
Discrete Event Dynamic Systems manuscript No.
(will be inserted by the editor)

Dependability Analysis of DES based on MARTE and

UML State Machines models

José Merseguer · Simona Bernardi

Received: date / Accepted: date

Abstract UML (Unified Modeling Language) is a standard design notation
which offers the state machines diagram to specify reactive software sys-
tems. The “Modeling and Analysis of Real-Time and Embedded systems”
profile (MARTE) enables UML with capabilities for performance analysis.
MARTE has been specialized in a “Dependability Analysis and Modeling” pro-
file (DAM), then providing UML with dependability assets. In this work, we
propose an approach for the automatic transformation of UML-DAM models
into Deterministic and Stochastic Petri nets and the subsequent dependability
analysis.

Keywords Dependability modeling and analysis · MARTE · UML State
Machines · Deterministic and Stochastic Petri Nets

1 Introduction

The dependability of a software system is the ability to deliver trusted service
and to avoid failures that are more frequent and severe than acceptable [Avizie-
nis et al (2004)]. Dependability encompasses availability, reliability, safety, in-
tegrity and maintainability; when the system misses one or more of them, it

This work has been supported by the European Community’s Seventh Framework Pro-
gramme under project DISC (Grant Agreement n. INFSO-ICT-224498), by CICYT
DPI2010-20413 and by Fundación Aragón I+D.

J. Merseguer (✉)
Group of Discrete Events Systems Engineering
Departamento de Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza, Spain
E-mail: jmerse@unizar.es phone: (+34) 976762336 fax:(+34)976761914

S. Bernardi
Group of Discrete Events Systems Engineering
Centro Universitario de la Defensa, Zaragoza, Spain
E-mail: simonab@unizar.es

2

can cause and suffer consequences that may discredit its own dependability.
Hence, dependability modeling and analysis is a must for software systems.
The kind of dependability analysis we address in this work is known as fault
forecasting [Avizienis et al (2004)], which means to estimate the present num-
ber, the future incidence, and the likely consequences of faults.

The Unified Modeling Language [UML2 (2010)] is a widely recognized stan-
dard for the design of software systems. UML defines state machines (SMs) as
a set of concepts that can be used for modeling discrete behavior and reactive
systems through finite state-transition models. However, UML lacks support
for dependability modeling. Hence we rely on the “Dependability Analysis and
Modeling” (DAM) profile developed by Bernardi et al (2009). DAM was con-
structed on top of the standard “Modeling and Analysis of real-time Embedded
systems” profile MARTE (2008), which extends UML to support schedulability
and performance analysis. Nevertheless, a UML-DAM dependability specifica-
tion lacks semantics to be formally analyzed.

The goal of the paper is to enable software engineers to formally analyze
their UML-DAM SMs designs for dependability. To this end, we propose an
approach for the automatic transformation of the UML-DAM SMs models into
Deterministic and Stochastic Petri nets (DSPNs) [Ajmone Marsan and Chiola
(1987)], which indeed can be used for dependability analysis. DSPNs are well
suited for the modeling of systems in which events occur either after constant
or stochastic durations, such as real-time systems with deterministic time-
outs subjects to hw/sw failures. Due to page length restrictions, only basic
features of SM are herein considered; more advanced ones (e.g., composite,
join, fork and history states, deferred events, transition guards) were addressed
in [Merseguer (2003)].

The standard UML describes the structure and behavior of its diagrams
informally. The structure is given in terms of meta-models and constraints,
while the behavior is described by English text. So, firstly we formalize the
structure of the UML-SMs inspired by work of Lilius and Paltor (1999). Next,
we translate this structure into DSPNs by means of a set of functions, which
provide our formal interpretation of the UML-SMs. At this regard, we want
to recall, from Bondavalli et al (2001), that the input of this transformation
does not have formal semantics and, also, the UML-SM specification might be
incomplete or ambiguous, so formal correctness of this transformation cannot
be provided.

The balance of the paper is as follows. Section 2 states the formal definitions
for UML-SMs and DSPNs. Section 3 adapts the translation of UML-SM basic
features into Generalized Stochastic Petri Nets [Merseguer (2003)] to get a
DSPN. Section 4 presents a formal translation of MARTE-DAM profiled SMs
into DSPN. Section 5 describes the mapping of the dependability metrics,
specified with DAM, onto DSPN output parameters. Related work is discussed
in Section 6 and Section 7 concludes the paper and offers research directions.
Appendix A includes the definition of LDSPN composition operators used in
Sections 3 and 4.

3

2 Basic definitions

Definition 1 A Deterministic and Stochastic Petri net (DSPN) [Ajmone Marsan
and Chiola (1987)], is a tuple N = (P, T, I,O,H,M0, Φ, Λ) where:

– P is the set of places,
– T = TI ∪ TD ∪ TE is the set of transitions, divided into immediate (TI),

deterministic (TD) and exponential (TE) transitions,
– I,O,H : P × T → IN are, respectively, the input, output and inhibitor arc

multiplicity functions,
– M0 : P → IN assigns the initial number of tokens in each place,
– Φ : T → IN assigns a priority to each transitions: timed transitions (deter-

ministic and exponential) have zero priority, while immediate transitions
have priority greater than zero,

– Λ : T → IR assigns to each immediate transition a weight, and to each
timed transition a firing time delay. The firing time delay is a constant
for a deterministic transition, while for an exponential one represents the
mean value of the negative exponential distribution.

We will consider labeled DSPNs [Donatelli and Franceschinis (1996)], that is
DSPNs provided with transition and place labeling functions:

Definition 2 A labeled DSPN (LDSPN) is a triplet LN = (N , λ, ψ), where

N is a DSPN, as in def.(1); λ : T → 2LT

and ψ : P → 2LP

are the transition
and place labeling functions, respectively, that assign to a transition/place a
set of labels (or the empty set).

2.1 Definition of basic state machines

UML state machines (SM) can be used to specify behavior of software compo-
nents (or objects) [UML2 (2010)]. A SM basically consists of states and tran-
sitions. States model situations during which some invariant condition holds,
such as the component performing some computational activity or waiting for
some external event to occur. Transitions between states (external transitions),
labelled as event/action, represent how a component in a source state reacts
upon receiving an event, so performing an action, and then entering the target
state. The action can also be the sending of a new event to other component.
Transitions that do not specify an event are named completion transitions,
they are implicitly triggered by a completion event and fire as soon as the
activity in the state completes. States can contain entry/exit actions and in-
ternal transitions; entry (exit) actions are executed when the state is entered
(exited), internal transitions do not cause a state change and, when triggered,
they fire without exiting nor entering the source state.

Let us assume the system made of n state machines that cooperate by
exchanging events, Sys =< {SMi}

n

i=1
, E ,La >, where E is the set of events,

that includes the completion event λ, and La the set of actions.

4

Definition 3 A state machine is a tuple:
SM = (Σ,Aentry, Aexit, Ado, Θ,Etrigger, Aeffect, source, target)

– Σ = Σini ∪Σfinal ∪Σsimple is the set of initial (|Σini| = 1), final (Σfinal)
and simple (Σsimple) states;

– Aentry : Σ →֒ La assigns to a state an optional entry action;
– Aexit : Σ →֒ La assigns to a state an optional exit action;
– Ado : Σ →֒ La assigns to a state an optional activity;
– Θ ⊆ Σ × Σ is the set of transitions including external, completion and

internal transitions, i.e., Θ = Θout ∪Θλ ∪Θint;
– Etrigger : Θ → E assigns to each transition a trigger event;
– Aeffect : Θ →֒ La

⋃
{SMi.ev} assigns to a transition an optional action or

the dispatch of an event to other SM SMi, ev ∈ E \ {λ};
– source : Θ → Σ, where ∀(s, t, s) ∈ Θ : source((s, t, s′)) = s; and
– target : Θ → Σ, where ∀(s, t, s) ∈ Θ : target((s, t, s′)) = s′.

Following assumptions come from the fact that we are not dealing with guards,
however they can be easily overcome following indications in [Merseguer (2003)]:
1. ∀t, t′ ∈ Θout ∪ Θint : source(t) = source(t′) ∧ target(t) = target(t′) ⇒
Etrigger(t) 6= Etrigger(t

′).
2. ∀t, t′ ∈ Θλ : source(t) 6= source(t′).

3 Formal translation of UML state machines

The operational semantics of a SM, informally described in UML2 (2010), is
herein interpreted by the formal DSPN operational semantics.

3.1 Translation of simple states

We propose four different translations for a SM state, shown in Figure 1(a..d),
depending on whether the state includes activity and/or completion transition.
Note that apart of the actions, the Figure also depicts interface transitions to
later compose this model with the models ofΘint (interfaces tend int, tint1, tint2),
Θout (interfaces tout1, tout2) and Θλ (interface tce). Figure 1(e,f) are variations
of the previous ones to show the case when there is no entry action. Although
more cases exist, they are just variations of these first four and all them are
formalized below.

These LDSPNs give a formal interpretation of the informal execution se-
mantics UML describes for a state. So, a token in ini S represents the entrance
in the state that is always followed by the execution of the entry action. When
the do-activity Ado(S) exists, then the timed transition tdo will be the next to
be executed. Note that the exit action Aexit(S) is not represented in Figure 1
since it comes after the execution of an external transition.

The LDSPN in Figure 1(c) models a variation of (a) to cope with com-
pletion transitions. The only difference is that interface transitions tint2 and

5

|ini_S

|entry

|ini_S

|entryt

|outt

|end_entry_Sp|intt

|end_intend_intt

 (a) with activity and no
 completion transition

(b) no activity and no
 completion transition

(c) with activity and
 completion transition

(d) no activity and
 completion transition

|ini_S1
p

|entryent

2|end_entry_Sp
|intint1t

|outout1t

|outout2t

p3

|activitydot
|intint2t

|end_int

|ini_S

|entry

|compl_Sp3

|outout1t

|intt

|end_int

2|end_entry_Sp

|activitydot

end_intt

|compl_S

int1

out1

2

en

1
p

p
2|end_entry_S

end_intt

int1

1
p 1

p

ten
ten

(e) case (a) without entry

|ini_S1
p

|outout2t

p3

|activitydot|intint2t

|end_intend_intt

|compl_S

|ini_S

|outt

|intt

|end_intend_intt

(f) case (b) without entry

int1

out1

1
p

|intint1t

|outout1t

cet |out_λcet |out_λ

Fig. 1 Translation of a simple state

tout2 are omitted, so internal and external transitions cannot take place after
the activity. Indeed, transition tce, whose firing represents the triggering of the
completion event, forces the exit of the state. Figure 1(d) has not interfaces for
external and internal transitions since they are not allowed for states without
activity but with completion transition.

Let χ, χ be the non empty-set and empty-set indicator functions, respec-
tively1. Then, the sets of places and transitions of the basic LDSPN BNS ,
which interprets the state S ∈ Σ, are defined as follows:

PBNS
= {p1} ∪ χ(Aentry(S)) · {p2} ∪ χ(Ado(S)) · {p3};

TBNS
= χ(Aentry(S)) · {ten} ∪ χ(Ado(S)) · {tdo} ∪ χ(ΘλS

) · {tce} ∪

χ(ΘintS
)
[
χ̂ · {tint1, tend int} ∪

(
χ(Ado(S)) · χ(ΘλS

)
)
· {tint2}

]
∪

χ(ΘoutS
)
[
χ̂ · {tout1} ∪

(
χ(Ado(S)) · χ(ΘλS

)
)
· {tout2}

]
,

where ΘoutS
, ΘintS

and ΘλS
are the sets of external, internal and completion

transitions of S, respectively, and χ̂ = χ(Ado(S)) + χ(Ado(S)) · χ(ΘλS
). The

LDSPN has no inhibitor arcs, i.e., HBNS
(p, t) ≡ 0, while the input and output

functions are defined as:

IBNS
(p1, t) =





1 if t ∈ χ(Aentry(S)) · {ten} ∪ χ(Aentry(S)) ·

(
χ(Ado(S)) · {tdo} ∪

χ̂ · χ(ΘintS
) · {tint1} ∪ χ̂ · χ(ΘoutS

) · {tout1} ∪ χ(Ado(S)) · χ(ΘλS
) · {tce}

)

0 otherwise

1 χ(Q) =

{
0 if Q = ∅
1 if Q 6= ∅

and χ(Q) = 1 − χ(Q).

6

IBNS
(p2, t) =





1 if t ∈ χ(Aentry(S)) ·

(
χ(Ado(S)) · {tdo} ∪ χ̂ · χ(ΘintS

) · {tint1} ∪

χ̂ · χ(ΘoutS
) · {tout1} ∪ χ(Ado(S)) · χ(ΘλS

) · {tce}

)

0 otherwise

IBNS
(p3, t) =





1 if t ∈ χ(Ado(S)) ·

(
χ(ΘintS

) · χ(ΘλS
) · {tint2} ∪

χ(ΘoutS
) · χ(ΘλS

) · {tout2} ∪ χ(ΘλS
) · {tce}

)

0 otherwise

OBNS
(p1, t) =

{
1 if t ∈ χ(Aentry(S)) · χ(ΘintS

) · χ̂ · {tend int}
0 otherwise

OBNS
(p2, t) =

{
1 if t ∈ χ(Aentry(S)) ·

(
{ten} ∪ χ(ΘintS

) · χ̂ · {tend int}

)

0 otherwise

OBNS
(p3, t) =

{
1 if t ∈ χ(Ado(S)) · {tdo}
0 otherwise

The initial marking M0

BNS
and the transition delay ΛBNS

functions will be
defined in Section 4, considering the MARTE-DAM annotations. The labeling
functions for places and transitions are defined as:

ψBNS
(p) =

{
ini S if p = p1
end entry S if p = p2
compl S if p = p3

λBNS
(t) =





Aentry(S) if t = ten

Ado(S) if t = tdo

end int if t = tend int

int if t = {tint1, tint2}
out if t = {tout1, tout2}
λS if t = tce

Finally, we remark that initial and final states match the translation herein
presented. Consider that in UML final states have not actions neither external
nor internal transitions, while initial ones only own an external transition
labeled by the event “create”.

3.2 Translation of transitions

Figure 2 proposes a translation for transitions, that formally interprets the
informal execution semantics UML assigns them. In Fig. 2(a), t ∈ Θouts1

with
source(t) = s1, target(t) = s2, Aeffect(t) = action, Etrigger(t) = evx and
exit = Aexit(s1). The execution semantics of the LDSPN states that when the
SM is executing in s1 and receives event evx, it is accepted and if action and/or
exit exist, they are executed, finally s2 is entered. Note that if evx reaches the
SM when it is not executing s1, the event is lost. So, t1 has priority over t3;
in the final composed model (eq.1), t1 will have another input place to indeed
represent execution of s1. It is worth noting that the effect of a transition
can be a send event to other SM, e.g. Aeffect(t) = SMi.evy. The dotted
square, in Fig. 2, offers the corresponding translation, in this case the label
of t2 will be SMi.evy. Figure 2(a) is also valid for an external transition t

where source(t) = target(t). Then, Figure 2(b) shows that the only difference
between an internal transition and an external with same target and source is
that the exit action of the state is not executed by the former. A formalization

7

of these LDSPNs can be obtained similarly as the one developed for the basic
state (sub-sect. 3.1).

(a) external transitions (c) completion transitions

p4

p5

t |action2

t |exit3

p |ini_s
6 2

(b) internal transitions

p |e_evxe

p4

p5

t |int,e_evx1

t |action2

t |end_int5

t |lost_evx3
p4

p5

t |exit4

t |action2

t |out,e_evx1

p |e_evxe

t |lost_evx3

p |ini_s
6 2

p7 |e_evy

Π=2 Π=2

p7 |e_evy

p7 |e_evy

t |out_1 λ

Fig. 2 Translation of transitions.

3.3 Composition of simple states and transitions

Given a state S with h internal transitions and l external/completion transi-
tions, we get h + l LDSPN models plus the BNS , that need to be combined
to get the LDSPN LN S . We apply the LDSPN composition operator defined
in Appendix A.

Let LevP = {e evx,∀evx ∈ E \ {λ}} and LstateP = {ini target,∀target ∈
Σ}. We first compose sub-models of internal and external transitions:

INT =
i=1,..,h

| |
LevP ,∅

INTi, OUT =
j=1,..,l

| |
LstateP ∪LevP ,∅

OUTj .

Then, the LDSPN LN S is obtained by:

LN S = (INT | |
LevP ,∅

OUT) | |
LevP ,LtrT

BNS . (1)

where LtrT = {int, end int, out, out λ}.

3.4 Composition of state machines and the final system

Definition 4 The LDSPN that interprets the state machine SM is given by:

LN SM =
s∈Σ

| |
LevP ∪LstateP ,∅

LN s.

Definition 5 Given a system Sys made of n SMs that cooperate by exchang-
ing events and being LevP

Sys = {e evx,∀evx ∈ E \ {λ}}. The LDSPN that

interprets Sys is given by: LN Sys = | |i=1..n

LevP
Sys

,∅ LN SMi
.

8

4 Formal translation of dependability annotations

One of the main issues in dependability modeling and analysis is the definition
of the system fault assumption in terms of: 1) which components can be af-
fected by faults and in which states, 2) the maximum number of faults that can
concurrently affect the system components and 3) the fault characterization,
such as the fault occurrence rate.

Unfortunately, UML does not provide sufficient capabilities neither for tim-
ing specification, which is a fundamental feature in systems quantitative evalu-
ation, nor for dependability modeling. The DAM profile [Bernardi et al (2009)]
overcomes this drawback extending UML in a lightweight fashion (i.e., through
the use of UML stereotypes and tagged-values). DAM has been defined as a
specialization of the OMG standard profile MARTE (2008); in particular, it in-
herits from MARTE the capability of supporting the timing specification and,
in addition, it enables the specification of dependability input parameters and
metrics (Figure 3 - top side).

In the following, we provide a formal definition of a SM enriched with those
MARTE-DAM annotations which enable the derivation of a dependability
LDSPN model.

Definition 6 A MARTE-DAM profiled state machine is a tuple:

ŜM = 〈SM, pool, demand, ft rate, failure,Lpred〉

where:

– SM is a state machine, as in def. 3 (sect. 2), where the trigger event

function is refined to include the (local) fault events, i.e., Êtrigger : Θ →
E ∪ ESM

ft ;
– pool : {si} → IN is a function that assigns to a single state, i.e., {si} ⊆ Σ,

the initial number of components/objects in such a state;
– demand : Ado →֒ IR×{const,mean} is a partial function that assigns to a

do-activity the host demand required to execute it, together with the type
of statistical qualifier (i.e., a constant value or a mean value);

– ft rate : ESM
ft → IR is a function that assigns to each fault event its

occurrence rate;
– failure : Σ → {true, false} is a function that assigns a boolean value to

each state, the true value identifies the failure state;
– Lpred = {(type, var)} is a set of pairs, where the first element type ∈

{occurrenceDist,MTTF, occurrenceRate} is the type of dependability
metric and the second one var ∈ IR is the corresponding output parameter
variable.

4.1 Mapping of the MARTE specifications

The pool and demand functions of ŜM are the formal counterpart of the
MARTE annotations attached, respectively, to SM state and do-activities

9

shown in Figure 3 (top). In particular the pool function corresponds to the
poolSize tag of the PARunTInstance stereotyped state, while the demand
function corresponds to the hostDemand tag of the GaStep stereotyped do-
activity. Such information is used to define the place marking M0

BNS
and

transition weight/delay ΛBNS
functions of the LDSPN BNS associated to a

given state S ∈ Σ:

p ∈ PBNS
7→ M0

BNS
(p) =

{
pool(S) if ψBNS

(p) = ini S

0 otherwise

t ∈ TBNS
7→ ΛBNS

(t) =
{
π1(demand(Ado(S))) if λBNS

(t) = Ado(S)
1 otherwise

where π1 is the left projection function. Observe that the timed transition
of the LDSPN modelling the do-activity Ado(S) will be either determistic or
exponential according whether π2(demand(Ado(S))) is equal to either const
or mean, respectively, where π2 is the right projection function.

4.2 Mapping of the DAM fault specifications

The function ft rate of ŜM is used to create new LDSPNs, i.e., the fault
generators, that create fault event occurrences. We assume that fault events
are local to ŜM and a fault event is the trigger event of a SM transition
stereotyped as DaFaultGenerator (Figure 3, top - SM Process). Then, for a
given fault event f ∈ ESM

ft , the fault generator LDSPN is defined as follows:

LN f = (P = {p, p′}, {t} ∈ TE , I(x, t) =

{
1 if x = p

0 if x = p′
,

O(x, t) =

{
0 if x = p

1 if x = p′
,H(P, t) = 0,M0(x) =

{
1 if x = p

0 if x = p′
,

Φ(t) = 0, Λ(t) = ft rate(f), λ(t) = f occ, ψ(x) =

{
no f if x = p

e f if x = p′
).

The fault generator LDSPNs are included in the composition to get the LDSPN
of ŜM:

LN
ŜM

= LN SM | |
LftP ,∅

FT (2)

where LftP is the set of place labels of fault events, i.e., LftP = {e f,∀f ∈
ESM

ft }, LN SM is the LDSPN of SM (sub-sect. 3.4, def. 4) and FT is the

LDSPN including all the fault generators associated to ŜM, i.e.:

FT =
i=1,..,|ESM

ft |

| |
∅,∅

LN i
f .

Observe that the maximum number of concurrent active faults in a ŜM is
equal to |ESM

ft |, while the maximum number of concurrent active faults affect-
ing the whole system is given by the sum of the fault events of all the n SM,
i.e.,

∑n

i=1
|ESMi

ft |.

10

DO:compute(data)

Computing

<<GaStep>>
{hostDemand=
(value=25,unit=s,statQ=mean,source=assm)}

MARTE specification (yellow):
- CPU demand: hostDemand (mean value=25)

DAM fault specification (pink):
- fault occurrence rate: occurrenceRate (var=ft_r)

ft

Wait4Death

/Main.result(res)

destroy

create(data)

DAM failure specification (pink):
- failure state (kind=failure)
- dependability metric (type=MTTF, var=mttf)

Wait4Info

Wait4Results

DO:count_down

receive(data)/Process.create(data)

re
su

lt
(r

es
)/

P
ro

ce
ss

.d
es

tr
o

y

Failed

State Machine Main State Machine Process
<<PARunTInstance>>
{poolSize=(value=1,source=assm)}

MARTE specification (yellow):
- number of instances: poolSize (constant value=1)
- CPU demand: hostDemand (constant value=30)

<<GaStep>>
{hostDemand=
(value=30,unit=s,source=assm)}

<<DaStep>>
{kind=failure;
 failure=(MTTF=(value=$mttf, unit=s,source=pred))}

<<DaFaultGenerator>>
{fault = (occurrenceRate=(value=$ft_r, unit=s,
 statQ=mean,source=assm))}

Translation of transition "receive(data)/Process.create(data)" - pattern in Fig.2(a)
Translation of state "Wait4Info" - pattern in Fig.1(f)

t16|ft_occ

p16|e_ft

p15|no_ft

p11|ini_Computing

t12|compute

t13|out_λ

π=2
t17|out,e_ft

p12|compl_Computing

t14|Main.result

p14|ini_Wait4Death

t18|lost_ft

t11|out,e_create

p8|e_create

π=2

p10|e_destroy

t10|lost_destroy

t15|out,e_destroy

π=2

p1|ini_Wait4Info

p9|e_result

t9|lost_receive

t4|count_down

t5|out_λ

p5|compl_count_down

p6|ini_Failed

p2|e_receive

π=2
t2|lost_receive

t1|out,e_receive

t3|Process.create

p4|ini_Wait4Results

t6|out,e_result

π=2

t7|Process.destroy

Fault generatorMain Process

Λ(t4)=30

p3

p7

p13

Exponential

Deterministic

Immediate

Transition types

Λ(t12)=25

Λ(t16)=ft_r

p17|ini_start

p18|ini_killed

t8|lost_create

<<PARunTInstance>>
{poolSize=(value=1,source=assm)}

killed

start

Fig. 3 MARTE-DAM annotated SMs (top) and the corresponding LDSPN LNSys (bot-
tom).

5 System analysis

Besides the system fault assumptions, also failure assumptions and dependabil-
ity metrics need to be specified as well, then to enable dependability analysis
of the LDSPN system LNSys (sub-sect. 3.4, def. 5).

Concretely, failure assumptions specify the failure states of the system,
those representing an interruption of a system service. Their definition de-
pends on the system requirements and, when several services are specified,
different (service) failure modes can be assumed. To simplify the treatment,
we will assume that a SM can have at most one failure state2. This is a reason-

2 Observe that, this assumption is not an actual restriction since the DAM profile sup-
ports the specification of combinations of single SM failure states through logical AND/OR
expressions.

11

able assumption in DES where there is a monitor that is in charge of detecting
anomalous behavior of the set of controlled processes, which implement a given
system service. Then, the dependability of the service is evaluated by comput-
ing the metric associated to the failure state of the monitor, e.g., the Mean
Time To Failure (MTTF) specified in Figure 3 (top - SM Main).

The DAM annotation, attached to the SM state stereotyped as DaStep
(Figure 3, top - SM Main), is formalized through the failure,Lpred features

of ŜM (sect. 4, def. 6). In particular, failure is used to identify the SM failure
state and Lpred to specify the dependability metrics to be computed.

On the other hand, dependability metrics associated to LN Sys can be
defined in terms of the following reward function [Goseva-Popstojanova and
Trivedi (2000)]:

r(M) =
{

1 if M ∈ O

0 if M ∈ F .

which partitions the set of reachable markings RS(M0) of LN Sys into two
subsets of markings: O that represents the set of operational system states and
F that represents the system failure states. Then, the problem of translating
the failure specification of ŜM into LDSPN dependability metrics boils down
in:

1. Defining a mapping of SM failure state onto the subset of markings F ⊆
RS(M0) and,

2. For each pair (type, var) ∈ Lpred, assigning to the output parameter var
the corresponding value, according to the type of dependability metric.

Considering the first point, let sm be a SM characterized by a failure state
and Msm : Σsm → 2Psm be the function that assigns to each state of sm the
set of corresponding places of the LDSPN LN sm, i.e.:

s ∈ Σsm 7→
{
p ∈ Psm : ψsm(p) ∈ {ini s, end entry s, compl s}

}
.

Observe that Msm(s) ⊆ Psm is also a subset of the set of places PSys of
LN Sys, by definition of the place composition operator (Appendix A) and of
def. 5 (sub-sect. 3.4). The set of markings of LNSys, representing the system
failure states (associated to the failure state of sm), is then defined as:

F = {M ∈ RG(M0) : ∃p ∈ P fail
sm : M(p) ≥ 1}

where M(p) is the marking of place p and P fail
sm = {p ∈ Msm(s) : failure(s) =

true} ⊆ PSys. The set of markings representing the system operational states
is then O = RG(M0) \ F .

Finally, considering a pair (type, var) ∈ Lpred, the type indicates the de-
pendability metric to be computed. Each type represents a failure tag of the
DAM annotation and the output parameter var is the corresponding tagged-
value. Table 1 summarizes the reliability metrics that can be evaluated. A
formula is assigned to each var that corresponds to the LDSPN dependability
metric, where σM (t) = Pr{X(t) = M} is the (transient) probability of the

12

Table 1 Reliability metrics

type var description

MTTF
∑

M∈O

∫ ∞

0
σM (τ)dτ mean time to failure

occurrenceRate 1/MTTF failure occurrence rate
occurrenceDist

∑
M∈F

σM (t) unreliability function (1 −R(t))

marking process associated to the LDSPN being in marking M at time instant
t ≥ 0. Availability metrics, which are meaningful only for repairable systems,
can be defined in a similar manner [Goseva-Popstojanova and Trivedi (2000)].

6 Related work

One of the open issues raised by Dingel et al (2009) is the existing gap between
discrete event systems (DES) theory and software engineering practice. In this
paper, we provide a contribution to address such issue, by showing that UML-
SM models have their counterpart in a largely used formalism in DES, i.e.,
Petri Nets. At this regard, Basile et al (2008) develop a complete case study
to show the combined use of UML and Petri nets for modeling automation
systems and Risco-Martin et al (2007) propose a framework to integrate DES
and UML, in this case to provide an execution environment.

Several works have addressed the dependability analysis based on UML,
herein we mention those that consider UML SMs in their proposal. Bondavalli
et al (2001) propose an integrated UML environment considering structural
and behavioral diagrams. In particular, SMs are converted into PROMELA to
feed the SPIN model checker. Unlike our proposal, the transformation relies
upon an intermediate model and no standard UML profiles were available at
time of the publication. Huszerl et al (2002) define a transformation of SMs
into Stochastic Reward Nets (SRN) to enable performance analysis, under
erroneous state and faulty behavior assumptions. Mustafiz et al (2008) use
probabilistic statecharts to derive a Markov chain for quantitative assessment
of safety and reliability. The aforementioned works do not focus on DES.

Trowitzsch et al (2007) add a new functionality to TimeNet tool, the model-
ing of stochastic SMs and their automatic transformation to extended Stochas-
tic Petri Nets for performance and dependability analysis. Actually, they only
use performance extensions and not dependability specific ones. Moreover,
only one state machine is used at a time, so they do not use communicating
state machines as we do in our work.

7 Conclusion and future work

The paper develops an approach, built on [Merseguer (2003)], for the analy-
sis of reactive software systems equipped with a dependability specification.

13

Concretely, the approach formalizes the translation of UML-SMs and DAM
into DSPNs and also formalizes the subsequent analyses. Therefore, assuming
the interest of software engineers in the use of UML-SMs for the modeling
of dependable DES, the paper proves that: 1) DAM allows the definition of
fault and failure assumptions in UML-SMs models; 2) DAM is compatible with
standard MARTE annotations to characterize the quantitative aspects of the
system (processor demands); 3) the UML-DAM-MARTE non-formal models
can be interpreted in terms of a formal model, DSPNs; and 4) the DSPN
model is useful to compute dependability metrics, such as MTTF, for the
software engineers to demonstrate how dependable their models are. Indeed,
our formalizations aim at easing tool support for software engineers. Papyrus
(2010) tool implements MARTE, while DAM has been implemented by GISED
group (2011), besides, SMs translation into Petri nets was also accomplished
by GISED group (2006). However, tool support for the formal analysis is still
on-going work.

Future work envisions different research directions since there is a lot of
work to bridge the gap between DES and software engineering. For exam-
ple, how to apply non-formal software engineering methods (e.g., hierarchical
methodologies) to DES to avoid state explosion problems. More pragmatically,
the combined use of MARTE and DAM needs more blueprints and case studies
to bring closer the profiles to practitioners.

Acknowledgements

The authors thank the anonymous reviewers for their valuable help to improve
this work.

References

Ajmone Marsan M, Chiola G (1987) On Petri nets with deterministic and exponentially dis-
tributed firing times. In: Advances in Petri Nets 1987, covers the 7th European Workshop
on Applications and Theory of Petri Nets, Springer-Verlag, London, UK, pp 132–145

Avizienis A, Laprie JC, Randell B, Landwehr C (2004) Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions on Dependable and Secure Com-
puting 01(1):11–33, DOI http://doi.ieeecomputersociety.org/10.1109/TDSC.2004.2

Basile F, Chiacchio P, Grosso DD (2008) Modelling automation systems by UML and Petri
nets. In: Proceedings of of the 9th International Workshop on Discrete Event Systems
(WODES 2008), IEEE Explore, pp 308–313

Bernardi S, Merseguer J, Petriu D (2009) A Dependability Profile within MARTE. Journal
of Software and Systems Modeling DOI: 10.1007/s10270-009-0128-1.

Bondavalli A, Dal Cin M, Latella D, Majzik I, Pataricza A, Savoia G (2001) Dependabil-
ity analysis in the early phases of UML-based system design. International Journal of
Computer Systems Science & Engineering 16(5):265–275

Dingel J, Rudie K, Dragert C (2009) Bridging the gap: Discrete-event systems for software
engineering. In: Canadian Conference on Computer Science & Software Engineering
(C3S2E 2009), ACM, Montreal, Quebec, Canada, pp 67–71

Donatelli S, Franceschinis G (1996) The PSR methodology: Integrating hardware and soft-
ware models. In: Billington J, Reisig W (eds) Application and Theory of Petri Nets,
Springer, LNCS, vol 1091, pp 133–152

14

GISED group (2006) http://argospe.tigris.org, Universidad de Zaragoza
GISED group (2011) http://webdiis.unizar.es/GISED/?q=tools, Universidad de Zaragoza
Goseva-Popstojanova K, Trivedi KS (2000) Stochastic modeling formalisms for depend-

ability, performance and performability. In: Haring G, Lindemann C, Reiser M (eds)
Performance Evaluation: Origins and Directions, Springer, Lecture Notes in Computer
Science, vol 1769, pp 403–422

Huszerl G, Majzik I, Pataricza A, Kosmidis K, Dal Cin M (2002) Quantitative Analysis of
UML Statechart Models of Dependable Systems. The Computer Journal 45(3):260–277

Lilius J, Paltor IP (1999) The semantics of UML state machines. Tech. rep., Turku Centre
for Computer Science, Åbo Akademi University, Turku (Finland)

MARTE (2008) A UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
systems, Object Management Group. Document Number: ptc/2008-06-09

Merseguer J (2003) Software performance engineering based on UML and Petri nets. PhD
thesis, University of Zaragoza, Spain

Mustafiz S, Sun X, Kienzle J, Vangheluwe H (2008) Model-driven assessment of system
dependability. Software and System Modeling 7(4):487–502

Papyrus (2010) www.papyrusuml.org/, CEA LIST
Risco-Martin J, Mittal S, Zeigler B, de la Cruz J (2007) From UML state charts to DEVS

state machines using XML. In: Workshop on Multi-Paradigm Modeling within MoDELS,
Nashville, Tennessee (USA), pp 35–48

Trowitzsch J, Jerzynek D, Zimmermann A (2007) A toolkit for performability evaluation
based on stochastic UML state machines. In: Proceedings of the 2nd International Con-
ference on Performance Evaluation Methodolgies and Tools (VALUETOOLS 2007),
ACM, Nantes, France, p 30

UML2 (2010) UML Unified Modeling Language: Superstructure. Object Management
Group, http:/www.omg.org, version 2.3

A LDSPN composition operator

In general, more than one label can be associated to a transition (place). However, in the
composition of two nets, we actually consider at most one label per transition (place): with
this restriction we can use a simplified version of the composition operator [Donatelli and
Franceschinis (1996)]. Given two LDSPN LN 1 = (N1, λ1, ψ1) and LN 2 = (N2, λ2, ψ2), the
LDSPN LN = (N, λ, ψ):

LN = LN 1 | |
LP ,LT

LN 2

resulting from the composition over the sets of labels LP and LT is defined as follows.

Let EP = LP ∩ ψ1(P1) ∩ ψ2(P2) and ET = LT ∩ λ1(T1) ∩ λ2(T2) be the subsets of
LP and of LT , respectively, comprising place and transition labels that are common to the

two LDSPNs, P l
1

(T l
1
) be the set of places (transitions) of LN 1 that are labeled l and P

EP
1

(T
ET
1

) be the set of all places (transitions) in LN 1 that are labeled with a label in EP (ET).
Same definitions apply to LN 2.

Then: P = P1\P
EP
1

∪P2\P
EP
2

∪
⋃

l∈EP
{P l

1
×P l

2
}, T = T1\T

ET
1

∪T2\T
ET
2

∪
⋃

l∈ET
{T l

1
×

T l
2
}, the functions F ∈ {I(), O(), H()} are equal to:

15

F (p, t) =





F1(p, t) if p ∈ P1\P
EP
1

, t ∈ T1\T
ET
1

F1(p, t1) if p ∈ P1\P
EP
1

, t ≡ (t1, t2) ∈
⋃

l∈ET
{T l

1
× T l

2
}

F1(p1, t) if p ≡ (p1, p2) ∈
⋃

l∈EP
{P l

1
× P l

2
}, t ∈ T1\T

ET
1

F2(p, t) if p ∈ P2\P
EP
2

, t ∈ T2\T
ET
2

F2(p, t2) if p ∈ P2\P
EP
2

, t ≡ (t1, t2) ∈
⋃

l∈ET
{T l

1
× T l

2
}

F2(p2, t) if p ≡ (p1, p2) ∈
⋃

l∈EP
{P l

1
× P l

2
}, t ∈ T2\T

ET
2

min{F1(p1, t1), F2(p2, t2)} if p ≡ (p1, p2) ∈
⋃

l∈EP
{P l

1
× P l

2
},

t ≡ (t1, t2) ∈
⋃

l∈ET
{T l

1
× T l

2
}

Functions F ∈ {Φ(), Λ()} are equal to:

F (t) =




F1(t) if t ∈ T1\T

ET
1

F2(t) if t ∈ T2\T
ET
2

F2(t2) if t ≡ (t1, t2) ∈
⋃

l∈ET
{T l

1
× T l

2
}

The initial marking function is equal to:

M0(p) =




M0

1
(p) if p ∈ P1\P

EP
1

M0

2
(p) if p ∈ P2\P

EP
2

M0

1
(p1) +M0

2
(p2) if p ≡ (p1, p2) ∈

⋃
l∈EP

{P l
1
× P l

2
}

Finally, the labeling functions for places and transitions are respectively equal to:

ψ(x) =




ψ1(x) if x ∈ P1\P

EP
1

ψ2(x) if x ∈ P2\P
EP
2

ψ1(p1) ∪ ψ2(p2) if x ≡ (p1, p2) ∈
⋃

l∈EP
{P l

1
× P l

2
}

λ(x) =




λ1(x) if x ∈ T1\T

ET
1

λ2(x) if x ∈ T2\T
ET
2

λ1(t1) ∪ λ2(t2) if x ≡ (t1, t2) ∈
⋃

l∈ET
{T l

1
× T l

2
}

The relation being associative with respect to place superposition, we use also as an

n-operand by writing LN = | |k=1,..,K

∅,LP
LNk.

