
The Scientific World Journal
Volume 2012, Article ID 614635, 11 pages
doi:10.1100/2012/614635

The cientificWorldJOURNAL

Research Article

Dependability Modeling and Assessment in UML-Based
Software Development

Simona Bernardi,1 José Merseguer,2 and Dorina C. Petriu3

1 Centro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain
2 Departamento de Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza, 50018 Zaragoza, Spain
3 Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada K1S 5B6

Correspondence should be addressed to José Merseguer, jmerse@unizar.es

Received 25 May 2012; Accepted 21 June 2012

Academic Editors: M. Sarfraz and D. Spinellis

Copyright © 2012 Simona Bernardi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Assessment of software nonfunctional properties (NFP) is an important problem in software development. In the context of
model-driven development, an emerging approach for the analysis of different NFPs consists of the following steps: (a) to extend
the software models with annotations describing the NFP of interest; (b) to transform automatically the annotated software model
to the formalism chosen for NFP analysis; (c) to analyze the formal model using existing solvers; (d) to assess the software
based on the results and give feedback to designers. Such a modeling→ analysis→ assessment approach can be applied to any
software modeling language, be it general purpose or domain specific. In this paper, we focus on UML-based development and
on the dependability NFP, which encompasses reliability, availability, safety, integrity, and maintainability. The paper presents the
profile used to extend UML with dependability information, the model transformation to generate a DSPN formal model, and the
assessment of the system properties based on the DSPN results.

1. Introduction

Model-driven development [1] (MDD) is an evolutionary
step that changes the focus of software development from
code to models, with the purpose of automating the
code generation from models. MDD emphasis on models
facilitates also the analysis of nonfunctional properties (NFP)
(such as performance, scalability, reliability, security, safety,
or usability) of the software under development based on its
models. These NFPs are finally responsible for the required
quality of the software [2]. Among them, we address in this
paper the dependability NFP. Dependability encompasses
availability, reliability, safety, integrity, and maintainability as
proposed in [3].

Many formalisms and tools for NFP analysis have been
developed over the years. For example, queueing networks
[4], stochastic Petri nets [5], stochastic process algebras
[6], fault trees [7], or probabilistic timed automata [8].
One of the MDD research challenges is to bridge the gap
between software models and dependability analysis models.
An emerging approach for the analysis of different NFPs,

dependability included, is given in Figure 1. It consists of
the following steps: (a) to extend the software models used
for development with annotations describing dependability
properties; (b) to transform automatically the annotated
software model to the formalism chosen for dependability
analysis; (c) to analyze the formal model using existing
solvers; (d) to assess the software based on the results and
give feedback to designers. Such a modeling→ analysis→
assessment approach can be applied to any software mod-
eling language, be it general purpose such as the Unified
Modelling Language [9] (UML), or domain specific such as
AADL [10] or SysML [11].

In the case of UML-based software development, the
extensions required for NFP-specific annotations are defined
as UML profiles [9], which provide the additional advantage
of being processed by standard UML tools without any
change in the tool support. OMG adopted the MARTE
[12] profile (see Appendix A), which extends UML for
the real-time domain, including support for the specifica-
tion of schedulability and performance NFPs. We use the

2 The Scientific World Journal

Software modeling
domain

UML software model
with dependability

annotations

Feedback to
developers

Presenting
feedback in UML

model context

Transformation
to analysis model

Mapping results
to software

domain

Dependability
domain

Dependability
analysis model

Dependability
model results

Solving analysis
model

Figure 1: Integrating dependability modeling and analysis in a UML-based software development.

dependability modeling and analysis [13] (DAM) profile (see
Appendix A) to extend the UML models with dependability
concepts and then transform the extended UML model into
a Deterministic and Stochastic Petri Net (DSPN) model
(see Appendix B). The results of the DSPN model are
converted to the software domain and are used to assess
system dependability measures.

The work [14] formalized the methodology in Figure 1.
In this paper, we rigorously apply this formalization, through
a case study, in the context of UML-based development. Sec-
tion 3 accomplishes the modeling step of the methodology.
Section 4 applies the transformation step. Section 5 focusses
on the analysis step. Section 6 explores the assessment step.

2. Case Study: The Voter

According to Avižienis et al. [3], the means developed to
attain system dependability in the past 50 years can be
grouped into four categories: fault tolerance, fault preven-
tion, fault removal, and fault forecasting. The case we present
pertains to the fault tolerance field, which aims to improve
dependability by avoiding service failures in the presence of
faults.

Fault tolerance [15] provides different well-known tech-
niques mainly based on error detection and system recovery.
Voting as well as software and hardware replication are
the techniques we use here. Concretely, we present a voter
mechanism whose purpose is to mask faults arising in
computations carried out with data acquired by a sensor.

We are considering a sensor which monitors (a part of) a
generic plant, such as an industrial automation system. The
sensor periodically sends raw collected data to an application
that carries out a heavy and critical computation with it. We
replicate the computation through different nodes with the
purpose of increasing the fault tolerance of the application.
However, it can happen that one or more of the replicas
are affected by faults, that is, they do not complete their
computations as scheduled, may be due to a node failure,
a memory leak or another software bug. Our system deals
with this situation by implementing a voting mechanism to
mask one fault, that is, the system provides results despite the
presence of a fault.

Voting algorithms are often used along with recovery
mechanisms, which bring back the system to a healthy state
when the voting cannot be accomplished, that is, when the
faults cannot be masked. For the sake of simplicity, we will
not consider recovery strategies in this example.

We propose an initial UML design of the voter containing
a deployment diagram and a set of state machines (UML-
SMs). The design model illustrates the following:

(i) how dependability techniques can be modeled with
UML behavioral diagrams and DAM annotations
introduce dependability parameters;

(ii) how DAM leverages this design for dependability
analysis purposes.

The deployment diagram, Figure 2(e), depicts the hard-
ware nodes in which the identified software components
(sensor, application, and replicas) execute and also the
communication networks linking them. We consider a fully
distributed system architecture to increase dependability. In
fact, the distribution of the components is a principle in
dependability modeling.

The voter exhibits a discrete behavior for which UML-
SMs are well suited. According to the UML interpreta-
tion, a SM specifies the behavioral pattern for the objects
populating a class, as in the case of the UML-SM for
the three voting replicas(Figure 1(c)). Alternatively, a UML-
SM can also specify the behavior of a software compo-
nent, such as the application, voter or sensor embedded
components(Figure 1(a, b, d)).

3. Dependability Modeling

UML-SMs are widely used to pragmatically model the “cor-
rect” behavior of a system, that is the behavior in absence of
faults. However, dependability modeling demands to specify
also the system behavior under different fault assumptions,
and to characterize the system failures. Furthermore, in case
of repairable systems, the repair and reconfiguration activities
that remove basic or derived failures from the system need to
be modeled. In order to define the system fault assumptions,
a software engineer has to consider the following main
issues:

The Scientific World Journal 3

/App.collect(data)

Sensor

DO: Work()

Collecting

≪GaWorkLoadGenerator≫

(value =1,source = assm)}

≪GaStep≫
=

(value = 120, unit = s, statQ =mean, source = assm)}

={pop

{hostDemand

(a)

Wait4result()

Wait4Result

entry: Voter.create()
exit: Replica.create(data, voter)

Creating

Wait4Data

result()

DO: CountDown()

/Voter.TO()

collect(data)

novote()

CountingDown

Exception

exit: Replica.destroy()

Application

Failed

killTO()

Broadcast the message to create three Replicas

Broadcast the message to all alive Replicas

≪GaStep≫
{hostDemand =

(value = 120, unit = s, source = assm)}

≪DaStep≫
{kind = failure
failure =(occurrenceRate =
(value = $

≪GaWorkLoadGenerator≫
{pop = (value = 1, source =

assm)}

fail freq, unit = s, source = pred))}

(b)

create(data, Voter)

DO: compute()

/Voter.outcome(result)

Replica

Faulty
Killed

destroy()

End

Computing
fault()

≪GaStep≫
(value = 1, unit = s, statQ =mean,
source = assm)}

≪DaFaultGenerator≫
{numberOfFaults = $Nfaults
fault = (occurrenceRate =(value = $fault occ, unit = s,

statQ =mean, source = assm))}

={hostDemand

(c)

outcome(result)

outcome(result)

Receiving

Voting

DO: vote()

/App.result()

Correct

create()
Voter

Ko
TO()/App.novote()

TO()/App.wait4result()

outcome(result)/App.killTO()

≪GaStep≫
{hostDemand=

=mean, (value = 100, unit =ms, statQ
source = assm)}

Wait4 1stRep

Wait4 2ndRep

Wait4 3rdRep

(d)

≪GaExecHost≫

≪GaExecHost≫≪Ethernet≫

Replica

Application

≪GaExecHost≫

Replica

≪GaExecHost≫

Replica

≪Sensor≫ Voter

≪GaExecHost≫

LAN
≪GaCommHost≫

(e) Deployment diagram

Figure 2: UML design of the voter.

(1) which components can be affected by faults and in
which states,

(2) the maximum number of faults that can concurrently
affect the system components,

(3) the complete fault characterization, such as the fault
occurrence rate.

Failure characterization consists in determining the
failure modes and, in particular, the system failure states.

UML does not provide sufficient capabilities for a
complete and rigorous modeling of all the aforementioned
dependability concerns. However, the DAM profile augments
a UML design with annotations that target the depend-
ability specification. Being constructed as a specialization

4 The Scientific World Journal

of MARTE, DAM ensures compatibility with the UML
diagrams. The MARTE part of interest to DAM is the one
devoted to quantitative analysis, also known as GQAM (see
Appendix A). In fact, DAM specializes GQAM, creating a
framework for the specification and analysis of dependabil-
ity.

3.1. State Machines Specification. Our UML-SMs specifi-
cation illustrates how the engineer can model specific
dependability techniques while describing the system normal
behavior. Concretely, we have leveraged the UML-SMs to
propose a design for the voting mechanism and computation
by a replica.

Following the UML-SM of the application in Figure 2(b),
we see that it collects the data from the sensor then, it creates
the voter and three replica processes (see state Creating)
and starts a countdown. The CountingDown state discerns
between the correct behavior of the system and masking
or abnormal behaviours. It is considered that the system
behaves correctly if the replicas can normally carry out their
computations before the CountDown() completes. Then, the
application eventually receives from the voter the killTO()
event and the result() of the computation. The fault
masking behavior occurs, instead when the time out expires
before the voter can kill it; the application informs the
voter by sending the TO() event. The application enters in
Exception state, but it can still receive the wait4result()
event and later the result(), which has been produced by
the voter based on the outcome() of the remaining two
no-faulty replicas. Please note in the UML-SM of the voter
that if the TO() event is received after the outcome of the
second replica, then the voting is still performed, so one
faulty replica can be tolerated. Finally, the system abnormal
behavior occurs when no vote is produced and the voter
notifies it the application, which enters in Failed state.

3.2. DAM Specification. The fault masking specification (i.e.,
voting and replica computation) has been modeled by using
UML-SMs, however the fault assumptions and the system
failures still need to be specified. To achieve this, DAM pro-
vides a small yet sufficient set of extensions, (i.e., stereotypes
and tagged values) which are DaStep, DaComponent and
DaService.

The DaStep stereotype is meant to be applied to basic
computational steps, which in the context of SMs are mostly
states and transitions. It allows a complete specification of
failures or hazards (for safety-related systems), errors, and
recovery actions. In our example, we have defined a failure
state in the application UML-SM, which corresponds to
the system failure. It is worth to note that this is a simple
case since, in general, a system can be subject to different
failure modes and each failure is a combination of the
system component failures. DAM also supports the failure
specification in the general case.

The tag failure provides attributes to thoroughly
describe a software failure, such as the failure occurrence rate
(as shown in the example), but also the mean time to failure
(MTTF), mean time between failures (MTBF), domain and

detectability of failure, and logical condition that leads to
failure. Concerning errors, DAM allows one to specify the
error latency and probability, while for recovery actions one
can specify the rate, duration, distribution, and coverage
factor.

DaComponent and DaService, although not illustrated
in our example, are of primary importance for the depend-
ability specification. The former describes aspects such as
availability, reliability, faults, failures, or errors affecting the
software components; while the latter specifies the same
aspects but in the context of software services. Repair and
reconfiguration activities are specified through the DaRepair
and DaRecovery stereotypes.

Another aspect to be considered is the definition of the
fault events, which can be represented as a special type
of workload. The stereotype DaFaultGenerator provides
the means to model a fault injector. In the example, we
assume that only replicas can be affected by faults, so
we apply this stereotype to the SM transition that leads
a replica to a faulty state. The tag NumberOfFaults is
set to an input variable, $N faults, for sensitivity analysis
purposes. The tag fault allows to completely specify the
fault assumption within DAM, concretely its occurrence
rate, latency, occurrence probability, occurrence distribution,
persistency, and duration.

Finally, the definition of dependability measures during
this stage of the design is of primary importance for the
engineer to clearly specify the goals of the analysis. In this
case, we have used the failure description in the DaStep to
define the measure of interest as the inverse of Mean Time
To Failure (MTTF), which represents the application failure
occurrence rate. DAM allows one to specify a wide variety
of measures, such as the Mean Time Between Failures or the
availability.

3.3. MARTE Specification. A DAM specification is useful for
addressing most of the quantitative and qualitative depend-
ability aspects. However, for analysis purposes we may
need to enhance the specification with some quantitative
parameters provided by MARTE annotations. For instance,
we need to indicate the population of the system and the
duration of the involved activities. We use a subset of GQAM
stereotypes to specify: (1) the number of objects populating
a UML-SM (as GaWorkloadGenerator stereotype with pop
tag), (2) the timing duration of the UML-SM activities (as
GaStep stereotype with hostDemand tag), and (3) the type
of DD resource for informative purposes.

In Figure 2 we defined an initial population only for the
application and the sensor, while the other objects (i.e., the
replicas and the voter) are dynamically created. The timing
durations of the UML-SMs activities have different statistical
meaning. For example, the duration of the TimeOut of
the application is a constant value, while the duration of
the compute activity performed by the replicas is a mean
value. Concerning the type of hardware resource, we identify,
through the GaExecHost stereotype, the processors where
the UML-SM activities execute. The communication nodes
are stereotyped as GaCommHost stereotype, see also Figure 2.

The Scientific World Journal 5

State-to-DSPN

rule

A

entry: enAct

DO: doAct

enAct

doAct
$rate

≪GaWorkloadGenerator≫
pop = (value =1, source = assm)

≪GaStep≫
hostDemand = (value = $rate, statQ=mean,

source = assm)

ini A

end entry A

compl A

(a)

A

exit: exAct

B

ev1/X.ev2
Transition-to-DSPN

rule

e_ev1

compl_A

X.ev2

exAct

π = 1
π = 2

e ev1

e X.ev2

ini B

loss ev1

(b)

A B
FaultGen-to-DSPN

rule

$ft

$x

≪DaFaultGenerator≫
numberOfFaults = $x

fault =(occurrenceRate = (value = $ft, statQ =mean))

no fault

e fault

fault occ

e fault

ini B

ini A

(c)

Figure 3: SM-to-DSPN patterns.

4. Transformation to Formal Model

The UML-DAM design of the voter specifies both the
behavioral and dependability properties. The next challenge
for the engineer is to analyse the system dependability before
the implementation phase. The proposed approach is to
transform the UML-DAM specification into a formal model
appropriate for dependability analysis. In our case, DSPN
(Deterministic and Stochastic Petri Net, see Appendix B) is
such a formal model, which can be automatically generated
from the UML-DAM design. In order to derive the DSPN
model representing the whole system, we propose to start
by transforming each UML-SM into a component DSPN
following two steps.

(1) Derive the structure of a component DSPN from a
UML-SM.

(2) Derive the fault assumptions, timing specifica-
tion, and the initial marking of the DSPN from
the MARTE-DAM annotations associated with the
respective UML-SM.

After deriving all component DSPNs, they are composed
according to the SMs interactions.

4.1. Deriving the DSPN’s Structure. The model transforma-
tion is based on predefined patterns: for each SM model
element, we derive a DSPN subnet with labeled places and
transitions. The labels have a double purpose: (a) to compose
the DSPN subnets by merging the places or transitions with

the same label and (b) to enable the tracing of the SM-to-
DSPN mapping, an important feature needed to support the
feedback of analysis results to the original SM.

In the following, we succinctly describe the transfor-
mation of the most important model elements of a SM
(states, events and transitions), to allow the reader to grasp
the general idea of the approach. Note that the SM-to-
DSPN transformation has been completely automated (see
Appendix C).

4.1.1. States. Figure 3(a) shows the transformation of a
simple state with an entry action and a do-activity. The
DSPN subnet contains two causally connected transitions:
one immediate and one timed that model, respectively, the
entry action and the do-activity. The compl A place, when
marked, represents the state reached by the SM once the do-
activity has been completed.

4.1.2. Events. Events are mapped onto DSPN places, labeled
as e eventname; they represent mailboxes whose marking
indicates the number of event occurrences of the same type.

4.1.3. Transitions. The transformation pattern of a transition
event/action is shown in Figure 3(b). The transition fires
when the event occurs (i.e., the DSPN place e ev1 becomes
marked), but only if the SM is in the source state of the
transition (i.e., comp A is marked), otherwise the event is
lost. The consumption and the loss of an event are modeled
by two immediate DSPN transitions: e ev1 and loss ev1,
respectively, with the event mailbox place e ev1 as input
place. The former has greater priority (π = 2) than the latter

6 The Scientific World Journal

(π = 1), so that when a conflict arises the former eventually
fires. Then, the execution of the action X.ev2 generates an
event ev2 for a SM named X. Finally, the exit action exAct in
state A is carried out and the state B represented by the place
ini B is reached.

4.2. Setting the DSPN Parameters. MARTE-DAM annota-
tions in a SM are mainly transformed to parameters of the
component DSPNs. In general, the tagged values specified as
assumed values (source=assm) are mapped to DSPN input
parameters, while predicted values (source=pred) to output
dependability measures.

4.2.1. Fault Assumptions. The fault generator (DaFaultGen-
erator stereotype) is translated into a new DSPN subnet
shown in Figure 3(c), which generates fault events. In the
voter, the fault generator DSPN subnet generates fault events
for the replicas. The value field of the numberOfFaults tagged-
value is a variable that is translated to the initial marking
of the DSPN subnet, which specifies the maximum number
of faults that may occur in the SM. The value field of the
occurrenceRate tagged-value is also a variable used to define
the mean firing time parameter of the transition whose firing
represents a fault occurrence.

4.2.2. Timing Specs. The doActivities annotated with cor-
responding processing demands, are translated into timed
transitions, as in Figure 3(a), and the value field of the
hostDemand tagged-value is mapped to the input time
parameter of the corresponding DSPN transition. When the
mean statistical qualifier (statQ=mean) is associated to a
tagged value, the DSPN parameter represents the mean value
of an exponentially distributed random variable, otherwise
it models a deterministic value. In real-time system models
it is useful to assume that some of the computing times are
stochastic (e.g., the voting time in the voter) while others
deterministic (e.g., the time-out in the application); both are
naturally modeled in the DSPN formalism.

4.2.3. Initial Marking. The initial population of a SM,
tagged-value pop, is translated into the initial marking of
the corresponding component DSPN, as seen in Figure 3(a).
In the voter, only the sensor and the application are
characterized by an initial population, each represented by
the initial marking of the corresponding component DSPNs.

5. How to Approach the Analysis

In the UML design, the software engineer specifies the output
dependability measures of interest using the DAM profile.
Dependability analysis consists in computing such measures
by solving the DSPN model; the results will be eventually
interpreted in the application domain and used for system
assessment. In the voter example, the measure used to assess
the fault-tolerance of the system is the failure occurrence rate
of the application, see Figure 2(b).

The proposed analysis is carried out through the follow-
ing tasks: (1) derive the dependability DSPN model of the

V
ot

er
co

m
po

n
en

t

A
pp

lic
at

io
n

co
m

po
n

en
t

e_TOSensor
component

Replica
component

Fault
generator

e_collect_data

· · ·

e wait4result

e outcome result

e destroy

e fault

Figure 4: Composition of the DSPN subnets over interface places.

whole system, (2) define the dependability measures at DSPN
level, and (3) choose and run the appropriate DSPN solver.

5.1. Derivation of the Dependability DSPN Model. The DSPN
dependability model of the entire system is automatically
constructed (see Appendix C) by composing the com-
ponent DSPN subnets derived from the UML-SMs by
model transformations (see Section 4). More specifically,
the composition takes place by merging the interface places
with matching labels that belong to different component
DSPNs, as illustrated in Figure 4. There is a pair of interface
places with matching labels e eventname for each event
generated/consumed by the SMs: one place belongs to the
component representing the sender SM and the other to
the component representing the receiver SM. The DSPN
composition replaces the pair of interface places by a single
place (bigger dotted circle).

5.2. Definition of the DSPN Dependability Measures. The
DAM values, specified with the Value Specification Lan-
guage [12] (VSL, see Appendix A) as predicted values
(source=pred), correspond to output dependability mea-
sures to be computed by solving the DSPN model. A DSPN
dependability measure is a stochastic measure defined over
the set S of DSPN markings (i.e. states) reachable from the
initial marking (see Appendix B). In the composed DSPN
model, the state set S can be partitioned into two subsets
containing the states when the system operates normally
(Up) and the failure states (Down), respectively. The main
concern in the definition of a DSPN dependability measure is
the identification of the system failure states considering the
DAM predicted values. Figure 5 (center) shows the portion
of net obtained from the transformation of the UML SM
on the left, according to the patterns defined in Figure 3.
The red cloud contains the place corresponding to the SM
state B, specified with DAM as a failure state, while the
blue cloud includes the rest of the DSPN places. Observe
that, in general, there can be several places in the red cloud,
depending on the number of SM states specified as failure
states; let’s denote such a set of places as PD. Then, the set of
failure states corresponds to the set of DSPN markings Down
where at least a place in PD is marked. Conversely, the set

The Scientific World Journal 7

Failure-to-DSPN

rule

Description

Mean time to failureMTTF

occurrenceRate

occurrenceDist

Failure occurrence rate

Unreliability function (1−R(t))

X.ev2

exAct

A

exit: exAct

B

ev1/X.ev2

Measure Definition

π = 1

π = 2

≪DaStep≫
kind = failure;
failure =(
occurrenceRate = (value = $fail freq,
source = pred);

MTTF = (value = $mttf, source = pred))

occurrenceDist = (value = $U,
source = pred);

PD
1/MTTF

e ev1
compl A

e ev1

e X.ev2

ini B

loss ev1

Up = {m ∈ S | ∀p ∈ PD : m(p) = 0}
Down = {m ∈ S | ∃p ∈ PD : m(p) > 0}

∑

m∈down
πm(t)

∑

m∈up
πm(τ)dτ

∫∞
0

Figure 5: Definition of DSPN dependability measures.

of operational system states corresponds to the set of DSPN
markings Up where none of the places is marked.

The table in Figure 5 (bottom-right) shows the definition
of some common DSPN reliability measures, that can be
mapped from the homonym DAM tags attached to the state
B on the left, where πm(t) is the probability of being in
a given marking m ∈ S at a given instant t ≥ 0. The
definition and computation of such formulas are commonly
supported by DSPN tools currently available in the Petri
Net community (see Appendix C) (Similar formulas apply
to compute availability measures).

In the example, the measure to be predicted is the
failure occurrence rate of the control application (see DAM
annotation in the SM of the application in Figure 2).

5.3. Choice of the DSPN Solver. Once the dependability
metrics of interest, specified in the UML design with DAM,
have been mapped onto the corresponding metrics at DSPN
level, we are ready to solve the composed DSPN model to get
estimated values of such metrics. The choice of the appro-
priate DSPN solver depends mainly on two factors: (a) the
characteristics of the DSPN model and (b) the dependability
metric to be evaluated. Concerning the first factor, numerical
methods derive a system of linear equations from the DSPN
model and solve it by using either exact or approximate
mathematical techniques [16]. Unfortunately, existing DSPN
analytical methods suffer from the well-known state-space
explosion problem. Discrete event simulation can be used as
an alternative method [17].

The second factor affects the type of analysis to be
used: transient versus steady state. For transient analysis, the
system behavior is observed during a finite time interval,
while for steady state analysis system behavior is observed for
a sufficiently large period so that the analysis becomes time-
independent. Typically, the reliability (survival) function
is computed under transient state assumption while mean
value metrics, such as MTTF, can be estimated in steady state.

−0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 0.002 0.004 0.006 0.008

A
pp

lic
at

io
n

 fa
ilu

re
 r

at
e

(1
/s

)

Replica fault rate (1/s)

No voter
With voter

Figure 6: Application failure rate (fail/sec.) versus the replica fault
rate under one fault-assumption.

6. Analysis and Assessment Results

Let us consider the following question: could the system
carry out its computations in the presence of faults due,
for example, to software bugs or nodes failures? In order
to answer such a question, the engineer should assess the
proposed system design both with and without the fault-
masking mechanism. In the first case, the UML design is
as shown in Figure 2, while in the second case the voter
is omitted and only one replica is created. Two different
DSPN models will be derived automatically, and the failure
occurrence rate will be computed for each one.

We carried out sensitivity analysis under the steady
state assumption, using the simulator implemented in the
GreatSPN tool (see Appendix C) to solve the two DSPN
models. Two fault input parameters were considered: the
replica fault rate and the maximum number of faults that
may affect the replicas during the experiment.

Figures 6 and 7 show the results of the analysis, where
the application failure rate is plotted versus the replica fault

8 The Scientific World Journal

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 0.002 0.004 0.006 0.008

A
pp

lic
at

io
n

 fa
ilu

re
 r

at
e

(1
/s

)

Replica fault rate (1/s)

No voter, Nfaults = 2
No voter, Nfaults = 3

With voter, Nfaults = 2
With voter, Nfaults = 3

Figure 7: Application failure rate (fail/sec.) versus the replica fault
rate under multiple fault-assumption.

rate. In both figures, the cases with and without the voter
are represented. Figure 6 shows the measure under the one-
fault assumption, that is, only one fault may occur during the
experiment, so at most one replica is affected.

Figure 7 shows the results in the case when two or three
independent faults may occur concurrently. Observe that
in the first design (“with voter” case), multiple faults may
affect different replicas. On the other hand in the second
design (“no voter” case), where just one replica is present,
considering two/three concurrent and independent faults is
equivalent to assume, respectively, two/three times as much
as the replica fault rate (x-axis).

As expected, the application failure rate increases as
the number of fault occurrences grows from one to three.
Moreover, when the replica fault rate grows, the probability
that a replica fault affects the normal application behavior
increases, and so does the application failure rate. On
the other hand, when triple redundancy and voting is
designed, the application is tolerant to a single replica fault,
independently of the replica fault rate (Figure 6, green curve).

It is worth noting that the proposed analysis approach is
flexible and powerful, especially due to the automation of the
model transformation technique. The automatic derivation
of DSPN models is flexible enough to easily manage different
UML designs that specify different fault-tolerance solutions.
Thus timely feedbacks can be provided to the software
engineers when they need to assess dependability solutions
for a given design.

7. Related Work

Paper [18] extensively surveys works on dependability mod-
eling and analysis of software systems specified with UML.
The survey analyses 43 papers from the literature published
in the last decade on the topic. Herein, we consider the ones
that mainly focus on reliability and availability analysis and
propose model transformations which can be automated.

The most comprehensive approach has been proposed
in [19, 20], where a UML profile for annotating software
dependability properties compliant with the taxonomy and
basic concepts from [3] is proposed. A model transformation
process derives timed Petri net models via an intermediate
model from the annotated UML models. The approach
supports the specification of error propagation between
components, as well as independent and dependent failures.
In particular, it is possible to discriminate between normal
and failure states and events, and to assign common failure
mode occurrence tags to redundant structures. The main
drawback of this work is the introduction of unnecessary
redundant information in the UML model, as sometimes the
joint use of more than one stereotype is needed.

Pai and Dugan [21] present a method to derive dynamic
fault trees from UML system models. The method supports
the modeling and analysis of sequence error propagations
that lead to dependent failures, reconfiguration activities,
and redundancies.

The papers [22–25] address specifically the reliability
analysis of UML-based design. D’Ambrogio et al. [22] define
a transformation of UML models into fault tree models
to predict the reliability of component-based software.
Cortellessa and Pompei [23] propose a UML annotation for
the reliability analysis of component-based systems, within
the frameworks of the SPT [26] and QoS&FT [27] profiles.
The annotations defined in [23] are used by Grassi et al. [24,
25] where a model-driven transformation framework for
the performance and reliability analysis of component-based
systems is proposed. The method uses an intermediate model
that acts as bridge between the annotated UML models
and the analysis-oriented models. In particular, discrete time
Markov process models can be derived for the computation
of the service reliability.

Finally, the work [28] proposes a model-to-model trans-
formation technique to support the availability evaluation of
railway control systems. The availability model is a repairable
fault tree that is automatically generated from the UML
models (use case, component, and state machine diagrams),
properly annotated with MARTE and DAM extensions.

8. Conclusion

A standard specification framework is yet needed for
dependability assessment of UML-based specifications.
DAM is a step toward this goal, as it is a comprehensive
approach attempting to unify a great number of efforts
carried out by the researchers in the last decade.

Software quality includes a number of very different
NFPs (e.g., security, performance, and dependability), which
are often in conflict with each other [29]. In this context, the
MARTE-DAM profile is a promising common framework
for the specification of different NFPs in UML-based design.
We envisage that a future research goal is to devise model
transformation techniques that support a comprehensive
analysis in presence of conflicting NFPs (e.g., performability,
vulnerability, and survivability issues), in order to provide
trade-off solutions to the software engineer.

The Scientific World Journal 9

≪profile≫
DAM

≪import≫

≪modelLibrary≫

≪import≫
≪profile≫

MARTE:: NFPs

≪profile≫
MARTE::VSL::DataType

≪apply≫

≪apply≫

≪modelLibrary≫

≪profile≫
MARTE::GQAM

≪import≫

≪import≫

···

···

≪dataType≫ ≪nfpType≫

≪dataType≫ ≪nfpType≫

unit: DaFrequencyUnitKind
precision:Real

DaFrequencyUnitKind
≪unit≫ ft/s

≪unit≫ fail/s

≪enumeration≫

DaFrequency {unitAttr = unit}

≪unit≫ ft/ms {baseUnit = ft/s,
convFactor = 1E−3}

≪unit≫ fail/hr {baseUnit = ft/min,
convFactor = 1/60}

≪stereotype≫
MARTE::GQAM::

GaWorkloadGenerator

≪stereotype≫
MARTE::GQAM::GaStep

≪stereotype≫
DAM:: DaFaultGenerator

fault: DaFault

≪stereotype≫
DAM::DaStep

kind: StepKind
failure: DaFailure [∗]
··· ··· ···

≪tupleType≫

DaFailure
occurrenceRate: DaFrequency[∗]

≪tupleType≫

DaFault
occurrenceRate: DaFrequency[∗]

(a) DAM and MARTE relationships

(b) DAM UML extensions (d) DAM complex DA types

(c) DAM basic DA types

DAM UML Extensions

DAM:: DAM Library

Complex DA Types

Basic DA Types

MARTE::MARTE Library::
BasicNFP Types

MARTE Library:: BasicNFP Types::

DAM Library:: BasicDA Types::

DAM Library:: BasicDA Types::

NFP Real

pop: NFP Integer

hostDemand:NFP Duration [∗]

numberOfFaults: NFP Integer

DAM Library:: ComplexDA Types::

MTTF: NFP Duration[∗]
MTBF: NFP Duration[∗]
occurrenceProb: NFP Real[∗]
occurrenceDist: NFP CommonType[∗]

DAM Library: ComplexDA Type::

latency: NFP Duration[∗]
occurrenceProb: NFP Real[∗]

Figure 8: UML extensions for dependability modeling.

Appendix

A. MARTE and DAM Profiles

A.1. MARTE. The “UML Profile for Modeling and Analysis
of Real-Time and Embedded systems” [12] is an OMG
standard profile that extends UML in a lightweight fashion
(i.e. via the standard UML extension mechanism including
stereotypes, tagged values, and constraints) and enables the
specification of both quantitative and qualitative nonfunc-
tional properties (NFP) in the form of annotations attached
to UML model elements.

The Value Specification Language (VSL), which is a part
of MARTE, provides the ability to express NFP types (defined
in the so called MARTE library), values of NFP types, as
well as variables, constants, and expressions. All of these are
used by the modeler to assign values to tags, according to
the VSL syntax (the annotations in Figure 2 show several
examples). Tags of NFP types are characterized by several
qualifiers: source defines the origin of the specification
(such as required, assumed, predicted, and measured); statQ
defines the type of a statistical measure (such as a maximum,
minimum, or mean); unit indicates the measurement unit
for a given NFP.

Beside VSL, another important feature of MARTE is a
general analysis framework called the “General Quantitative

Analysis Model” (GQAM) subprofile, which defines the
foundation concepts common to different analysis domains.
GQAM is specialized in MARTE to provide support for
two kinds of analysis: schedulability (subprofile SAM) and
performance (subprofile PAM).

A.2. DAM. The dependability analysis and modeling (DAM)
profile specializes MARTE for dependability modeling and
analysis, (Figure 8(a)). The entire set of DAM stereotypes,
as well as the set of UML metaclasses extended by stereo-
types can be found in [13]. A DAM subset supports the
specification of system dependability properties at service
level (e.g., a DaService use case) or at component level
(e.g., a DaComponent class). Other stereotypes can be
used to specify fault-tolerance redundancy structures (e.g.,
a DaVariant class). Finally, some stereotypes enable the
characterization of the threats affecting the modelled system
(e.g., a DaFaultGenerator event, a DaStep state) and the
recovery strategies (e.g., a DaReplacementStep action).

According to UML, each DAM stereotype is made of
a set of tags that define its attributes. For example, the
DaFaultGenerator stereotype has numberOfFaults and fault
as tags (see Figure 8(b)). The former indicates the number
of concurrent faults and the latter characterizes the nature of
the fault. DAM uses the MARTE library of basic NFP types

10 The Scientific World Journal

P1

t1

P2

T2

P2

P1

t1

P2

T2

P2

Place

Timed
transition

Immediate
transition

Token

Firing of transition t1

Figure 9: Petri net basic concepts.

for the definition of tag types and relies upon the MARTE
VSL for the specification of tagged-values. It also defines new
dependability specific types either as specialization of basic
NFP types (e.g., the DaFrequency type in Figure 8(c) is a NFP
real type, characterized by a fault/failure frequency unit), or
as complex types, which consist of a set of basic NFP types
(e.g., the DaFault and DaFailure in Figure 8(d)).

B. Introduction to Petri Nets

A Petri net (PN)—shown in Figure 9—is a bipartite graph,
in which the vertices can be either transitions or places.
The transitions, graphically depicted by bars, represent
events that may occur in the system; the places, represented
by circles, are used to model conditions. The directed
arcs, shown by arrows, describe which places are pre- or
postconditions for which transitions. Places may contain
tokens, depicted by black dots; the (initial) distribution of
tokens over the places of a PN is called (initial) marking.

The PN dynamics is governed by the transition enabling
and firing rules. A transition is enabled whenever there is
at least a token in each of its precondition places, and it
may fires if there are not enabled transitions with higher
priority. When it fires, a token is consumed from each of
its precondition places and a token is produced in each
of its postcondition places (see Figure 9). A reachable
marking is then a marking reached through the firing of a
transition sequence from the initial one. In Deterministic
and Stochastic Petri Nets (DSPNs), common metrics are
the probabilities associated to the reachable markings, which
can be either time-dependent (transient metrics) or time-
independent (steady-state metrics).

DSPNs are characterized by two types of transitions:
immediate and timed. Once enabled, an immediate tran-
sition fires immediately while a timed transition has an
associated firing delay, which can be a constant value
(deterministic) or a mean value of the negative exponential
distribution (stochastic).

Place and transition labels have been introduced to
enable the net composition. In particular, the places (transi-
tions) belonging to two different net components and having
the same label are merged into a unique place (transition),
where the set of its input/output arcs is the union of the sets
of the input/output arcs of the merged places (transitions).

C. Tool Support

The automation of the modelling→ analysis→ assessment
chain involves different tools. For the modelling step,
several tools support UML design. Concretely ArgoSPE
(http://argospe.tigris.org/), which is based on ArgoUML
(http://argouml.tigris.org/), translates UML state machines
into DSPNs automatically. ArgoSPE produces the DSPN in
the format of GreatSPN (http://www.di.unito.it/∼greatspn/
index.html), a tool for the analysis and simulation of DSPN.
Also TimeNET (http://www.tu-ilmenau.de/sse/timenet/) is
a useful tool for the analysis of DSPNs. Regarding DAM
profile, currently it has been implemented as a plug-
in (http://webdiis.unizar.es/GISED/?q=tool/dam-profile) for
the Papyrus tool, but it has not been yet integrated with
the analysis tools. MARTE has also been implemented for
Papyrus and MagicDraw.

Acknowledgments

This paper has been partially supported by Fundación
Aragón I+D, by Spanish Projects TIN2011-24932 and
DPI2010-20413 and by a Discovery grant from the Natural
Sciences and Engineering Research Council of Canada
(NSERC).

References

[1] B. Selic, “The pragmatics of model-driven development,” IEEE
Software, vol. 20, no. 5, pp. 19–25, 2003.

[2] H. Stephen Kan, Metrics and Models in Software Quality
Engineering, Addison-Wesley Longman Publishing, Boston,
Mass, USA, 1st edition, 1994.

[3] A. Avižienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”
IEEE Transactions on Dependable and Secure Computing, vol. 1,
no. 1, pp. 11–33, 2004.

[4] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi, Queueing
Networks and Markov Chains, Wiley, New York, NY, USA,
1998.

[5] M. Ajmone Marsan, G. Balbo, G. Chiola, G. Conte, S.
Donatelli, and G. Franceschinis, “An introduction to general-
ized stochastic Petri nets,” Microelectronics Reliability, vol. 31,
no. 4, pp. 699–725, 1991.

[6] H. Hermanns, U. Herzog, and J. P. Katoen, “Process algebra for
performance evaluation,” Theoretical Computer Science, vol.
274, no. 1-2, pp. 43–87, 2002.

[7] W. E. Vesely and N. H. Roberts, Fault Tree Handbook, U.S.
Nuclear Regulatory Commission, 1987.

[8] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston,
“Automatic verification of real-time systems with discrete
probability distributions,” Theoretical Computer Science, vol.
282, no. 1, pp. 101–150, 2002.

[9] Object Management Group, “Unified Modeling Language,”
version 2.4.1, 2011, http://www.omg.org/.

[10] Software Engineering Institute, Carnegie-Mellon, “The Archi-
tecture Analysis and Design Language (AADL): an introduc-
tion,” Final report, 2006.

[11] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to
SysML: The Systems Modeling Language, Morgan Kaufmann,
2011.

The Scientific World Journal 11

[12] Object Management Group, “A UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded systems,”
Document formal/2011-06-02, 2011.

[13] S. Bernardi, J. Merseguer, and D. C. Petriu, “A dependability
profile within MARTE,” Software and Systems Modeling, vol.
10, no. 3, pp. 313–336, 2011.

[14] J. Merseguer and S. Bernardi, “Dependability analysis of DES
based on MARTE and UML state machines models,” Discrete
Event Dynamic Systems, vol. 22, pp. 163–178, 2012.

[15] B. Randell and J. Xu, “The evolution of the recovery block
concept,” in Software Fault Tolerance, M. R. Lyu, Ed., chapter
1, pp. 1–22, John Wiley and Sons, 1995.

[16] R. German, “New results for the analysis of deterministic and
stochastic Petri nets,” in Proceedings of the IEEE International
Computer Performance and Dependability Symposium (IPDS
’95), pp. 114–123, IEEE CS Press, April 1995.

[17] C. Kelling, Conventional and fast simulation techniques for
Stochastic Petri Nets, Technische Universität Berlin, Fachbere-
ich 13, Informatik, Berlin, Germany, 1996.

[18] S. Bernardi, J. Merseguer, and D. C. Petriu, “Dependability
modeling and analysis of software systems specified with
UML,” ACM Computing Survey. In press.

[19] A. Bondavalli, M. Dal Cin, D. Latella, I. Majzik, A. Pataricza,
and G. Savoia, “Dependability analysis in the early phases
of UML-based system design,” Computer Systems Science and
Engineering, vol. 16, no. 5, pp. 265–275, 2001.

[20] I. Majzik, A. Pataricza, and A. Bondavalli, “Stochastic depend-
ability analysis of system architecture based on UML models,”
in Proceedings of the Architecting Dependable Systems, vol.
2677, pp. 219–244, Springer, 2003.

[21] G. J. Pai and J. B. Dugan, “Automatic synthesis of dynamic
fault trees from UML system models,” in Proceedings of
the 13th International Symposium on Software Reliability
Engineering, pp. 243–256, IEEE CS, Annapolis, Md, USA,
2002.

[22] A. D’Ambrogio, G. Iazeolla, and R. Mirandola, “A method
for the prediction of software reliability,” in Proceedings of the
6th IASTED Software Engineering and Applications Conference
(SEA ’02), Cambridge, Mass, USA, November 2002.

[23] V. Cortellessa and A. Pompei, “Towards a UML profile for
QoS: a contribution in the reliability domain,” in Proceedings
of the 4th International Workshop on Software and Performance
(WOSP ’04), pp. 197–206, January 2004.

[24] V. Grassi, R. Mirandola, and A. Sabetta, “From to analysis
a models: a kernel language for performance and reliability
analysis of component-based systems,” in Proceedings of the 5th
International Workshop on Software and Performance (WOSP
’05), pp. 25–36, July 2005.

[25] V. Grassi, R. Mirandola, and A. Sabetta, “Filling the
gap between design and performance/reliability models of
component-based systems: a model-driven approach,” Journal
of Systems and Software, vol. 80, no. 4, pp. 528–558, 2007.

[26] SPT, “UML Profile for Schedulability, Performance and Time,”
Object Management Group Version 1.1, formal/05-01-02,
2005.

[27] QoS, “UML Profile for Modeling Quality of Service and Fault
Tolerant Characteristics and Mechanisms,” Object Manage-
ment Group Version 1.0, formal/06-05-02, 2006.

[28] S. Bernardi, F. Flammini, S. Marrone, J. Merseguer, C. Papa,
and V. Vittorini, “Model-driven availability evaluation of
railway control systems,” in Proceedings of the 30th Interna-
tional Conference on Computer Safety, Reliability, and Security
(SAFECOMP ’11), F. Flammini, S. Bologna, and V. Vittorini,

Eds., vol. 6894 of Lecture Notes in Computer Science, pp. 15–28,
Springer, 2011.

[29] M. Hneif and S. P. Lee, “Using guidelines to improve quality in
software nonfunctional attributes,” IEEE Software, vol. 28, no.
6, pp. 72–77, 2011.

