to the
original MPN , obtaining thus the MHPN+vk model (7).
Nevertheless, the difference between the approximation
provided by the MHPN model (6) and the hybrid model
with noise (7) is not so important as in the case of fully
continuous systems.

For instance, consider the system of fig. 3. As hybrid,
transitions t6, t7 and places p4, p5, p6, p7, p8 and p9

are continuous, while other transitions and places are
discrete. Consider rates as λ = [30, 2, 30, 30, 30, 3.5, 10]T .
The system was simulated 400 times as discrete (MPN),
continuous (TCPN and MCPN) and hybrid (MHPN
and MHPN +vk). The mean trajectories for the marking
at place p6 are shown in fig. 4(a). As it can be seen,
the addition of the noise in the MCPN model represents
an important improvement to the approximation of the
MPN (denoted as E{M}) with respect to the TCPN
system. However, the improvement in the hybrid models
(compare MHPN against MHPN +vk) is not so impor-
tant. The reason for that is the stochastic behavior of the
discrete transitions in the hybrid model, i.e., the stochastic
behavior of the firing of discrete transitions in the MHPN
makes the marking at continuous places be also stochastic,
so it approximates not only the mean value but also the
covariance (in certain degree) of the marking in the MPN .

However, the addition of noise in the hybrid model be-
comes important when discrete transitions are constrained
by continuous places (i.e., Condition 3 does not hold) and
the marking at those places is low (i.e., Condition 4 is



Fig. 3. As a hybrid PN , nodes t6, t7,p4, p5, p6, p7, p8, p9 are
continuous while others are discrete.

(a)

(b)

Fig. 4. a) Expected marking at p6 of the PN of fig. 3, with
λ = [30, 2, 30, 30, 30, 3.5, 10]T . b) Expected marking
at p1 with λ = [30, 2, 30, 30, 30, 0.5, 0.5]T . In both fig-
ures, the average trajectories were obtained after 400
simulations. E{M} corresponds to the MPN , while
other curves represent the corresponding relaxations.

barely fulfilled). For example, consider again the system
of fig. 3 with λ = [30, 2, 30, 30, 30, 0.5, 0.5]T . Fig. 4(b)
shows the mean trajectory of 400 simulations, of the mark-
ing at p1 for the discrete (MPN) and hybrid (MHPN
and MHPN + vk) systems (the periodic behavior of the
MHPN is explained by the low rates of t6 and t7 that
increase the marking at p5 and p7 during a long deter-
ministic period until enabling t1 and t4, which fire almost
instantaneously w.r.t. the fluid dynamics). It can be seen
that MHPN +vk provides a better approximation to the
MPN than MHPN . In this case, the noise added to the
continuous transitions makes the p.d.f. of the continuous
marking at p5 and p7 approximate better the p.d.f. of the
corresponding markings in the MPN , because in this not
only the mean value of the marking is being approximated
but also the covariance, so (10) is closer to be fulfilled.

6. CONCLUSIONS

In this paper, a hybrid Petri net model MHPN is in-
troduced as a partial relaxation of a MPN . Such hybrid
model is enriched by adding gaussian noise to the contin-

uous transitions, in order to improve the approximation,
obtaining thus another hybrid system MHPN +vk. It was
found that in order to approximate a MPN by a hybrid
relaxation, next conditions should be taken into account:

(1) All the fluid transitions should be enabled with prob-
ability near to 1 (Condition 1).

(2) Discrete transitions should be constrained by discrete
places with probability near to 1, i.e., Condition 3.
Otherwise, continuous places that constraint discrete
transitions should enable such transitions with prob-
ability near to 1; the larger the marking at those fluid
places, the better the approximation (Condition 4).

(3) If more than one place constraint fluid transitions
that represent synchronizations, then gaussian noise
(4) should be added to them for improving the ap-
proximation, obtaining thus a MHPN + vk model.

(4) If Condition 3 does not hold for some discrete tran-
sitions, and Condition 4 is barely fulfilled, then the
addition of the gaussian noise (4) becomes important
for the approximation, i.e., the MHPN + vk model
should be considered.
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