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Abstract—

The diversity of interpreted Petri net (PN) for-
malisms, suited to deal with diverse purposes but shar-
ing basic common principles, turns PN into a conceptual
framework or paradigm for the modeling of DEDS. They
can be used for the modeling, analysis, implementation,
and control of these systems, sometimes with advantage,
and with the additional benefit of improving the commu-
nication between stages of the life cycle. The utilization
of Petri nets in several of these stages is illustrated in
the paper.

I. INTRODUCTION

The development of computer-based technologies,
e.g., in automation, communications, etc. makes for
the growing importance of discrete event dynamic sys-
tems (DEDS). In order to cope with rapid technolog-
ical and market changes it is essential that suitable
techniques and methods for the design and operation
of complex and changing DEDS are available. Formal
methods may be helpful in this respect. They can pro-
vide a better understanding of the system, what helps
in removing incompleteness and contradictions, identi-
fying properties, or discovering potential solutions. At
the same time, they can support the development help-
ing to detect errors in early stages, giving assessment
on the dimensioning of the system, guiding, or even au-
tomating, the implementation and documentation, etc.

A first step in the application of formal methods is to
obtain formal models of our systems, typically based on
mathematical theories. The conceptual framework that
allows one to obtain a kind of formal models of systems
is called a formalism. Different formalisms for DEDS
are being proposed and experienced, and their links and
relative merits are being investigated. Some well-known
examples are state diagrams for functional description,
Markov chains and queuing networks for performance
evaluation, PERT graphs and conjunctive/disjunctive
graphs for scheduling, etc.

This diversity arises naturally from the diversity of
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both the kind of DEDS we are interested in and the kind
of properties or purposes we have in mind; DEDS have
so many facets that it is expected that they are ap-
proached from different angles, providing complemen-
tary views of systems serving diverse purposes. But,
at the same time, the long life cycle of a given system
(along which it is conceived, analyzed from different
perspectives, implemented, and operated) and the di-
versity of application domains, makes desirable to have
a family of formalisms rather than a collection of un-
related or weakly related formalisms. For us, a mod-
eling paradigm 1s a conceptual framework that allows
one to obtain formalisms from some common concepts
and principles, with the consequent economy and coher-
ence, among other benefits. So, we have formal models
of precise systems which are expressed within a given
modeling formalism which is the appropriate one within
a modeling paradigm. Here, Petri nets (PN) are seen
as a modeling paradigm for DEDS: Many formalisms
for DEDS, in particular all those mentioned above, can
be viewed as PN extended through appropriate inter-
pretations.

The structure of the paper is as follows: Section II
introduces the idea of interpreted extensions applied
to directed graphs, making emphasis on formalisms for
DEDS. In Sections III and TV Petri nets are introduced
from state equation concepts for DEDS, and they are
viewed as interpreted graphs. Some interpreted ex-
tensions of Petri nets, tailored for different phases of
the life-cycle of a system and different purposes, are
described in Section V. Finally, Section VI remarks
that the different formalisms constitute a paradigm for
DEDS, where more interpreted extensions have been
defined in the literature, leading to a synergy in the
development of the theory for all these different for-
malisms.

II. SoME DEDS FORMALISMS AS INTERPRETED
GRAPHS

(Valued) Binary relations on finite sets (sites,
states,...) can be represented by (valued) directed
graphs. The graphical representations are built using



nodes (which represent entities) and arcs (which depict
the relations). In the sequel only directed graphs, such
as the one shown in Figure 1, will be considered (undi-
rected graphs are an abbreviation when the relation is
symmetric). Two classic matrix representations of a bi-
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Fig. 1. A directed graph.

nary relation (or its graph) are the adjacency (or node
to node) and the incidence (or node to arc) matrices.

Graphs have been extensively used in an extremely
large quantity of applications domains for modeling
and problem solving (e.g., electric circuits, power trans-
port and telecommunication networks, layout problems,

..). The connection of a formalism and (some piece
of) reality is provided by the interpretation. In a to-
tally uninterpreted theory there is no meaning asso-
ciated with the mathematical objects. For instance,
the theory of graphs does not assume any particular
meaning for its objects (e.g., graph nodes can repre-
sent sites, states, actions, etc.). This very abstract set-
ting has some advantages: it is extremely general (so
it can be applied in a diversity of domains, with the
consequent economy) and precise. A semi-interpreted
formalism gives a sort of generic meaning to the math-
ematical objects. For instance, control theory is semi-
interpreted: some variables in the differential equations
describe the state, others play the role of external in-
puts or excitation, some of which are control signals
while others are perturbations, etc. But the same for-
mulation/equations can describe systems with a very
different nature (electrical, mechanical, socioeconomi-
cal, etc.). When a given model is completely inter-
preted, every variable has a precise meaning in terms
of the real world system being modeled.

When the graph-based model describes a dynamic
system, the original non-determinism (absence of infor-
mation about the precise behavior) is reduced through
an extenston of the interpretation in which a specifi-
cation 1is given for the relationships among the model
and its environment (defining input and output signals;
introducing some explicit notion of time; ...). This al-
lows to precisely characterize when and how the system
evolves. The non-determinism reduction can lead, in

extreme cases, to deterministic systems (as in determin-
istic flow graphs, or in deterministically timed marked
graphs). In other cases, some non-determinism remains
in the behavior of the model (e.g., when a routing of
parts or a mix of production is specified probabilisti-
cally).

Along the life-cycle of a system, many formalisms can
be used, in order to build models, each one dealing with
some different analysis or synthesis purposes. Among
many other classical formalisms are:

o State Diagrams (SD) [1], [2], that describe the func-
tional behavior of sequentialized switching systems in
relation with some environment, through input and out-
put signals;

o Continuous Time Markov Chains (CTMC), and
Queueing Networks (QN) [3],[4] for performance evalu-
ation;

o Program FEvaluation and Review Technique (PERT)
graphs and conjunctive/disjunctive graphs [5], [6] for
project scheduling.

All the above formalisms can be “viewed” as graphs
provided with appropriate interpretations. Of course,
things can be viewed just the opposite way: Formalisms
(SD, CTMC, QN, PERT,...) can be provided with
graph representations. We will take here the first ap-
proach, trying to stress the existence of some “driving
forces” in the process, and observing that the logic of
the underlying interpretations can be quite different.
We will restrict in the sequel to formalisms tailored to
describe DEDS. In modeling DEDS it is frequently con-
venient to give some explicit representation to its state.

The first two interpretations we consider, namely SD
and CTMC, provide a (directed) graph (e.g., the one
in Figure 1) with two different interpretations sharing,
nevertheless, the fact that a global state variable takes
as many values as nodes in the graph.

In SD, input signals allow to define events and log-
ical conditions in order to drive the evolution of the
model. Time is not explicitely defined. Moreover, the
model is equiped with output signals that are expected
to influence the behavior of its environment: the model
and the environment are in closed-loop (feedback). In
the example of Figure 2, outputs are inconditionnally
asigned to states (Moore-finite automaton). The model
represents a go and back controller for the two wagons
system: if they are initially over A and C', and M is
pushed, both wagons go rigth till B and D, respec-
tively. When both are at the extreme right, they start
simultaneously the way back till A and C'.

In a CTMC, such as that in Figure 3, nodes are
global states (the same as before), but no input or
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Fig. 3. A continuous-time Markov chain.

output signals are considered. The evolution of the
model is now directed by a time-driven specification of
events, through some rates (e.g., & represent the rate
of occurence of A, what in average will last for 1/«
time units, provided negative-exponential pdf’s). This
model is not in closed-loop controlling a plant, but it
is a time-driven model of the expected behavior. With
it we can compute performance evaluation figures (for
example, the average cycle time is:
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time units; the probability vector of states, II, can be
computed as

II-Q = 0
Im-1

where () is the classical infinitestmal generator matriz
associated to the CTMC).

The same graph in Figure 1 can be interpreted in
many other ways. In Figure 4 it 1s interpreted as
a Gordon-Newell QN: nodes are viewed as stations
provided with their input queues. If service dura-
tions are defined by means of negative exponential
pdf’s, the state is not defined by a global state vari-
able (as in CTMC), but by the collection of the local
states in queues, represented by the existing number
of customers in each. The model evolves according
to a customer/server perspective, following a produc-
tion/consumption logic in which choices (routing) and

Fig. 4. A Gordon-Newell QN.

attributions (merging of flows) are based on an OR logic
(e.g., from station 2 customers go to station 3 OR to
station 4; customers arrive to station 1 from stations 6
OR 7). A consequence of this OR/OR logic in Gordon-
Newell QN is that customers identity is preserved, while
assembly (rendez-vous like) operations cannot be ex-
pressed. Routing is probabilistically specified (e.g., go-
ing from station 2 to station 3 is done with probability
7T2).

In Figure 5 the graph in Figure 1 is now interpreted
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Fig. 5. A Fork/Join queueing network with blocking.

as a Fork/Join QN with Blocking. It shares with the
previous queueing interpretation the customer/server
view and a distributed state. Nevertheless, now:

o the nodes represent the servers, the arcs support the
idea of queues;

¢ under negative exponential pdf in servers, the state
is defined also by means of the state of queues (what
means that the state is now defined by some arc at-
tributes, not by node attributes);

o the model is choice and attribution-free.

Two arcs (queues) arriving at a station mean that two
customers should synchronize (rendez-vous; assembly)
in order to proceed to the service. Analogously, when
two arcs leave a station, a disassembly operation takes
place giving different disaggregated customers (and re-
sources) to different queues. In other words, now the
logic is also a production/consumption logic but of
the AND type. With the above AND/AND logic cus-
tomers are created and destroyed (what is the case in
assembly/disassembly systems), but the formalism is
decision-free.



Many other different interpretations can be given to
graphs. For example, in PERTs also an AND/AND
logic is provided, together with a different time inter-
pretation (concerning now the duration of activities).
A PERT represents the precedence relations (arcs) be-
tween tasks (nodes). PERTSs are essentially action ori-
ented formalisms, while SD or CTMC are state oriented
formalisms. More complex interpretations are obtained
when several kind of nodes or arcs are taken into consid-
eration. For example, Conjunctive/Disjunctive graphs
generalize PERTs adding a new class of undirected arcs.
The activities represented by the nodes related by this
new class of arcs are in mutual exclusion.

Petri nets, as it will be presented next, provide a
(valued) bipartite-graph based framework for model-
ing DEDS in which all the above underlying logics for
the behaviour of DEDS are generalized in a straigthfor-
ward way, leading to formalisms with more (theoretical
and pragmatical) descriptive power. Petri nets behave
according to a rather general production/consumption
logic. They consider both states and actions on equal
footing, and allow to combine both OR and AND logics
under arbitrary interleavings.

ITII. AurtoNnomous PN aAs A ForMmaLisM FOrR DEDS

In this section we concentrate on the logic behavior
of a DEDS, that is, the possible states and evolutions
of the system disregarding time and constraints from
the environment. Abstracting from time can be done
in the case of DEDS where the evolutions are driven by
the occurrence of events, in contrast with continuous
systems where the system usually evolves simply due
to time passing.

DEDS are systems with non-numerically-valued
states, inputs, and outputs. The discrete nature of
the states makes their number countable (often finite).
The state can be represented symbolically, or it can be
coded as a number (typically for implementation pur-
poses). A global representation of the state, such as
that of SD and CTMC, is useful in some applications,
specially when the system is a single entity (e.g., a sin-
gle queue, a machine that can be idle, working, blocked,
or out of service, etc.). Nevertheless when the system
is composed by several entities that interact, a global
representation of the state does not reflect the structure
of the modeled system and is usually cumbersome due
to the large number of combinations of local states that
lead to different global states. In such cases it is better
to select a collection of local state variables forming a
state vector that we denote here by m. Without loss

of generality, we assume that the local state variables
are coded, and range over the naturals — even they
might be chosen to be binary, whenever the number of
states 1s finite. For instance, if a sequential component
is 1dentified in the system we can take a variable for
each possible state so that when the component is in
a given state the value of the corresponding variable is
one, and zero otherwise. Or if we find a component
of the system that holds items (e.g., a store) it can be
represented by a variable whose value is the number of
present items, etc. (The actual selection of variables is
a crucial modeling task usually requiring knowledge of
the domain, ingenuity, and methodology, but here we
shall not consider this matter further.)

In a DEDS state changes at discrete points in time,
driven by the occurrence of (external or internal)
events. In other words, the state does not change sim-
ply because time passes, unless this is an event for our
system (e.g., a clock). Abstracting from the particular
events that drive state changes or state transitions, we
assume now that there are a finite number of atomic
state transition patterns, that we call (individual) tran-
sitions. Depending on whether these transitions can
occur at any time or only in precise global instants,
a DEDS 1s said to be asynchronous or synchronous,
and the time is seen as continuous or discrete, respec-
tively. If we abstract from time (i.e., if we are only
interested in the evolution of the state irrespective of
the instant when it happens) we can assume that the
“time variable” 1s discrete, corresponding to the order-
ing of “instants” at which transitions have occurred.
Several individual transitions may occur at the same
“instant” | e.g., if they are independent of each other
and it is not known the precise order in which they oc-
curred (in a distributed environment it is not always
possible to order events totally). Therefore:

m(k+1) = d(m(k), s(k)),

where in the k-th “instant” the individual transition ¢
has occurred s;(k) times.

Between two state transitions the state is memorized.
Thus, without loss of generality, the function of state
change can be broken up in two parts, the memory and
the innovation:

m(k+ 1) = m(k) & T(m(k),s(k)),

where @ is some operator and I'(m(k),0) must be the
neutral element with respect to @. We assume now that
the extent of change produced by a transition is firved,



that it does not depend on the state at which it occurs.
Then:

m(k+1) =m(k) d (s(k)).

Since the state 1s a vector of natural numbers; the in-
novation produced by a given transition can be rep-
resented without loss of generality by a vector of inte-
gers, accounting for the difference between the next and
the current state when such transition occurs, the dis-
placement of the state produced by the transition. The
negative entries account for state variables whose value
decreases, the positive account for those whose value in-
creases, and the null ones for those whose value is not
affected. Let us write the innovations corresponding to
the individual transitions as columns of a matrix C:
the ¢-th column, Cj, contains the state change associ-
ated with individual transition ¢. The state change pro-
duced by the occurrence of s (several individual transi-
tions at the same “instant”) is the corresponding linear
combination of columns of C:

m(k+ 1) =m(k) + C-s(k).

The above equation imposes a limitation to the transi-
tions that can occur at a given state, because the state
variables were assumed to range over the naturals: the
fixed extent of change associated with the transition
must be possible at that state. We assume now that a
transition is enabled to occur at a state if and only if
the fired extent of change associated with the transition
1s possible at that state; that is, possibility of the state
change i1s not only necessary but also sufficient for the
enablement.

A DEDS under the above assumptions (i.e., finite
number of atomic individual transitions which are en-
abled at a state if and only if the fixed extent of change
they produce is possible at that state) can be repre-
sented by a vector addition system [T], defined by the
initial state and the displacement vectors (in the above
notation, m(0) and the columns of C).

Let us further illustrate the above logic of enable-
ment. The natural valued state variables can be con-
sidered as stores/counters (the actual value is the num-
ber of items). The occurrence of a transition consumes
items from some state variables (those corresponding
to the negative entries in C) and produces items in oth-
ers (for the positive entries). A transition is enabled
if and only if there are enough items to remove. If we
want to adhere to this interpretation in terms of con-
sumplion/production, we realize that a zero entry in
the innovation vector of a transition may be due to the
fact that such transition removes as many items as it

produces in some state variable. More generally, the in-
novation or displacement vectors represent only the net
effect of the consumption and production. To account
for this kind of situations we can separate the positive
and negative parts of the innovations: C = Post —Pre,
and require that m > Pre-s for s to be enabled at m.
(When there are no self-loops, i.e., transitions that re-
move items from and put items in the same state vari-
able, C contains all the information.)

This is known in the literature as a place/transition
(Petri) net system [8], [9], [10], [11], [12], [13], [14]. A

place/transition net is the fixed or static structure:
N = (P, T,Pre, Post),

where P is the set of state variables, T is the set of
atomic individual transitions, and Pre and Post are
|P| x |T| dimensional matrices whose columns describe
the consumption and production associated to the cor-
responding transitions, respectively; a net together with
the initial state mg is called a place/transition net sys-
tem.

Petri nets are a family of formalisms rather than a
single one. Dealing with the logic behavior alone, many
extensions (e.g., nets with inhibitor arcs, self-modifying
nets, etc.) and abbreviations (e.g., colored nets) of the
place/transition formalism have been proposed. Since
for our present purpose the place/transition is more
than enough, we refer the interested reader to [15]
where some reflections on and pointers to such exten-
sions can be found.

The above introduction to net systems is intended
to reflect their coherence with (discrete time) contin-
uous systems (a more detailed presentation, making
explicit this coherence, can be found in [15]). There
are diverse alternative forms for approaching net sys-
tems, often computer science oriented. The seminal
work is Petri’s dissertation [16]. The concern of Carl
Adam Petri are organizational problems, of importance
to broad classes of phenomena. The relevance of net
theory is recognized in systems theory [17] going be-
yond the limits of particular application domains. In
fact, Petri declares the attempt to provide a common
basis for physical and computational ways of thinking
[18]. Quoting from [19]: “nets, just like groups, or vec-
tor spaces, or graphs, have many different practical ap-
plications, which are based on just as many different
interpretations. This is so because they all are fairly
general mathematical constructs, which were built and
are studied for practical purposes.” His axiomatic view
1s based on the fundamental notion of concurrency, the



“binary relation of contemporality of world points”. He
then proceeds through occurrence nets, which represent
pieces of the history of interactions within a system.
Condition/Event systems are obtained by a morphism
that folds occurrence nets, mapping successive occur-
rences of states or transitions into single conditions or
events, respectively. This basic model was generalized
or adapted by other researchers. Historical remarks
can be found in [10], [14], [20]. A completely different
approach aims to obtain a net model starting from a
finite automata based description of the system. This
synthesis approach introduces nets as compact repre-
sentations or realizations of systems. The seminal work
in this direction is [21], and recent achievements are
surveyed in [22].

IV. THE GRAPH VIEW OF AUTONOMOUS PN

In systems theory, it is habitual to define a system
as a collection of objects and their relations. Objects
are characterized by their attributes, some of which are
fixed while others are variable. The value of the variable
attributes defines, perhaps in a not minimal way, the
state of the system. We can identify the state variables,
P, and the individual transitions, 7', as the objects in
our system. It can be said that state variables are pas-
sive objects and transitions are active, in the sense that
the value of state variables is changed by the occurrence
of transitions. The consumption/production interrela-
tion can be defined by a relation ' C (P x T)U(T x P)
and a valuation of this relation, W : F — INT leading
to an alternative definition of a net:

N = (P, T,F,W).

Let us illustrate the semantics of this weighted flow re-
lation: (p,t) € F and (p/,t) € F means that ¢ consumes
W (p,t) items from p and W(p/,t) from p’. As another
example, (t,p) € F and (t/,p) € F means that the value
of p can be increased by t or t/, etc.

As it was shown in Section II, a current, often con-
venient, technique to represent interrelations is by use
of diagrams, or graphs. The standard representation of
place/transition net systems uses two kinds of nodes:
circles for the local state variables or places, and bars
or boxes for the individual transitions. Adhering to the
interpretation of items inside stores/counters, the value
of a variable 1s depicted as a number of marks or tokens
inside the corresponding place. Therefore the global
state of the system is represented by the marking of
the places. The extent of change produced by a tran-
sition is indicated by arrows connecting the places and

the transition in the direction of token flow, labeled by
the number of tokens consumed/produced at the occur-
rence of a transition (this is a straightforward graphi-
cal representation of the flow relation ' by means of
directed arcs and the weighting W by means of the la-
bels). The evolution of the state can be seen as a sort
of game, the “token game”. Each “move” corresponds
to a legal state change (produced by the occurrence of
one or more individual transitions) and consists in re-
moving tokens from some places and placing tokens on
others (the total number of tokens may be changed in a
“move” | although usually some token conservation laws
can be found).

Figure 6 shows a sample place/transition system. It
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Fig. 6. An autonomous place/transition system that formally
describes the logic behavior of a manufacturing cell.

models a manufacturing cell — see the layout in the
top-right corner — that is composed by three machines
(M1, M2, and M3). The work plan is as follows: Raw



parts arrive through a conveyor; A raw part is processed
by M1 to obtain a part of type “A” or by M2 to obtain
a part of type “B”; In M3 two parts, one of each type,
are assembled to obtain a final product, that leaves the
cell; We assume saturation (i.e., the cell is never starved
or blocked); Parts are handled by a robot (R). We
assume that only MI may fail (operation dependent
failures). To reduce the effect of M1 failures, it deposits
the “A” parts in a temporary buffer (B, capacity N),
without using R for this movement.

The net in Figure 6 models both the plant and the
work plan, from a coordination viewpoint. In the initial
state, all machines and the robot are idle, and the buffer
is empty. The only enabled transitions are those that
represent the start of the loading operation of either
M1 or M2, but only one of them can occur (i.e., there
is a conflict situation). The autonomous model leaves
undetermined which will occur, 1t only states that these
are the possibilities. Assume M1 is to be loaded, what
is represented by the occurrence of the corresponding
transition. Then the marking changes: one token is re-
moved from each input place of the transition (R idle
and M1 idle) and one token is put in the output place
(M1 loading). Notice that tokens were required from
two input places, meaning that the loading operation
requires that both the machine and the robot are ready:
it is a synchronization of both. Now the only enabled
transition is the one representing the end of the load-
ing operation, but the autonomous model leaves unde-
termined when will this happen, it only states that it
can only happen whenever loading is in course (what
allows representing sequencing). At the firing, the to-
ken i1s removed from M1 loading and tokens are put
in M1 working and Ridle. In this new marking, both
output transitions of M1 working are enabled in con-
flict (it may either complete the work or fail), and also
the start of the loading of M2 is enabled. This latter
transition and a transition from M1 can occur simulta-
neously, or in whichever order (their enabling is inde-
pendent), what allows to faithfully model concurrency.
Notice the correspondence of subnets and subsystems
(M1, M2, M3, B, and R), and the natural represen-
tation of their mutual interactions. (It goes without
saying that operation places could be refined to show
the detailed sequence of operations in each machine,
etc.)

This autonomous model can be used for documenta-
tion/understanding purposes, and also to formally ana-
lyze the possible behaviors. Classical PN analysis tech-
niques allow to efficiently decide that this system model

is bounded (i.e., finite state space) live (i.e., no action
can become unattainable), and reversible (i.e., from any
state the system can evolve to its initial state).

We have depicted as bars those transitions that repre-
sent control events, while transitions depicted as boxes
represent the end of an operation, or the occurrence of
a failure. At the present stage of autonomous systems,
these drawing conventions, and also the various labels,
are literature: the dynamics of the model is not affected
by these details, which are intended to make clearer
the “physical” meaning of the model. In fact, obvi-
ously, the same net system could have been modeling
a different system (say a parallel algorithm with some
critical sections), since place/transition nets (like dif-
ferential equations) are an abstract, and rather general,
formalism for representing DEDS (continuous variable
dynamic systems, respectively).

V. INTERPRETED EXTENSIONS OF PN

In the sense of Section II, autonomous PN are semi-
interpreted graphs: places have the meaning of state
variables, the marking represents their value, and tran-
sitions are state transformers. We can associate a pre-
cise meaning with places and transitions (e.g., this place
represents a store, this transition represents the arrival
of a part, etc.; recall our previous example from Fig-
ure 6) in the form of a labeling (with statements) indi-
cating to the human observer the intent of the model.

But in many situations the association of a meaning
with the net objects has strong implications on the in-
tended dynamic behavior of the model: if a transition
models the end of some activity, there may be tem-
poral constraints for its occurrence once it is enabled;
or if two transitions are in conflict, their meaning may
imply that there is some constraint on how this con-
flict should be solved. The behavior of autonomous
PN 1s independent of time and environment. In this
sense their non-determinism (notice that we fixed when
a transition is enabled to occur, but not when it would
occur, even whether 1t would occur at all, or how a
conflict would be solved) can be regarded as a total ab-
straction of time and environment. (This abstraction
is even stronger than in the case of stochastic mod-
els, where some knowledge, though incomplete, is cap-
tured by pdf’s — probability distribution functions.) If
the constraints associated with the interpretation are
taken into account, the non-determinism is reduced (or
removed) and the behavior of the model is affected,
actually restricted. This 1s why, in practice, the adjec-
tive wnterpreted is usually regarded as synonymous of



non-autonomous in the PN literature, while in time-
invariant continuous systems non-autonomous is syn-
onymous with forced, a meaning that fits also very well
in our context, although is not conventionally used.

Since similar interpretations are useful in a diversity
of application domains, interpreted extensions (simply
interpretations in the sequel) incorporating external
constraints, often in terms of time, have been proposed.
The argumentation presented in Section II is now re-
peated, but using autonomous nets as the basic for-
malis (instead of directed graphs). The interpreted ex-
tensions lead to different PN based formalisms sharing
some basic principles. In this sense, it can be said that
PN are multifacetted, since inter-related variations and
elaborations of some central concepts and objects allow
the capture of diverse views, best suited for diverse ob-
jectives, of a range of systems. This is why we speak
of a Petri net paradigm. Some of the formalisms devel-
oped from PN have become standards, either by their
use or by the influence of organisms, as it happens in
other areas (e.g., the use of BCMP queueing networks
[23] made them a standard within queueing networks,
or LOTOS (Language of Temporal Ordering Specifica-
tion) [24] is a standardized language, based on process
algebra, oriented to open distributed systems).

In the following subsections we will illustrate two par-
ticular kinds of interpretations. Our selection is moti-
vated by the relevance for automation applications. In
Subsection V-A, constraints on the timing and conflict
resolutions are provided, leading to timed/stochastic
PN. These formalisms are used in performance evalu-
ation and optimization, or in scheduling. In Subsec-
tion V-B, the evolution is constrained by external in-
puts, which is interesting in control. In this second case,
the net model evolves in closed-loop with its environ-
ment, which is not modeled (at least at the same degree
of detail, only some signals are selected to inform about
its state).

A. Timed/Stochastic PN

One among the very many possible ways to incor-
porate time in a PN system 1s by associating it with
transitions. This can be done as a delay, constrain-
ing the amount of time that elapses between the en-
abling of a transition and its instantaneous occurrence
(assuming it is not disabled in the meantime by the oc-
currence of another — conflicting — transition), or as
a duration, and then the occurrence is in three phases:
start/activity /end. “True concurrency” leads to tem-
poral realism of these models.

Different ways of constraining time lapses are:
¢ Giving a time interval, or window, as in time PN
[25]. The interval may be just a point, and then timing
is deterministic, as in timed PN [26].
¢ In a probabilistic fashion, giving the pdf, as in sto-
chastic PN [27], [28], [29], [30].

o In a possibilistic fashion, by way of fuzzy sets. In [31]
fuzzy PN are overviewed. (In some cases not only the
timing but also the marking is fuzzyfied.)

Similarly, different ways of constraining conflict res-
olution are:

o Giving a fairness constraint. The constraint may be
rigid, and then it is deterministic.

o In a probabilistic fashion, as in stochastic PN.

o In a possibilistic fashion, by way of fuzzy sets.

Defining a sound interpretation in order that the
model reflects faithfully the intended behavior is not
always an easy job. In the case of stochastic interpre-
tations, [32] explores different sound possibilities, and it
shows that the net structure should be carefully taken
into account. Moreover, the stochastic interpretation of
nets can consider, like in QN, a diversity of disciplines
for queuing and service (e.g., FIFO), or routing (e.g.,
JSQ).

Regarding the matter of standardization, there is
still a wide diversity of timed/stochastic PN for-
malisms. Nevertheless the use of generalized stochastic
PN (GSPN) [29] and their colored extension has made
them a de facto standard or reference model for per-
formance modeling and evaluation. For scheduling ap-
plications, in most cases (deterministically) timed PN
[26] where all transitions are controllable are used.

Coming back to the manufacturing example, if the
purpose of the model is to evaluate the performance
of the manufacturing cell, or to investigate different
scheduling policies, then timing information (e.g., du-
ration of operations, mean time between failures, etc.)
can be incorporated to the model, for instance spec-
ifying the delay in the firing of transitions. Diverse
timing specifications are possible (e.g., stochastic, de-
terministic, time intervals, etc.), each one best suited
for a particular purpose or degree of detail required. In
Figure 7 the delays are specifyed by their mean times.

In a preliminary design stage, where the issue is ma-
chine selection and dimensioning of the system, a sto-
chastic timing specification, such as that of generalizad
stochastic PN [29], is best suited. In the example we
assume that the distribution of time delays correspond-
ing to operations and movements is phase-type, namely
Erlang-3, while failures and repairs follow ezponential
distributions. All other transitions are immediate, they



Timing:

Operation: 6 t.u.

Robot movement: 1.6 t.u.
M1- Bltransfer: 0.6 t.u.
Synchronization: 0 t.u.
Failure: exp, mean ljhfa‘

Repair: exp, mean 0.15/A

Jn1EfE

fail

Fig. 7. A timed place/transition system that allows performace
evaluation and optimization of a manufacturing cell.

fire as soon as they are enabled (so they are prioritary
wrt. timed transitions). Conflicts between timed tran-
sitions are solved by race policy, while conflicts between
immediate ones are solved in a probabilistic fashion).
By reversibility (a property that holds on the au-
tonomous model), the reachability graph is strongly
connected, and this allows to deduce ergodicity of
the stochastic process with the interpretation given in
the example, and the irreducibility of the underlying
Markov chain. Markovian performance analysis can be
used to assist in the dimensioning of BI, or to analyze
its impact. With given failure and repair rates for M1,
throughput is plotted versus buffer size in Figure 8.a.
Economic considerations (in terms of throughput, re-
quired investment, and work in progress) would allow
to optimize the buffer size. The plots in Figure 8.b
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Fig. 8. Performance evaluation of the cell in Figure 6 with respect
to buffer capacity and failure rate.

show how the effect of the buffer varies depending on
the nature of the failures. Keeping the failure/repair
ratio constant:

o Unfrequent failures with long repair times (left side
of the plot) make the throughput insensible wrt. the
buffer size, because the repair time exceeds largely the
time to empty the buffer.

¢ On the other extreme, in the case of very frequent
slight failures, a relatively small buffer is able to filter
out the high frequency perturbations represented by the
failures.

o When the order of magnitude of repair times are sim-
ilar to the time required to empty the buffer, its size is
most critical in order to increase the throughput.

Notice that for the case N = 0 the model in Figure 6
is changed, removing B! (M1 becomes essentially iden-
tical to M2, except for the presence of failures), result-
ing in a more tight coupling of the machines that leads
to a significantly lower throughput.

Assume that, after the optimization of the design
that involved performance evaluation, the capacity of
the buffer is fixed to two. Although the plant para-
meters are fixed, the actual performance of the sys-
tem may vary depending on how it is controlled. The
scheduler 1s in charge of controlling the evolution by en-
abling/disabling the transitions that initiate robot load
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Fig. 9. Effect of different scheduling policies in the manufacturing cell of Figure 6.

operations (i.e., these are the controllable transitions).
Figure 9 shows the Gantt charts of two possible
scheduling policies assuming deterministic timing and
disregarding failures. In Figure 9.a operations are
scheduled as soon as possible; solving eventual conflicts
in the allocation of the robot by fixed priorities (M2
is prioritary over M{). A periodic regime is quickly
reached, in which:
o The cycle timeis 10.8 (i.e., throughput 0.0926 without
failures).
o The buffer contains at most one part, so parts are not
accumulated to be used in the event of a failure.

The Gantt chart in Figure 9.b shows the evolution
when the scheduler prevents interrupting M1 until it
gets blocked, and interrupting M2 and M3 from then
on. This policy fills up the buffer to be prepared for
eventual failures and achieves a cycle time of 9.2 (i.e.,
throughput 0.1087) in normal operation, thus the buffer
allows to increase productivity in more than 11%.

B. Marking Diagrams

In order to use PN in automation it is necessary to
connect the net model (acting as a controller) to the
plant being controlled. This implies that the evolution
shall be somehow governed by inputs and reflected by
outputs. We call a PN model with an association of
inputs and outputs similar to that of SD a marking
diagram, as a natural — although not generally used —
name, provided that in PN the state is called marking.
Models of this kind can be found in [33], [13], [34], [35],
[36], [37].

Inputs (either in the form of external events or logic
conditions) are associated with transitions in the form
of guards. They affect the evolution: a transition must
occur whenever it is enabled and the corresponding
guard is true (provided contingent conflicts are solved).
Outputs or actions can be associated with both places
and transitions. In the former case some action is
produced while the place is (sufficiently) marked (e.g.,
while train in critical section, represented by a corre-
sponding place marked, red light on). In the latter
some signal is produced at the occurrence of the tran-
sition (e.g., start a timer, step a counter, etc.). Actions
can be further conditioned by external conditions.

Marking diagrams allow for concise and natural rep-
resentation of concurrency and sequencing compared
to state diagrams and relay ladder logic diagrams, re-
spectively. PN based controllers are available [33], [34].
Grafcet, an International Standard since 1987, is an-
other tool for the specification of logic controllers which
is essentially a subclass of interpreted PN [38], [39].

In local control, net conflicts are typically solved by
the corresponding guards. Otherwise, especially in co-
ordination level control, the occurrence of controllable
transitions is decided by consulting some external ora-

cle (e.g., a knowledge-based scheduler) [40], [41], [42].

Coming back to the manufacturing example, if the
model is meant as a specification for a logic controller,
the firing of transitions must be related to the corre-
sponding external events or inputs, and the outputs
that must be emitted have to be specified. The inputs,
that condition the evolution of the controller, may come



from plant sensors (e.g., when R finishes loading M2 it
emmits a signal loaded M2) or from other levels in the
control hierarchy (e.g., when the scheduler decides —
in view of the state of the system and the production
requirements — that M1 should be loaded, it sends
sched M1). The outputs may command the actuators
(e.g., START M3 initiates the assembly sequence in M3)
or send information to other levels in the control hier-
archy (e.g., REPAIR! raises an alarm to call the atten-
tion of maintenance staff, or an interrupt that activates
automatic recovery; B1_CONT(m) updates the number
of ready “A” parts in the production database, etc.).
The PN model in Figure 10 captures this information.

sched_ML
LOAD ML

Signals:

i nput's
(from sensors, scheduler, etc.)

QUTPUTS
(TO ACTUATORS, MONI TORING ETC.)

repaired

REPAI R!

sched_MBA sched_MBB
LOAD MBA LOAD VBB

| oaded_MBA | oaded_MBB

START_M8

Fig. 10. A marking diagram that specifies the behavior of the
logic controller of a manufacturing cell.

Following appropriate conventions in the specification
(e.g., those imposed in the definition of Grafcet [38]),
a model similar to this one could be used directly as a
logic controller program.

Implementation of Marking Diagrams: Once a
suitable PN model for a controller has been obtained
it has to be tmplemented. Basically an implementa-
tion is a physical device which emulates the behavior
expressed by the model. One advantage of using PN
as a specification formalism is their independence wrt.
the precise technology (pneumatic, electronic, etc.) and
techniques (hardwired, microprogrammed, etc.) of the
final implementation. Presently, in MS control, pro-
grammed implementations are the most usual, running
on a wide range of computer systems (e.g., industrial
PC’s, programmable logic controllers, etc.).

The (programmed) implementation is affected by the
selected PN formalism (low or high level, different in-
terpretations of the firing rule), the algorithmic ap-
proach (interpreted, where the PN model is a data
structure, or compiled, where a program is obtained
from the given PN; centralized or parallel/distributed
schemas), and the computer architecture (high or low
level programming language; single or multi processor).

For the case of local controllers specified by low level
PN with input and output signals (like that shown in
Figure 10), a usual choice are interpreted implementa-
tions (“token players”) [43], [13]. The basic schema is
a cyclic program that reads the inputs, computes the
evolution of the marking, and generates the outputs
once and again. A major issue is the efficient compu-
tation of enabled transitions. An example of an effi-
cient technique for this purpose are representing places
(see, for instance, [44]). The idea is to appropriately
select one input place per transition (its representing
place). Tt is always possible (perhaps after some net
transformations) to classify places as either represent-
ing or synchronization places, where each of the former
is the representing place of all its output transitions.
The marked representing places are kept in a list (we
assume safeness for simplicity), that is updated at each
transition firing. In each cycle, only the output tran-
sitions of marked representing places are tested for en-
abledness, eventually checking the marking of some syn-
chronization places. A possible selection of representing
places for the net in Figure 10 are all but R idle, slots,
ready “A” parts, waiting “A”, and free “B” (thus, these
would be the synchronization places).

The inherent parallelism captured by a PN model
1s somehow dismissed in centralized implementations.
Diverse parallel and distributed implementations have
been proposed (see, for instance, [44]). The struc-
ture theory of PN allows to identify certain compo-
nents in a given net that are useful for distributing
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Fig. 11. Duplication versus observation.

or parallelizing the implementation. Particularly, live
and safe state machine components lead to cyclic se-
quential processes that can be directly implemented,
for instance, as Ada tasks. In such case, other places
can be represented as global variables, semaphores,
etc. Coming back to the example, we easily identify
M1 and M2 as sequential tasks, M3 can be decom-
posed into two synchronized sequential tasks, slots and
ready “A” parts are semaphores, and R idle is a mutual
exclusion semaphore.

An important issue when designing a control system
is that of safety. Formal modeling and analysis tools
are needed to engineer safe computer-controlled sys-
tems. For this task it is necessary to consider both
the control system and its environment, for which PN
are a suitable formalism [45]. When faults can happen
the controller should be able to detect them and even
react appropriately degrading system’s performance as
little as possible.

Let us briefly concentrate here on the detection and
recovery of faults in the controller itself. Several tech-
niques have been proposed to produce safe and/or fault-
tolerant PN based controllers. We illustrate next one
of these techniques which are supported by PN theory:
the spy/observer schema.

In general, N-version programming techniques; that
is, the controller is replicated and a voting mechanism
is introduced [46] can be used. A less expensive schema
is based on the idea of an observer [47] or spy [48],
which accepts “normal” behaviors seen through some
observable, or check, points. In Figure 11 duplication
and observation schemas are compared. The observ-
able points are transitions whose firing is reported to
the spy/observer (transitions are classified as observ-
able or non-observable, dually to the classification into
controllable and uncontrollable). The spy/observer can
be modeled as a PN equivalent to the original one wrt.
observable transitions (non observable transitions are
considered silent and can be reduced). In the final

LOAD_ML

TRANSFER LOAD_M2

LOAD_MBA LOAD_MBB

START_MB

Fig. 12. A spy for the net in Figure 10.

implementation, the code corresponding to the spy is
merged with the code of the proper controller.

Considering as observable all the synchronization
transitions in the net (i.e., those corresponding to the
initiation of robot operations, initiation of a transfer
from M! to M2, and initiation of an assembly in M3)
the corresponding spy is shown in Figure 12. (Notice
that this spy is obtained applying the same reduction
rules that were applied for the analysis.)

VI. CoNCLUDING REMARKS

Interpreted extensions restrict the behavior of the
underlying autonomous model in order to capture the
required features of the dynamic behavior. Obviously,
since it affects the behavior, the interpretation must
be carefully taken into account for analytical purposes.
Nevertheless, the shared structure allows the re-use of
strucural objects and relations since the only modifica-
tions are in the occurrence rule. Therefore different PN
based formalisms can be viewed as members of a fam-
tly where the relationships lead to both economy and
coherence.

Although for each purpose or degree of detail the ad-
equate formalism would be chosen from the family, the
transformation from one formalism to another could be
sound, if not formal or even automatic. The use of a
single family of formalisms for such a diverse range of
problems is not only beneficial from the point of view
of communication and re-utilization of results. It has
proven to lead also to a synergic situation where the
concepts and techniques developed in one area help in
the solution of open problems in another one [49], [50].
For instance, the computability of the wvisit ratios (rel-
ative occurrence of transitions) in stochastic net mod-
els opened the way to discover the so called rank the-
orems [51], [52], [53], which characterize in polynomial
time important logical properties. As another exam-



ple, symmetry detection at the logical level is a funda-
mental step towards efficient performance evaluation of
stochastic colored PN [54]. Also, structure net theory
provides essential concepts and techniques in order to
make appropriate decompositions at net level, that can
be used in divide-and-conquer performance evaluation
techniques (either exact, approximate, or bounds) [55].

We tried to convey the idea that Petri nets con-
stitute a formal paradigm, where specific formalisms
for particular phases of the life-cycle can be defined.
The interpreted extensions overviewed in this work do
not represent a full set of possibilities. For instance,
merging fuzzy sets concepts with Petri nets via exten-
sions/interpretations (see [31], [56]) different fuzzy net
formalisms arise. They have been applied either to
model reasoning systems (transitions are fuzzy rules,
and the net model represents an expert system) or to
model DEDS (transitions represent state changes; in
[57] fuzzy timing is attached to transitions, while in
[68] a fuzzy marking is defined by attaching a fuzzy
location to tokens).
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