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Abstract

Fluidification constitutes a relaxation technique for studying discrete event systems through fluidified approximated models,
thus avoiding the state explosion problem. Moreover, the class of continuous models thus obtained may be interesting in itself.
In Petri nets, fluidification leads to the so called continuous Petri nets, that are technically hybrid models. Under infinite
server semantics, timing a continuous Petri net model preserves the liveness property, but the converse is not necessarily true,
and if the autonomous net model is not live, the timing may transform it into live. In this paper we investigate the conditions
on the firing rates of timed continuous models that makes live a given continuous system.
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1 Introduction

In the literature, a lot of results related to the analysis
and verification of liveness properties of untimed Dis-
crete Event Systems (DES) can be found. Applications
involve a wide range of systems including manufacturing,
telecommunication, traffic and logistic systems. Never-
theless, the analysis and synthesis problems for such sys-
tems sometimes becomes untractable, due the computa-
tional complexity involved.

The fluidification constitutes a relaxation technique for
studying discrete event systems through continuous ap-
proximated models, avoiding thus the state explosion
problem and reducing the computational complexity of
the analysis. Furthermore, by using fluid models, more
analytical techniques can be used in order to study inter-
esting properties. In Petri nets (PN), fluidification has
been introduced from different perspectives ([2], [9]). In
this work, timed continuous Petri net (TCPN) models
under infinite server semantics are considered, since it
has been found that such systems best approximate in-
teresting classes of DES [6].

Regarding to discrete Petri nets, it is a well known fact
that the addition of timing constraints to the firing of
transitions (i.e., T-timing) may not preserve liveness or

⋆ A very preliminarily version of this paper was presented
at the 17th IFAC World Congress. Corresponding author C.
R. Vázquez Tel. +34-976762472. Fax +34-976761914.
Email address: {cvazquez,silva}unizar.es

non-liveness. It is also in the folklore of the field that,
for stochastic discrete models, these properties are pre-
served when the support of the stochastic functions asso-
ciated to the firing of transitions is infinite. Let us study
this a little more deeply by means of a couple of exam-
ples. The (discrete) net system in fig. 1(a), seen as au-
tonomous (i.e., with no timing), is obviously live. Nev-
ertheless, if we associate deterministic timings θ1 and θ3

to transitions t1 and t3, respectively (i.e., t1 (t3) fires af-
ter θ1 (θ3) time units of being enabled), with θ3 smaller
(thus faster) than θ1, t2 will never be enabled, thus can-
not be fired, and non liveness follows. Considering now
the net system in fig. 1(b), it is also immediate to asses
that it is non-live as autonomous; nevertheless, if t1 and
t2 are deterministically timed with θ1 = θ2, the sys-
tem becomes live. Therefore, liveness of the discrete au-
tonomous model is neither necessary, nor sufficient for
that of the (at least partially) deterministically-timed
interpreted model. Regarding deadlock-freeness, things
are a bit simpler: if a (discrete) system is deadlock-free
as autonomous it will be deadlock-free if it is T-timed.

If we consider now a classical Markovian timed interpre-
tation (here all transitions have associated an exponen-
tial probability distribution function), then the Markov
chain and the reachability graph are isomorphous [7].
Thus, any autonomous discrete net, and the result of
timing it with arbitrary positive rates, are both simulta-
neously live or both equally non-live. Therefore, even if
the net system in fig. 1(a) is non live for the mentioned
deterministic timing, it is live for any positive exponen-
tial timing; moreover, the net system in fig. 1(b) is live
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Fig. 1. (a) Live as autonomous discrete net system but
non-live under certain deterministic timing: θ1 > θ3. (b) Non
live as autonomous, but live as timed if θ1 = θ2.

for the deterministic timing, but non live for any Marko-
vian case, even if the rates of t1 and t2 are equal.

In this paper liveness is studied for the timed continuous
model (TCPN) under infinite server semantics. The re-
sults in this context are of two types: If the continuous
Petri net (contPN) is already live, it will remain live
for any infinite server semantics interpretation (already
advanced for particular net subclasses in [3]), and the
new contribution: if the autonomous contPN is non-live,
particular numerical timings of the continuous model
can eventually transform it into live. The results hold
even for deadlock-free marking non-monotonic systems
(i.e., systems that being deadlock-free, run into a dead-
lock if the initial marking is increased). Non-liveness is
associated to net siphons that are emptied. Intuitively
speaking, the creation of some token conservations laws
around siphons avoids them to become empty.

The analysis achieved here improves the understanding
of the relation between the structure, the timing and the
dynamical behavior of contPNs, useful in future studies
about performance and control. From a practical point
of view, the knowledge of a timing that makes a system
live is interesting during its design, since this property
is frequently desired. This kind of analysis is classical in
discrete Petri nets, where the performance evaluation of
stochastically timed models is frequently used, for ex-
ample, in parametric optimization in order to decide the
best rates for the transitions, define conflict policies, or
allocate resources in different kind of systems. Further-
more, a timing that induces liveness in a continuous PN
can be interpreted as a control action applied to the net
system with a different nominal timing. This is already
advanced in the last section of this paper.

This work is an extension of a very preliminary one [12],
in which deadlock-freeness was studied for the TCPN
model. Here, those results are extended to liveness. Af-
ter introducing some basic concepts in section 2, the
problem considered in this work is presented in section
3, i.e., the study of the relation between the timing and
liveness in TCPN systems. Later, the existence of non-
live potential steady states is studied from an algebraic
perspective in section 4, while a sufficient condition for
avoiding such states is introduced in section 5. In section

6, some classical stability results from the linear systems
theory are applied to TCPN systems in order to decide
if a non-live potential steady state can be reached. Some
examples are shown in Section 7. Finally, a timing that
makes the system to avoid a non-live potential steady
state is interpreted as a control action in section 8.

2 Basic Concepts and Notation

We assume that the reader is familiar with Petri nets
(for notation see [10]). The set of the input (output)
nodes of v is denoted as •v (v•). The structure N =
〈P, T,Pre,Post〉 of continuous Petri nets (contPN) is
the same as the structure of discrete PNs. That is, P is
a finite set of places, T is a finite set of transitions with
P ∩ T = ∅, Pre and Post are |P | × |T | sized, natural
valued, pre- and post- incidence matrices. We assume
thatN is connected and that every place has a successor,
i.e., |p•| ≥ 1. The usual PN system, 〈N ,m0〉, will be said
to be discrete so as to distinguish it from a continuous

PN system, in which m ∈ R|P |
≥0 . The main difference

between both formalisms is in the evolution rule, since in
contPNs firings are not restricted to be done in integer
amounts [11]. As a consequence the marking is not forced
to be integer.

A transition t is enabled at m iff for every p ∈ •t,
m(p) > 0, and its enabling degree is enab(t,m) =
minp∈•t{m(p)/Pre(p, t)}. The firing of t in a cer-
tain amount α ≤ enab(t,m) leads to a new marking
m′ = m + α · C(t), where C = Post − Pre is the
token-flow matrix and C(t) represents the column of C
related to transition t.

As in discrete systems, a column vector y s.t. yT ·C = 0
(x s.t. C·x = 0) is called P-flow (T-flow). When they are
nonnegative, they are called P- and T-semiflows. Here,
we always consider net systems whose initial marking
m0 marks all P-semiflows. Matrix By denotes a basis of
P − flows. If ∃y > 0 s.t. yT · C = 0, the net is said
to be conservative, and if ∃x > 0 s.t. C · x = 0 the net
is said to be consistent. A set of places Σ is a siphon
iff •Σ ⊆ Σ• (the set of input transitions is included in
the corresponding output one), and it is minimal if it
does not contain another siphon. For example, in the net
in fig. 2(a), {p4, p5, p6} defines a minimal siphon, while
{p3, p4, p5, p6} is also a siphon, but non minimal.

A continuous PN system is called deadlock-free if for
every reachable marking ∃t ∈ T s.t. enab(t,m) > 0 (a
marking reached in the limit of an infinitely long firing
sequence is considered reachable [3]).

2.1 Timed Continuous Petri Nets

A Timed Continuous Petri Net (TCPN) is a continu-

ous PN together with a vector λ ∈ R|T |
>0 . Different se-
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Fig. 2. (a) Deadlock system as autonomous, but deadlock-
-free as timed if λ3 > λ1. (b) Minimal siphon of the net.

mantics have been defined for continuous timed tran-
sitions, the two most important being infinite server
or variable speed, and finite server or constant speed
(see [9]). Here, infinite server semantics will be consid-
ered, since it usually provides a better approximation
to the original model (already proved in [6] for an im-
portant subclass of nets). Like in purely Markovian dis-
crete net models, under infinite server semantics, the
flow through a timed transition t is the product of the
rate, λ(t), and enab(t,m), the instantaneous enabling of
the transition, i.e., f(t,m) = λ(t) · enab(t,m) = λ(t) ·
minp∈•t{m(p)/Pre(p, t)}. For the flow to be well de-
fined, every transition must have at least one input place,
hence in the following we will assume ∀t ∈ T, |•t| ≥ 1.

The “min” in the above definition leads to the con-
cept of configurations : a configuration is a set of pairs
C = {(t1, p1), (t2, p

2), ..., (t|T |, p
|T |)} where ∀tj ∈ T , pj ∈

•tj is a place that, for some markings, provides the min-
imum ratio m(pj)/Pre(pj , tj). In such case, it is said
that pj constrains tj . For instance, in the net system
of fig. 2(a), the configuration at the current marking is
C = {(t1, p6), (t2, p2), (t3, p3), (t4, p4)}, since m(p6) <
m(p1), m(p2) < m(p5) and m(p3) < m(p6). An up-
per bound for the number of configurations is

∏

t∈T |•t|.
The set of all nonnegative markings that agree with the
P-flows is denoted as Class(m0) = {m ≥ 0|BT

y m =

BT
y m0}, so, any reachable marking belongs to it.

The flow through the transitions can be written in a vec-
torial form as f(m) = ΛΠ(m)m, where Λ is a diagonal
matrix whose elements are those of λ, and Π(m) is the
configuration operator matrix at m, which is defined by
elements as

Π(m)i,j =







1
Pre(pj ,ti)

if pj is constraining ti

0 otherwise

If more than one place is constraining the flow of a tran-
sition at a given marking, any of them can be used, but
only one is taken. Notice that the i-th entry of the vec-
tor Π(m)m is equal to the enabling degree of transi-
tion ti. For example, in the net of fig. 1(b) a marking
m = [1, 1, 0]T defines a configuration at which p3 is con-
straining the flow of t3 (p1 always constrain t1 and t2).
Then, the instantaneous transitions flow vector is

f
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The set Class(m0) can be divided into marking re-
gions according to the configurations. A marking region
is defined as the set ℜi = {m ∈ Class(m0)|Πim ≤
Πjm, ∀Πj}. Thus, for each configuration Ci, it is associ-
ated a value Πi that the configuration matrix can take,
and a marking regionℜi. These regions are polyhedrons,
and are disjoint, except on the borders.

The dynamical behavior of a TCPN system is described
by its state equation:

•
m = CΛΠ(m)m

A TCPN system 〈N , λ,m0〉 that reaches a steady state
(i.e., a marking mss s.t. CΛΠ(mss)mss = 0) is called
live iff the steady state flow is positive, which is expressed
as fss(mss) > 0 ([3]). In the same way, 〈N , λ〉 is struc-
turally live iff there exists an initial marking m0 such
that 〈N , λ,m0〉 is live. Finally, a system 〈N , λ,m0〉 that
reaches a steady state deadlocks iff the steady state flow
is null, i.e., fss(mss) = 0.

A marking mD is a deadlock if no transition is enabled.
In such case, the set ΣD = {p ∈ P |mD(p) = 0} is a
(usually non minimal) siphon whose outputs cover all
transitions (i.e., Σ•

D = T ). For instance, in fig. 2(a),
the marking mD = [1, 1, 3, 0, 0, 0]T is the only deadlock
related to the (minimal) siphon {p4, p5, p6} (i.e., it is
empty at mD).

2.2 Eigenvalues of the state equation

Inside each region, the state equation is linear, since
Π(m) is constant. Thus, the behavior of a TCPN can be
analyzed by regions through the knowledge of the eigen-
values and eigenvectors of the corresponding state ma-
trices. In particular, given a configuration matrix Πi, a
number s ∈ C (in general, complex) is called eigenvalue
if there exists a column vector v ∈ C|P | s.t.:

(s · I − CΛΠi) · v = 0 (1)
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Vector v is called column eigenvector related to s. Fur-
thermore, if there exists such eigenvalue, there also exist
a row vector w, called row eigenvector related to s s.t.:

w · (s · I − CΛΠi) = 0 (2)

Remark 1 Eigenvectors are related to P- and T-flows:

1) Given a P-flow y, then ∀Λ,ΠD it holds yT ·
CΛΠD = 0, which is equivalent to (2) with s = 0.
Therefore, P-flows are row eigenvectors related to a
zero valued eigenvalue (i.e., s = 0), for any timing
and any configuration (already shown in [5]).

2) Given a column eigenvector v related to a zero val-
ued eigenvalue (i.e., v that fulfills (1) with s = 0),
then the vector ΛΠDv is a T-flow.

We call fixed eigenvalues of CΛΠi those that do not de-
pend onλ, i.e., they are timing independent, while others
are called variable. In particular, zero valued eigenvalues
related to P-flows are fixed. Similarly, let us distinguish
between fixed (timing independent) and variable poles.

Consider for instance the net system of fig. 1(b) and the
configuration Π1 in which p2 constraints t3. The eigen-
values of CΛΠ1 are computed for two different timings
λ

1 = [1, 2, 1] and λ
2 = [3, 2, 1], obtaining the values of

{0,−0.26,−3.73} and {0, 0.16,−6.16}, respectively. The
last two eigenvalues for both timings are variable (they
change for a different timing) while the first eigenvalue 0
is fixed, since it appears for any timing (it is associated
to the P-flow y = [1, 1, 1]T ).

3 Timing-dependent liveness in contPN sys-
tems: setting the problem.

Regarding autonomous (i.e., untimed) continuous net
systems, it has been proved that deadlock-freeness and
liveness are decidable [8]. If a system reaches a deadlock
as timed, it also deadlocks as untimed (already stated
for a subclass of nets in [3]). This clearly holds also for
liveness since the evolution of a timed system just gives
a particular trajectory of the untimed model.

Proposition 1 If the contPN system 〈N ,m0〉 is live,
then for any λ > 0, 〈N , λ,m0〉 is live.

On the contrary, a contPN that deadlocks as au-
tonomous can be live as timed for particular timings.
The next example shows a simple case.

Example 1 The system of fig. 1(b) deadlocks as un-
timed, but the timed system is live if λ1 = λ2. It may seem
that the set of rates for which this kind of things occurs
has to be of null measure (i.e., a smaller dimension man-
ifold), but it is not so. For example, the contPN system
in fig. 2(a) deadlocks as autonomous, but is deadlock-
free as timed if λ3 > λ1. Let us prove this by showing

that under such timing the siphon {p4, p5, p6} will never
empty. First, the deadlock belongs to a configuration in
which m(p6) ≤ m(p3), because m(p6) = 0 at the dead-
lock. However, inside this configuration, the marking of
the siphon is always increasing, since m(p4) + m(p5) +
m(p6) = m0(p4)+m0(p5)+m0(p6)+

∫

(f(t3)−f(t1))dτ ,
and

∫

(f(t3) − f(t1))dτ =
∫

(λ3 − λ1) · m(p6) · dτ > 0.
Clearly, if λ3 ≥ λ1 the siphon never empties and the sys-
tem is deadlock-free (sooner or later the deadlock config-
uration is left). In particular, if λ1 = λ3 the total mark-
ing of the siphon will remain constant. In any case, no
deadlock occurs if the initial marking at p1 is 3 instead of
5. That is, deadlock-freeness is non monotonic with re-
spect to the marking: increasing the number of resources
(m0(p1) > 3) can kill the system!

However, for some nets there do not exist rates that make
the system deadlock-free.

Example 2 Consider the system in fig. 1(b) but with a
weight of 1 at arc (t3, p1). Here the reasoning is purely
structural: the net is structurally bounded but not consis-
tent so it is non live for any timing.

Through this paper, it will be investigated the existence
of a timing that makes a non-live contPN system to
be live as timed. If it is assumed that the timed system
reaches a steady state marking, liveness can be studied
from the flow at such marking.

From an algebraic perspective, steady states in TCPN
systems are equilibrium markings, i.e., solutions of ṁ =
CΛΠ(m)m = 0 with m ∈ Class(m0).

Definition 1 An equilibrium marking mss can be clas-
sified according to its corresponding flow:

1) If f(mss) = 0 then mss is called deadlock mark-
ing. The configuration and region related to mss are
called deadlock configuration and deadlock region,
respectively.

2) If for some transition tj, [f(mss)]j = 0 (where
[f(mss)]j denotes the j-th entry of f(mss)) then mss

is called non-live marking. The configuration and
region related to mss are called non-live configura-
tion and non-live region, respectively.

3) If f(mss) > 0 then mss is called live marking.
If in a given region ℜi there do not exist non-live
equilibrium markings, then ℜi is called live region,
and the associated configuration is said live.

Remark 2 According to the deadlock-freeness defini-
tion, a deadlock occurs when the system (asymptotically)
reaches a deadlock marking. Similarly, the system be-
comes non-live when it (asymptotically) reaches a non-
live marking. If the system reaches a live equilibrium
marking, then it is live.
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Since deadlock markings are particular cases of non-live
ones, only non-live markings will be studied in the sequel.
Through this paper, liveness will be studied by using the
following approach:

1) Given a TCPN system 〈N , λ,m0〉, compute non-
live equilibrium markings in Class(m0).

2) For a particular initial marking or a set of them,
solve the reachability of the non-live markings.

The advantage of this approach is that the first problem
can be solved by using an algebraic perspective, which
will be done through the next section. The second prob-
lem can be studied by using results from Control Theory,
which will be investigated in sections 5 and 6.

4 Live and non-live equilibrium markings

Non-live markings can be easily computed by using the
following Linear Programming Problem (LPP).

Let ΠD be a given configuration matrix, and let TD

be a set of transitions. The following LPP computes an
equilibrium marking mD ∈ ℜD, if it exists, at which all
the transitions in TD are dead.

max [1, ..., 1] · mD subject to

mD ≥ 0

BT
y (mD − m0) = 0 {in Class(m0)}

CΛΠDmD = 0 {equilibrium marking}

ΠDmD ≤ ΠjmD ∀Πj {belongs to ℜD}

[ΠD]i mD = 0 ∀ti ∈ TD {non-live}

where [ΠD]i denotes the i − th row of ΠD.

Proof: Since mD ≥ 0 and BT
y (mD − m0) = 0

then, by definition, mD ∈ Class(m0). Furthermore,
ΠDmD ≤ ΠjmD ∀Πj implies that mD ∈ ℜD.
The marking mD is an equilibrium one because
CΛΠDmD = 0. Finally, since Λ is a diagonal matrix,
[ΠD]imD = 0 implies [f(mD)]i = [ΛΠDmD]i = 0.
Then, ∀ti ∈ TD [f(mD)]i = 0. Therefore, mD is a
non-live equilibrium marking in ℜD in which all the
transitions in TD are dead. 2

Non-live markings are related to empty siphons. This is
proved in the following proposition.

Proposition 2 Let 〈N , λ,m0〉 be a TCPN system.
Consider an equilibrium marking mD ∈ Class(m0).
There are empty siphons at mD iff it is non-live.

Proof: Suppose that the system is at an equilibrium
marking mD at which there are empty siphons. Since

empty siphons never gain marks, then the places be-
longing to supports of those empty siphons remain un-
marked, so, their output transitions never become en-
abled and thus they are dead. For the other implica-
tion, suppose that the system is at a non-live equilibrium
marking mD. Then, at least one input place of each dead
transition is empty at mD, and they remain empty for
future time (it is an equilibrium marking). If there exists
a place pi that always remains unmarked, then for each
input transition tj to this place, it must exist an input
place pk to tj , which remains also unmarked for all time.
Repeating this reasoning, it can be seen that pi should
belong to an unmarked siphon. 2

Non-live markings can appear in different regions. In
general, when more than one non-live marking appear,
they can be isolated or connected in Class(m0), but
even in this case they may not describe a convex set.
Nevertheless, if in a given region there exist two non-live
equilibrium markings m1 and m2, at which transition ti
is dead, then all markings in the linear segment defined
by m1 and m2 are also non-live equilibrium markings
with ti dead. This is proven in the following:

Proposition 3 Given a TCPN system, consider a
marking region ℜD ⊆ Class(m0) with an equilibrium
marking mD ∈ ℜD. If there exists η ≥ 0 s.t.

[

ΠD

BT
y

]

η = 0 (3)

then all the markings in S = {m ∈ ℜD|(m − mD) =
η · α, α ∈ R} are also equilibrium markings having the
same flow, i.e., ∀m ∈ S it holds f(m) = f(mD). If mD

is in the interior of ℜD then {S/mD} 6= ∅. In this way,
if mD is a non-live marking in which all the transitions
in TD are dead, then ∀m ∈ S, mD is non-live and all the
transitions in TD are dead at this marking.

Proof: Consider a marking m ∈ S. Then, f(m) −
f(mD) = ΛΠDm − ΛΠDmD = ΛΠD(m − mD).
Since m ∈ S then ∃α s.t. (m − mD) = ηα. Accord-
ing to (3), ΠD(m − mD) = ΠDηα = 0. Therefore,
f(m) − f(mD) = ΛΠD(m − mD) = 0, meaning that
f(m) = f(mD). In this way, since both markings have
the same flow, if mD is an equilibrium marking at which
all the transitions in TD are dead, then m is also an
equilibrium marking in which all the transitions in TD

are dead.
Now, assume that mD is in the interior of ℜD. Then
mD > 0, which implies that for a small enough α ∈ R
the markingm′ = mD+ηα > 0. Furthermore,BT

y η = 0

implies that BT
y m′ = BT

y mD, thus m′ ∈ Class(m0).
Moreover, since mD is in the interior of ℜD then, for a
small enough α, m′ ∈ ℜD, thus {S/mD} 6= ∅. 2

Live markings may exist in non-live regions. This is in-
teresting since, if the timing is s.t. a live marking is at-
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tractive (i.e., it is asymptotically stable) then the sys-
tem will avoid the non-live markings, and thus liveness
follows. A sufficient condition for the existence of such
live markings is introduced next:

Proposition 4 Let 〈N , λ,m0〉 be a TCPN system. Let
mD be a non-live marking and let ΠD and ℜD be its
associated configuration matrix and region, respectively.

1) If all the eigenvalues of CΛΠD non associated to
P-flows are not null, then ∀v s.t. CΛΠDv = 0 and
BT

y v = 0 it fulfills that v = 0. As a consequence,
mD is the only equilibrium marking in ℜD.

2) If there exists an eigenvector v, associated to a
variable zero valued eigenvalue, s.t. ΛΠDv is a
T-semiflow, dim(ℜD) = rank(C), and mD is as-
sociated only to one configuration, then there exist
infinite non deadlock equilibrium markings in ℜD,
at which the transitions related to positive values of
ΛΠDv are live.

Proof: First, in order to separate the null eigenvalues
related to P-flows from the others, let us define a simi-
larity transformation [ZT,By]T , where BT

y is a basis for
P-flows and Z is a suitable matrix for completing the
rank. Denoting by [A,B] the inverse transformation, the
transformed state matrix is described by

[

Z

BT
y

]

CΛΠD

[

A B

]

=

[

ZCΛΠDA ZCΛΠDB

0 0

]

since BT
y C = 0. According to this transformation, the

eigenvalues of ZCΛΠDA are those of CΛΠD non asso-
ciated to P-flows.
Statement 1). By hypothesis, all the eigenvalues, non as-
sociated to the P-flows, are not null. Then, all the eigen-
values of ZCΛΠDA are not null, which implies that it
has full rank. Let v be a vector s.t CΛΠDv = 0 and
BT

y v = 0. Applying the similarity transformation:

[

ZCΛΠDA ZCΛΠDB

0 0

] [

Zv

BT
y v

]

= 0

Now, since BT
y v = 0 and ZCΛΠDA has full rank

then v = 0. Finally, since every equilibrium mark-
ing m1 ∈ ℜD must satisfy CΛΠD(m1 − mD) = 0
and BT

y (m1 − mD) = 0, then (m1 − mD) is null, so
m1 = mD.
Statement 2). By hypothesis, there exists v 6= 0 such
that CΛΠDv = 0, BT

y v = 0 and ΛΠDv is a T-
semiflow. Now, consider a vector m1 = mD + vα,
notice that it is nonnegative for a small enough α ≥ 0
(∀pj s.t. mD(pj) = 0 it fulfills that vj ≥ 0, because pj

is constraining a transition and ΛΠDv ≥ 0). Further-
more, since BT

y m1 = BT
y mD, dim(ℜD) = rank(C) and

mD is related to only one configuration, there always

exists a small enough α ≥ 0 s.t. m1 ∈ ℜD. Moreover,
CΛΠDm1 = 0 and ΛΠDv 6= 0 (which implies that
ΛΠDm1 6= ΛΠDmD = 0), i.e., m1 is a non deadlock
marking in which the transitions related to positive
entries of ΛΠDv are live. Finally, by linearity, every
marking in the convex described by m1 and mD is also
a non deadlock equilibrium marking, and the flow at
those markings is positive at those transitions related
to positive entries of ΛΠDv, i.e., they are live. 2

A particular case of statement 2 of previous proposition
occurs when the eigenvector v is s.t. ΛΠDv > 0. In such
case there exist infinite live equilibrium markings in ℜD.

5 Timing to avoid non-live markings

In this section, a sufficient condition for avoiding non-
live markings by suitably choosing the timing λ, will be
provided.

Recalling from subsection 2.2, P-flows are related to null
eigenvalues that does not depend on the timing λ (equiv-
alently, P-flows are related to fixed null poles [5]). How-
ever, not all the null poles are related to P-flows.

Remark 3 Null poles can be:

1) Fixed and related to P-flows, i.e., ∃y 6= 0 s.t.yT C =
0, then ∀λ, ∀Πi, yT CΛΠi = 0.

2) Fixed but not related to P-flows, i.e., ∀λ ∃y 6= 0 s.t.
yT CΛΠi = 0 but yT C 6= 0. These null poles ap-
pear in particular configurations, when rank(Πi) <
rank(C).

3) Variable, i.e., ∃λ ∃y 6= 0 s.t. yT CΛΠi = 0
with yT C 6= 0. These null poles appear even
if rank(Πi) = rank(C), but in this case, the
span of ΛΠi includes T-flows, i.e., span(ΛΠi) ∩
span(Bx) 6= ∅, where Bx is a basis of T-flows (right
annuller of C).

Variable zero valued poles are interesting since they are
related to marking conservation laws that are not P-
flows (i.e., y s.t. yṁ = yCΛΠi = 0 but yC 6= 0). This
property can affect the reachability of non-live mark-
ings. In detail, if the marking conservation law involves
the support of a siphon, this will never empty, thus the
non-live markings at which this siphon is empty are not
reachable. This is formally introduced in the following
proposition.

Proposition 5 Consider a non-live marking mD ∈
ℜD, in which a siphon ΣD is empty. If the timing λ is
s.t. there exists a variable zero valued pole of CΛΠD,
related to an eigenvector y ≥ 0 whose support is equal
to ΣD (i.e., ∀j, yj > 0 iff pj ∈ ΣD), then the siphon
ΣD cannot be emptied (assuming it is initially marked)
while the system evolves inside ℜD. Consequently, mD
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is not reachable from any m0 ∈ ℜD s.t. yT m0 > 0 (i.e.,
that marks ΣD), through a trajectory inside ℜD.

Proof: First, since y ≥ 0 is s.t. yT CΛΠD = 0, then, pre-
multiplying the state equation, yT ṁ = yT CΛΠD = 0.
Denote as m(τ) the marking reached after τ time units
(assuming that the system evolves inside ℜD). By inte-
grating previous equation, it is obtained

∫ τ

0 yT ṁdτ =

yT (m(τ) − m0) = 0, equivalently yT m(τ) = yT m0.
Next, assume that the siphon is initially marked, i.e., ∃j
s.t. [m0]j > 0 and pj ∈ ΣD. Thus, according to the def-
inition of y, pj ∈ ΣD implies [y]j > 0, then yT m0 > 0.
In this way, yT m(τ) > 0. Furthermore, since y ≥ 0 and
m(τ) ≥ 0 then ∃k s.t. [y]k > 0 and [m(τ)]k > 0. Fi-
nally, [y]k > 0 implies that pk ∈ ΣD, thus, the siphon
is not empty at m(τ) (at least pk is marked). Since this
reasoning holds for any marking m(τ) reached through
a trajectory inside ℜD, the proof is completed. 2

Previous proposition represents the central idea of this
section: it may be possible to make a siphon ΣD to re-
main marked by suitably choosing λ. This occurs, as al-
ready advance, in the systemof fig. 2 with λ1 = λ3, where
the timing is s.t. a marking conservation law yT m =
yT m0 (with yT = [0, 0, 0, 1, 1, 1]) appears involving the
places in the siphon ΣD = {p4, p5, p6}, thus the corre-
sponding non-live marking is avoided.

In case of several siphons that may become empty at a
given non-live region ℜD, it is not required to analyze
each one. According to next proposition, the existence
of a live marking in ℜD is enough for avoiding all the
non-live markings in the same region.

Proposition 6 Let 〈N , λ,m0〉 be a TCPN system.
Consider that m0 > 0 belongs to a non-live region ℜD,
and let ΠD be its associated configuration operator ma-
trix. If there exists an equilibrium marking mL ∈ ℜD

s.t. ΛΠDmL > 0 then non-live markings in ℜD are not
reachable through a trajectory in ℜD.

Proof: Let mD be a non-live marking of ℜD. Define
v = (mL − mD), then BT

y v = 0 and ΛΠDv is a T-
flow. Furthermore, for each j-th entry of mD that is
null, the j-th entry of v is positive. Now, every marking
m1 reachable from m0 > 0, through a trajectory inside
ℜD, must fulfill the solution of the state equation (see,
for instance, [1]): m1 = eCΛΠDτm0, for some time τ
(while in ℜD). In this way, considering an initial mark-
ing m′

0 = m0+vα > 0 (where α is a small enough scalar
s.t. m′

0 ∈ ℜD), the marking reachable at time τ is given
by: m′

1 = eCΛΠDτm′
0. Then, substituting m′

0 and con-
sidering that eCΛΠDτv = v (something easy to see by
expanding the exponential matrix in Taylor’s series), it
follows that m′

1 = m1 + vα.

Now, consider a positive initial marking m0 ∈ ℜD. Let
us reason by contradiction. Suppose that the system con-

verges asymptotically from m0 > 0 towards the non-
live marking mD ∈ ℜD through a trajectory in the in-
terior of ℜD. It implies that for a positive initial mark-
ing m′

0 = m0 + vα, in which α < 0, the system con-
verges asymptotically towards m′

D = mD +vα through
a trajectory in ℜD (at least for a small enough magni-
tude of α), but, since mD has null entries whose cor-
responding elements in vα are negative then m′

D has
negative entries, which is a contradiction. Therefore, the
corresponding non-live marking mD is not reachable,
through a trajectory in ℜD, from any positive marking
m0 ∈ ℜD. 2

The following proposition establishes that such live equi-
librium marking mL can be induced by timing properly
the system (i.e., by choosing a suitable value for λ) if
the net is consistent.

Proposition 7 Let 〈N , λ,m0〉 be a TCPN system.
Consider a non-live marking mD that belongs to only
one region ℜD. There exists a timing λ that induces a
live equilibrium marking mL in ℜD iff N is consistent.

Proof: If the net is not consistent then ∄x > 0 s.t.
Cx = 0, so, for any Λ and mL > 0 we cannot obtain
CΛΠDmL = 0, thus mL is not an equilibrium marking.

For the other implication, by using the fact that all the
P-semiflows are marked (assumed in Section 2) and the
hypothesis that mD belongs only to one region ℜD, it
can be proved that ∃mL > 0 that belongs to ℜD. Now, if
the net is consistent then there exists a vector x > 0 s.t.
Cx = 0, so, a diagonal matrix Λ > 0 s.t. ΛΠDmL = x
can be computed. Therefore, mL ∈ ℜD is an equilibrium
marking and ΛΠDmL > 0. 2

Remark 4 Consistence is no longer sufficient to guar-
antee the existence of a timing λ for avoiding non-live
markings in different regions (but it is still necessary).

Example 3 Consider the net system of fig. 3(a) that
has two deadlocks, m1

D = [0, 6, 0, 0]T and m2
D =

[6, 0, 0, 0]T . The corresponding deadlock configura-
tions are C1

D = {(t1, p1), (t2, p1), (t3, p3), (t4, p4)} and
C2

D = {(t1, p2), (t2, p2), (t3, p3), (t4, p4)}, respectively.
Since this net is consistent, according to proposition
7, for each configuration it is possible to find a tim-
ing for avoiding the corresponding deadlock marking.
However, for this net it does not exist a timing that in-
duces simultaneously live equilibrium markings in both
regions. In order to prove this, notice that a basis for
T-flows is given by x = [1, 1, 1, 1]T , then, if there exist
live equilibrium markings m1 and m2 they must fulfill
ΛΠ1

Dm1 = βΛΠ2
Dm2 for some β > 0. This equal-

ity can be written by elements as [0.5λ1m11, λ2m11,
λ3m13, λ4m14]

T = β[λ1m22, λ2m22,λ3m23, λ4m24]
T

(where mij means the j − th entry of mi). Therefore
0.5m11 = βm22 and m11 = βm22, but such equalities
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(a) (b)

Fig. 3. (a) TCPN system with deadlock markings in two
different regions. (b) TCPN system with two independet
T-semiflows.

do not have positive simultaneous solutions, so, there
does not exist a timing λ that induces live equilibrium
markings in all deadlock regions. Nevertheless, it does
not mean that the timed system is dead for all timing
(e.g., with λ = [1, 2, 1, 1]T the timed system converges to
m1 = [0.75, 1.5, 2.25, 1.5]T , which is live).

6 Stability of non-live equilibrium markings

From a control theory perspective, non-live equilibrium
markings are equilibrium points, so, the knowledge of
the value of the poles (in each non-live configuration) is
useful to decide if, given a particular timing, a non-live
marking will be reached or will not. This idea is cap-
tured in the following propositions, whose proofs can be
found in [12]:

Proposition 8 Let 〈N , λ,m0〉 be a TCPN system.
Given a non-live marking mD that belongs to a unique
region ℜD, then

1) If the real parts of the poles of CΛΠD, non associ-
ated to the P-flows, are negative, then mD is locally
asymptotically stable, i.e., there exists a neighbor-
hood of mD, named N(mD), s.t. if m0 ∈ N(mD)
then the system inevitably reaches mD.

2) If CΛΠD has a zero valued pole, non associated
to the P-flows, and the real parts of the others are
negative, then mD is stable (nevertheless mD could
be reached or not).

3) If there exists a variable null eigenvalue of CΛΠD,
with an associated eigenvector v s.t. BT

y v = 0
and ΛΠDv is a T-flow with positive entries at
those transitions that are dead at mD, then mD is
not reachable from a positive marking m0 ∈ ℜD,
through a trajectory in ℜD.

4) If there exists a pole of CΛΠD having a positive
real part, then mD is unstable, so it is not reachable
from another marking, through a trajectory in ℜD.

The stability analysis of a non-live marking mD, which is
related to more than one configuration, is more complex,
since it is a stability problem of a piecewise linear system.
However, it is possible to know what could happen for
particular cases.

Proposition 9 Let 〈N , λ,m0〉 be a TCPN system.
Given a non-live marking mD that belongs to different
regions ℜ1

D,...,ℜk
D , then

1) If for every region ℜi
D, to which mD belongs, the

poles of CΛΠi
D are real and negative, then mD is lo-

cally asymptotically stable, i.e., there exists a neigh-
borhood of mD, named N(mD), s.t. if m0 ∈ N(mD)
then the system inevitably reaches mD.

2) If for all regions ℜi
D, there exists an eigenvector vi,

associated to a variable zero eigenvalue of CΛΠi
D,

s.t. BT
y vi = 0 and ΛΠi

Dvi > 0, then mD is not
reachable from m0 > 0 through a trajectory in
⋃

ℜi
D.

The first statement of previous proposition can be ex-
tended by using the classical Common Lyapunov Func-
tion (CLF) criterion (see, for instance, [4]), i.e., there
exists a neighborhood of mD from where the system
inevitably reaches mD if there exist symmetric posi-
tive definite matrices P and Qi s.t. (ZCΛΠi

DA)T P +
P(ZCΛΠi

DA) = −Qi for each ℜi
D to which mD be-

longs, where Z and A are the matrices introduced in the
proof of proposition 4.

7 Examples: towards an interpretation at net
level

Through this section, a few examples will be analyzed in
order to illustrate the potential application of the results
previously introduced.

In the sequel, given a non-live configuration CD, the pos-
sibility of choosing λ s.t. variable zero valued poles are
induced will firstly be analyzed through the character-
istic polynomial of CΛΠD.

Remark 5 Consider the characteristic polynomial of
CΛΠD, where Λ is in parametric form. The order of
the lower order term is equal to the number of fixed zero
valued poles, and a particular Λ that makes this lower
order term be zero leads to a variable zero valued pole.
In such case, statement 3 of proposition 8 may follow.

Example 4 Consider the TCPN system of fig.
2(a). In this case, there exists a unique deadlock
mD = [1, 1, 3, 0, 0, 0]T , belonging to a unique configu-
ration ℜD. The lower order term of the characteristic
polynomial of CΛΠD is s3(λ4λ1λ2 − λ4λ2λ3). It means
that there exist 3 fixed zero valued poles (related to 3
P-semiflows), and that a timing λ s.t λ2λ4(λ1 −λ3) = 0
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creates an additional zero valued pole. Then, a timing
λ s.t. λ1 = λ3 fulfills that condition, in which case,
according to proposition 8, mD is not reachable from
any m0 > 0 through a trajectory in ℜD. Moreover,
since mD belongs only to ℜD, then the TCPN system
is deadlock-free. Such λ establishes an “equilibrium”
between the flow going into the siphon Σ = {p4, p5, p6}
and the flow going out of it, as it was proved in Sec-
tion 3. Furthermore, if λ3 > λ1, then the coefficient of
this term becomes negative and it can be demonstrated,
through the Routh-Hurwitz criterion (see, for instance,
[1]), that mD is unstable (at leats one pole becomes pos-
itive), then the system is deadlock-free (proposition 8).
Since this system has only one elementary T-semiflow,
deadlock-freeness implies liveness (equivalently, mD is
the unique non-live equilibrium marking).

Example 5 Now, consider the system of fig. 3(b). It has
16 configurations but only three with deadlocks:

C1 = {(t3, p5) , (t4, p6) , (t5, p8) , (t6, p5)}

C2 = {(t3, p5) , (t4, p2) , (t5, p8) , (t6, p5)}

C3 = {(t3, p5) , (t4, p2) , (t5, p4) , (t6, p5)}

(the arcs that constrain transitions t1, t2, t7 and t8 are
not written because they are the same for all the configu-
rations). Configuration C2 has infinite deadlocks (∃η 6= 0
satisfying (3)). All deadlocks in the system are connected.
Computing the lower order terms of the characteristic
polynomial for the three cases we obtain

C1 : s3λ1λ2λ7λ4(λ3λ8 − λ5λ6)

C2 : s4 [λ1λ2λ7(λ3λ8 − λ5λ6) + λ2λ7λ8(λ1λ6 − λ3λ4)]

C3 : s3λ2λ7λ8λ5(λ1λ6 − λ3λ4)

For any timing λ s.t. λ3λ8 = λ5λ6 and λ1λ6 = λ3λ4, a
variable zero valued pole is added to every deadlock con-
figuration. In this system, every possible non-live equi-
librium marking mD is actually a deadlock one (i.e.,
Σ•

D = T ). However, if a variable zero valued eigenvalue
is added then there exists an eigenvector v 6= 0 s.t.
[ΛΠDv]i > 0 for some ti, so, according to proposition 9,
non live markings in which ti is dead are not reachable
from a positive initial marking. Finally, since every non-
live marking is a deadlock one, then the system is live.

Example 6 The system of fig. 4 has two differ-
ent minimal T-semiflows, whose supports are cov-
ered, independently, by siphons Σ1 = {p4, p5, p6} and
Σ2 = {p9, p10, p11}. That means that there exist non-live
equilibrium markings that are not deadlocks. Now, if the
timing λ is s.t. λ1 = λ3, the siphon Σ1 conserves its
total marking (as in the system of figure 2(a)). But, if
λ5 > λ7 then the siphon Σ2 will empty, so, the system
does not reach a deadlock, but it becomes non live. Nev-
ertheless, if λ is s.t. λ1 = λ3 and λ5 = λ7, both siphons
remain marked, for all time, i.e., the timed system is

Fig. 4. TCPN system with two independent siphons.

live. In such case, we are inducing a live equilibrium
marking in all non-live configurations.

8 Control Interpretation

Through this paper, some tools have been provided in
order to compute λ s.t. non-live markings are avoided.
This can be interpreted as the synthesis of a controller for
meeting safety specifications, i.e., for avoiding forbidden
(non-live) states. Let us detail this through this section.

Definition 2 Given a TCPN system having fixed nom-
inal rates λ, a control action is defined as a reduction
of the flow through the transitions [11]. Transitions in
which a control action can be applied are called control-
lable. The effective flow through a controllable transition
can be represented as: fi(τ) = λ(ti) ·enab(τ, ti)−u(τ, ti),
where u(τ, ti) represents the control action on ti and
0 ≤ u(τ, ti) ≤ λ(ti) · enab(τ, ti).
The control vector u ∈ R|T | is defined s.t. ui repre-
sents the control action on ti. If ti is not controllable
then ui = 0. The set of all controllable transitions is de-
noted by Tc, and the set of uncontrollable transitions is
Tnc = T − Tc.

The behavior of a TCPN forced system is described by
the state equation:

•
m = CΛΠ(m)m − Cu (4)

with the input constraint 0 ≤ u ≤ ΛΠ(m)m.

The results presented through this paper can be in-
terpreted as the solution of a liveness-enforcing control
problem.

Proposition 10 Consider a TCPN system 〈N , λ,m0〉,
where λ are the nominal firing rates, and a non-live
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marking mD ∈ Class(m0) reachable in the autonomous

contPN . Let λ
l be a firing rate vector s.t. the timed

system 〈N , λl,m0〉 avoids the non-live marking mD. If
all the transitions are controllable (i.e., T = Tc) then
∃β > 0 s.t. the control law ul =

[

Λ − βΛl
]

Π(m)m
makes the system 〈N , λ,m0〉 to avoid mD and
0 ≤ ul ≤ ΛΠ(m)m.

Proof: The flow of the system with the timing λl is equiv-
alent to the flow of the system with the original nominal
rates λ but under a control action ul, i.e.: ΛlΠ(m)m =
ΛΠ(m)m − ul, where ul =

[

Λ− Λl
]

Π(m)m. Never-

theless, since the control action must fulfill 0 ≤ ul ≤
ΛΠ(m)m and ul

i = 0 ∀ti ∈ Tnc, then it is required that

0 ≤ λl ≤ λ and λl = λ ∀ti ∈ Tnc. If all the transitions
are controllable (i.e., T = Tc) then it is always possible

to define a small enough scalar β > 0 s.t. 0 ≤ βλ
l ≤ λ.

Furthermore, the timing βλl also makes the system to
avoid mD, then the control law ul =

[

Λ − βΛl
]

Π(m)m
meets the required specification. 2

Example 7 For instance, consider the system of fig.
3(b) having nominal rates λ = [1, 5, 6, 8, 2, 4, 10, 2]T .
For these rates the system reaches a deadlock mD =
[2, 0, 0, 1, 0, 0, 0, 0, 2]T . Now, according to the analysis

done in the example 5, the timing λl = [2, 2, 2, 2, 2, 2, 2, 2]T

makes this net system live. Notice that λl � λ, but defin-

ing β = 0.5 it fulfills 0 ≤ βλl ≤ λ, so, by applying the
control law ul =

[

Λ− βΛl
]

Π(m)m the system avoids
all the deadlock markings.

This control interpretation can be extended to the case
in which some uncontrollable transitions are considered.
However, such case is much more complex, since it is
required that ∀ti ∈ Tnc, λ

l = λ. The analysis o such
case is beyond the scope of this paper.

9 Conclusions

Through this paper, liveness of timed continuous Petri
nets has been studied. First, the liveness problem has
been divided into two different ones: the existence of
non-live equilibrium markings, and the reachability of
them. The first problem is an algebraic one that can be
easily solved in polynomial time (LPP in Section 4). It
was shown that non-live markings are strongly related
to unmarked siphons (proposition 2).

By using some classical results on stability in linear sys-
tems, a couple of sufficient conditions for avoiding non-
live equilibrium markings, and sufficient conditions for
reaching them, have been introduced (propositions 8 and
9). The main contribution consists in providing a suffi-
cient condition for avoiding non-live markings that be-
long to a unique region (proposition 6). The existence
of such condition is related to consistency (proposition

7). Some illustrative examples were presented in order
to interpret the obtained results at the net level.

Finally it was shown that, given a TCPN system with
particular nominal rates, a control law that enforce live-
ness can be computed by using a timing that makes the
system to avoid non-live markings.
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