
2006 IEEE Conference on 
Systems, Man, and Cybernetics 
October 8-11, 2006, Taipei, Taiwan 

 
 

 
 

 
 
1-4244-0100-3/06/$20.00 ©2006 IEEE 

Lender processes competing for shared resources: Beyond the S4PR
paradigm

Juan-Pablo López-Grao and José-Manuel Colom

Abstract— Formal models, as Petri nets, applied to the
resource allocation problem have been a fruitful approach in the
last years from a double perspective. Firstly, the consolidation of
an abstraction process of systems leading to models structured
around the concepts of processes and resources, which can
be easily translated into Petri nets. Secondly, the obtention
of analysis results characterizing deadlock states, as well as
methods to amend the problem. Thanks to abstraction, this
methods can be applied to many different application domains,
although manufacturing is yet predominant. In this paper
we follow the same philosophy, but extending the kind of
systems that can be tackled. These extensions allow to consider
nested iterations within the processes, and to hold resources in
the initial state. We will show that these extensions are very
relevant, from the real-world system point of view, in order
to extend these techniques to a broader scope of scenarios.
Nevertheless, the behaviours of the resulting models are much
more complex than those of the previous restricted models, e.g.,
non-directedness.

I. INTRODUCTION

Loosely speaking, a Resource Allocation System (RAS)
is a discrete event system in which a finite set of resources
is shared among a set of concurrent processes.

This general definition fits within a broad family of
systems which range in disciplines such as manufacturing,
distributed and parallel computing, game theory, networking
or logistics. All of them fall in the same framework through
an abstraction process that allows to construct system models
bipartitioned into processes and resources.

These models are used to study the resource allocation
problem: the procedure in serving the processes requirements
for resources, according to their own resource usage policy,
while accomplishing a certain goal. In quantitative terms,
the concept relates to the ability of optimizing a system
performance function [1]. In qualitative terms, it is widely
associated to dealing with the set of partial or total deadlocks
that may be reachable [2]: the focus of this paper.

We consider a set of processes in a deadlock state if
they are indefinitely waiting for a set of resources that are
already held by processes of the same set. In the context of
RAS, Coffman [3] established four necessary conditions for
the existence of a deadlock in general systems of processes
competing for shared resources. However, these conditions
are not sufficient in general, and so leave place for a wide
scope of constrained subclasses of systems to be investigated
in order to obtain a characterization of deadlock states. In

J.P. López-Grao is with the Dept. of Computer Science and Systems Engi-
neering (DIIS), Universidad de Zaragoza, Spain jpablo@unizar.es

J.M. Colom is with the Aragonese Engineering Research Institute (I3A),
Universidad de Zaragoza, Spain jm@unizar.es

many cases, this research is addressed by real-world systems,
imposing constraints with physical meaning, and the study
tries to capture the problems in terms of the discipline.

From this standpoint, it seems well-justified the success
of the methodological approach on manufacturing systems,
where some particular conditions (sequential processes, re-
sources used in a conservative way, etc.) are likely to appear.

There exists abundant literature on the application of for-
mal models to the study of the resource allocation problem.
Formal models allow to focus on it avoiding unnecessary
details thanks to the process of abstraction, and apply rig-
orous techniques to detect deadlocks and correct the system
according to its expected behaviour. In particular, Petri nets
have proved very useful for the modelling, analysis and
synthesis of RAS, with an accent on manufacturing.

Due to the generous range of subclasses of RAS worth
considering, though, different Petri net subclasses have
emerged to deal with them. In general, we can classify
restrictions on the model within two categories: (a) on the
processes structure, and (b) on the way the processes use the
resources. This paper will be devoted to the definition and
study of the (P/T net) class of Systems of Processes Quar-
relling over Resources (SPQR), which generalizes previous
results both in (a) and (b). The authors will assume that the
reader has some basic knowledge in Petri nets.

The paper is organized as follows. In section II, we will
contextualize the work and illustrate its motivation through
an example. In section III, the SPQR class will be introduced
and related with simpler subclasses. In section IV, some
structural and behavioural properties of the class will be
outlined, which will be compared with those of its subclasses.
In section V, we will point at some interesting liveness
analysis results for the SPQR class. Finally, in section VI,
we will summarize the results of the work.

II. PROBLEM DOMAIN AND MOTIVATION

A. Problem domain

As stated in section I, restrictions on Petri net models
for RAS can be classified within two categories: (a) on the
processes structure, and (b) on the way the processes use the
resources. As far as (b) is respected, resources can be serially
reusable (i.e., they are used in a conservative way by every
process), or consumable (i.e., once they are consumed, they
are not replaced). This work focuses on systems in which
resources are serially reusable.

Regarding the processes structure, most of the cur-
rent works focus on Sequential RAS (S-RAS), as op-
posed to Non-Sequential RAS (NS-RAS), in which assem-

30403052



bly/disassembly operations (fork/join operations) are allowed
within the processes. Some works ([4], [5]), however, have
attempted to approach NS-RAS from the Petri nets perspec-
tive, despite that finding effective solutions for them is, in
general, much more complicated.

In the field of S-RAS (the scope of this paper), different
Petri net models have successively emerged, frequently ex-
tending previous results and hence widening the subclass of
systems that can be modelled and studied.

To the best of our knowledge, one of the first classes aimed
to deal with the resource allocation problem in S-RAS is the
class of Cooperating Sequential Systems (CSS) [2]. In CSS,
concurrent processes share both the routing pattern and the
way the resources are used in the routes (i.e., the process
type is unique). These processes may compete for several
resource types, allowing multiple instances of each type.

In more recent works, different process types with mul-
tiple concurrent instances are allowed, sometimes allowing
alternative paths per process. In [6], the path (i.e., route) a
process will follow is selected at the beginning of the process
execution. Other works consider on-line routing decisions; in
particular, this is dealt with in [7], where the seminal S3PR
class is introduced. However, processes in a S3PR can use
at most a single resource unit at a given state. A subclass of
S3PR, called L-S3PR, was presented in [8], which featured
some useful properties.

The mentioned restriction over resources usage is elimi-
nated by the (more general) S4PR class [9] (S3PGR2 in [10]).
This allows processes to decide routings on-line and simulta-
neously reserve several resources belonging to distinct types.
This kind of systems are named “Disjunctive-Conjunctive
(OR/AND) RAS” ([11]). Nowadays, the most general class
of the SnPR family is the S∗PR class [12], in which processes
are ordinary state machines with internal cycles. The authors
would like to emphasize that many interesting works from
different authors present and study other classes in the same
vein. For a more detailed revision of these, we refer the
reader to [13].

For all of the mentioned classes, except for S∗PR, siphon-
based liveness characterizations are known. Due to their
structural nature, they open a door to an efficient detection
and correction of deadlocks, implementing controllers (usu-
ally by the addition of places) that restrain the behaviour of
the net and avoid the bad markings to be reached.

In this work, it is our goal to cover broader S-RAS
classes than those seized by the net classes previously
introduced. The generalization is useful in the context of
manufacturing but especially in other scenarios where the
following elements are more frequent: (1) Internal iterations
(e.g., recirculating circuits in manufacturing, nested loops in
software); (2) Initial states in which there are resources that
are already allocated.

In the following, we will make clear that the approach
followed to date does not work with these systems. In
this sense, there does not exists an analogous non-liveness
characterization, and their inherent properties are much more
complex. In particular, we would like to stress the fact that

siphons do not longer work, in general, with the class being
introduced.

B. Motivation. An example

Before introducing the new class, let us firstly illustrate
how it captures more complex systems precluded by its
predecessors. Suppose we own an on-line web search engine
on the Internet, called Foolgle. This engine reads, processes
and serves the information stored in a large centralized
relational database, serving concurrently a number of users.
The database stores information about thousands of sites on
the Internet.

Additionally, we have a cluster with three nodes, each
running a web crawler (also, web spider or robot). Each
one of these robots is aimed to constantly surf the web,
visiting and parsing every site, and subsequently update our
centralized database, keeping it up-to-date.

These web crawlers are executed concurrently and have a
cyclic behaviour through five phases: the initial, idle state,
where maintenance tasks are executed (stage 0), heartbeat
checking (stage 1), page retrieval (stage 2), HTML parsing
with URL extraction (stage 3) and database update (stage 4).
The metainformation in the database is indexed and dated,
so that the job batches are well-ordered and no redundant
work is taken.

As a system design principle, we want our set of concur-
rent robots to surf the web relentless and fairly. To ensure,
it will be enforced that, once the three nodes are up and
running, at most one of the robots will be in its idle state
(stage 0).

Besides, only one robot can write in the database at the
same time (i.e., at most one robot can be in stage 4). To
synchronize the robots a Distributed Lock Manager (DLM)
will be deployed. The system architecture is conceptualized
in figure 1.

Foolgle

Web crawler 1

Web crawler 3

DLM

Internet
WWW

Web crawler 2

Fig. 1. The Foolgle system architecture

Hence we have three concurrent processes synchronized
by a set of locks in the DLM, which can be abstracted as a set
of virtual resources. Obviously, we would like to design the
system so that we can make sure it is live. But, unfortunately,
the methodological framework yielded by the S4PR class
proves insufficient.

It is not difficult to infer a reason why the S4PR class
is too limited to accomplish our goal. Every live S4PR net
is reversible [14], while our system should be live but non

304130533053



c1

c2

c3

c4

c0

4
3

3
3

2
4

8
7

2

6
6
3
3
4
4

3

9

3
4
7

6
3

14

r2

r4

r1

r3

r5
r6

r3
r5
r6

r2
r1

r1
r2
r3

r6
r5
r4

r2
r4
r5

r1

r6

r1

r6

r2
r4

a1

a2

a3

a4

a0

r5
r6

r3
r2

r1

r2

r6

r1

r3
r4
r5

r1

r4

r6

r2
r3

r5

r2

r5
r6

r1

r4

r1

r3
r4

r2

r5
r6

5

10

14
4

4

3

2
3

4
6

5

4

3

2

7
3

3

3
4
6

2
3

b1

b3

b4

b2

b0

r3
r4
r5
r6

r2
r1

r3
r4
r5

r1
r2
r3
r4
r5
r6

r5
r6

r3
r2
r1

r1
r2

r4
r5
r6

r3

r2

2
2

2

3

4

2

7
3

6

2
7
4

2

2

2
4
6

m 0

a0,b0,c0

a0,b2,c0

a0,b3,c0

a2,b0,c0

a3,b0,c0a0,b4,c0

a0,b1,c0 a1,b0,c0

a4,b0,c0

a0,b0,c1

a0,b0,c2

a0,b0,c3

a0,b0,c4

a1,b3,c0 a1,b3,c1

a4,b3,c1

a1,b4,c1a3,b3,c1

a1,b4,c2 a1,b0,c2

a1,b0,c3

a2,b3,c0

a1,b3,c4

a1,b2,c4

a1,b1,c4

a3,b3,c0

a0,b3,c1

a1,b1,c3

a3,b1,c0a3,b1,c1

a0,b1,c1

a1,b1,c1 a2,b1,c1

a2,b2,c2 a2,b2,c1

a2,b3,c2a2,b3,c3

a2,b4,c3 a3,b4,c3

a4,b1,c0

a3,b1,c4

a3,b1,c3

a3,b0,c3

r1

r2

r3

r4

r5

r6

14

6

7

Fig. 2. The Foolgle net. A live and bounded SPQR that does not verify the directedness property. Note that a0, b0, c0 ∈ PR.

reversible: to respect the general design principle referred
some paragraphs above, the initial state (in which every robot
is in its idle state) should be avoided.

The net in figure 2, however, is live but non reversible. It
features three processes and nine resources (r1 to r6, which
are the locks in the DLM, as well as a0, b0 and c0). It
does not belong to the S4PR class, but to one more general
instead: the SPQR class. We shall introduce it in section III.

Remarkably, the system in figure 2 has some other notable
properties: not only it is not reversible but it has no home
states. On the contrary, it has two different terminal live
regimes (one of which is fair [15]). Hence we may select in
real-time the desired one; e.g. in function of the net traffic.

It is worth stressing that, in certain scenarios, a critical
feature is that there must always exist an active process; i.e.
at least one process out of its initial, idle state. Meanwhile,
the system must be live. The reader may think of security
control processes, or high-availability systems. Modelling
this kind of systems goes beyond the S4PR class. Never-
theless, although the modelling power of the SPQR class is
higher, its analytical complexity also is (and, in particular,
the complexity of liveness analysis).

III. THE SPQR CLASS

A. Purpose

The SPQR class is aimed to provide a consistent and
general framework for the study of the resource allocation
problem in S-RAS. First, this implies the generalization
of previous, well-known models as well as the assumption
of the analytical results developed for the SnPR family,
which can be easily mapped into the new class. Second, it
also implies the enrichment of the existing expressive and
analytical power by the addition of some new elements. In
particular, we are interested in addressing the following types
of systems:

• Systems in which there exist nested internal circuits
within the control flow of the processes. This is typical
in, e.g., software systems (iterative processes) or manu-
facturing systems (recirculating circuits) among others.

• Systems in which there are resources which are already
allocated in the initial state.

• Open systems in which it is known the processes
structure, but not the number of concurrent instances.

• Systems in which the number of resources is variable;
despite the fact that processes use them in a conser-
vative way (i.e., a process neither creates nor destroys
resources in the system after completing its execution).

These enhancements can be captured by the new class
definition, but they also raise unexpected properties and
interesting questions regarding liveness analysis that will be
studied in the following sections.

B. Definition

An SPQR is, in rough words, an S4PR [9] without idle
places, extended in a way such that processes can hold
some resources in the initial state, or even when they are
inactive. From a structural point of view, this means that
every resource place of the net induces a unique p-flow Yr,
instead of a minimal p-semiflow.

Similarly to S4PRs, the resource usage per process is
conservative. Nonetheless, the idle place was an absolute
minimum with relation to the resource usage state of the
process. On the contrary, an SPQR may lack an absolute
minimum, and this can severely complicate liveness analysis.

Due to the absence of the idle place, a marked SPQR can
also be unbounded. The following is the formal definition of
the SPQR class:

Definition 1: Let IN be a finite set of indices. A System of
Processes Quarrelling over Resources (SPQR) is a connected
generalized pure P/T net, N = 〈P, T, C〉, where:

1) P = PS ∪ PR where:

a) PS = ∪i∈IN Pi, where Pi �= ∅, Pi ∩ Pj = ∅, for
all i, j ∈ IN , i �= j. [process places]

b) PR �= ∅, PS ∩PR = ∅. [resource places]

2) T = ∪i∈IN Ti, where Ti �= ∅, Ti ∩ Tj = ∅, for all
i, j ∈ IN , i �= j.

3) For each i ∈ IN , the subnet generated by restricting
N to 〈Pi, Ti〉 is a connected acyclic state machine.

4) For each r ∈ PR, exists a unique p-flow Yr ∈ ZZ|P |

such that {r} = ||Yr|| ∩ PR, PS ∩ ||Yr|| �= ∅ and
Yr[r] = 1.

304230543054



Definition 2: A Plain Lender Process (PLP) is an SPQR
in which |IN | = 1.

The reader can easily check that the composition of a
non-empty set of PLPs by fusion of the common resource
places is always an SPQR, assuming that the various sets Pi

(Ti) are disjoint. Equivalently, any SPQR can be seen as the
composition of a non-empty set of PLPs by fusion of some
shared resource places.

C. On the processes structure

First, we will start with two definitions that will prove
useful. Holder places were already defined for the S4PR
class. The following definition is consistent with that one:

Definition 3: Let N be a SPQR, p ∈ PS , and r ∈ PR:

• p is a holder place of r, p ∈ H(r), iff Yr[p] > 0.
• p is a lender place of r, p ∈ L(r), iff Yr[p] < 0.
Definition 4: Let N be a PLP, N = 〈P, T, C〉. We define

the binary relation ≤T in T by:

≤T = {(t, t′) ∈ T 2 | (t = t′) ∨
(∃t′′ ∈ •(•t′ ∩ PS), t ≤T t′′)}

The relation ≤T is a precedence relation, i.e., t ≤T t′ iff
there is a directed path from t to t′. Since the state machine
generated by 〈PS , TS〉 is acyclic, then ≤T induces a partial
ordering on T . The pair (T,≤T ) is a poset [16].

Definition 5: A Plain Borrower Process (PBP) is a PLP
such that, for every r ∈ PR, there is no lender place of r in
it, i.e., Yr[p] ≥ 0 for every process place p in the PBP.

The latter induce a special structure in PBPs. In particular,
arcs from PR always precede arcs to PR in such a way that
no resource instance is released before taken. This holds for
every possible directed path in 〈PS , TS〉 [16]. Note that the
verb “precede” refers to the partial order ≤T .

For that reason, these processes are called borrower (PBP),
in contrast to the (more general) lender processes (PLP), in
which the above property may not hold. Figure 3 depicts an
SPQR with one lender and one borrower process.

For notational convenience, we will use b-SPQR to denote
those SPQRs in which every process is a PBP. Note that, in
a b-SPQR, every p-flow Yr (see point 4 in definition 1) is
a minimal p-semiflow, i.e., Yr ∈ IN|P | for every r ∈ PR.
Liveness analysis is more affordable for marked b-SPQRs,
as will be illustrated in section V.

D. Relation to other subclasses

Proposition 6: Let N = 〈P0 ∪PS ∪PR, T, C〉 be a S4PR
net [9]. Then N ′ = 〈PS ∪P ′

R, T, C〉, where P ′
R = P0 ∪PR,

is a b-SPQR.
Proof: Let Ni, i ∈ IN , be a process net in N [9].

The subnet generated by restricting Ni to 〈Pi, Ti〉 becomes
a connected acyclic state machine by eliminating p0i from
Pi, since by definition every cycle contains p0i . Note that
p0i is not eliminated, but ‘moved’ to PR. Moreover, there
exists a unique p-semiflow Y0i , ||Y0i || = PSi ∪ {p0i}. Since
p0i ∈ P ′

R and PSi ∩ P ′
R = ∅, Y0i holds the condition 4 in

definition 1. Hence every process net in N is a PBP in N ′.

r1

b1a2

b2a1

2

2
r2

2

r3

d1c2

d2c1

r4

s1

f
s2

e

Fig. 3. On the left, a marked SPQR with two PLPs and two resources (r1

and r2). Only the PLP on the right is also a PBP. The net is non-live.

Fig. 4. In the middle, a b-SPQR. The net is structurally bounded. However
it is non-live for every possible initial marking.

Fig. 5. On the right, an SPQR with two PLPs (none is borrower). The net is
not structurally bounded (e and f are unbounded iff m0[s1]+m0[s2] �= 0).

However, the inverse of proposition 6 is not true: not
every b-SPQR is an S4PR. A net in the b-SPQR class
may not be structurally bounded (SB), while every S4PR
is SB. Nonetheless, there exists a transformation rule that
transforms a non-SB b-SPQR into a SB b-SPQR preserving
the liveness property. This will be shown in section V. It
must be stressed that the class of SB b-SPQR subsumes, but
it is not equal to, the class of S4PR nets.

Obviously, S 3PRs [7] and L-S 3PRs can be [8] also
redefined as SB b-SPQRs, since they are children of the
S 4PR class. As far as we know, similar redefinitions in terms
of the SPQR class can be applied to any previously defined
Petri net model for S-RAS, except for S∗PR nets, since the
SPQR class does not directly deal with internal cycles.

Nevertheless, the reader might agree that in many real-
world problems confining the syntax of processes in the
S∗PR class (which are state machines) to processes with
nested loops may not be over-restrictive. Indeed this as-
sumption applies rather well in software systems, as long
as structured programming rules are followed. We refer the
reader to the theorem of Böhm et Jacopini and related works
[17] where it is demonstrated how ”spaghetti” processes
(using go-tos, exceptions) can always be transformed into
structured processes.

This led us to the definition of the S5PR class, which is
in essence an extension of the S4PR with the allowance of
nested loops. It is always possible to transform an S5PR into
an equivalent SPQR, preserving its behaviour with relation
to liveness. Every entry place of a loop is transformed into
a lender place, adding a resource place that allows/disallows
the execution of the circuit (i.e., loop). Then this circuit is
no longer modelled as an internal circuit, but as a new PLP
which is only executable (i.e., firable) when the resource
place gets marked. This transformation is illustrated in figure
6, being pi

k the entry place, ri′ the new resource place, and
Ni′ the corresponding PLP for the loop.

IV. GLOBAL PROPERTIES OF SPQR NETS

For a better understanding of the inherent limitations
and possibilities of the SPQR class, we will study here
some structural and behavioural properties of these systems,
comparing them with those of previous subclasses.

304330553055



0

i p
k

i

t
k2

it
k1

i
t
k3

i

t
l

it
m

i t
n

i
p
l

i

p
k

i

t
k2

it
k1

i

t
m

i t
n

i

r
i’

t
k3

i’

t
l

i’
p
l

i’

P
R

N
i

N
i’

p
0

i

p

Fig. 6. Transformation rule from S5PR (left) to SPQR (right). Dashed
arcs indicate that part of the net is omitted. Other arcs from/to PR are also
omitted.

A. Structural properties

1) Conservativeness and structural boundness: A well-
known general result of Petri nets is that conservativeness
(CV) implies structural boundedness (SB) [18]. However,
the inverse may not be true. In SPQR nets, nonetheless,
both properties are equivalent. This is due to the fact that
SPQRs are consistent by construction, and consistency plus
SB implies CV [19]. For that reason, we will refer to SB
SPQRs (or SB b-SPQRs) for nets in which every place of
the net is covered by a p-semiflow. It must be noted, though,
that the set of minimal p-semiflows may not be the various
p-flows Yr (see point 4, definition 1). This is only true for
SB b-SPQRs.

It is easily inferrable from the above property that an
SPQR N is SB iff every PLP in N is SB. Again, a PLP is
SB if every process place is holder of a resource place, but
this condition is only necessary, not sufficient, e.g., in figure
5, place e is a holder place of s1, while place f is a holder
place of s2. However, both places e and f are unbounded
if s1 or s2 are initially marked (i.e., non-empty). Note that
s1 and s2 are SB. This result differs from S4PRs, in which
every net of the class is CV (and hence SB).

2) Structural liveness and repetitiveness: Another in-
teresting difference is that resource places are no longer
structurally implicit places. In the S4PR class, this property
was derived from the fact that every place was covered
by a p-semiflow Yr plus the existence of the idle place,
which induced an additional p-semiflow which covered every
process place. Here both conditions disappear.

As a consequence, SPQRs are not, in general, structurally
live (SL); even despite they are always consistent. S4PRs
were SL because every resource place could be made implicit
taking an initial marking higher enough. Doing so, the system
became a set of isolated marked strongly connected state
machines, hence being live. However, even SB b-SPQRs
may be structurally non-live, as figure 4 depicts (this net
can always be deadlocked by emptying places c2 and d2 and
subsequently emptying r3 and r4 by firing the first transition
of each process). This raises interesting questions regarding
liveness synthesis that, in some subclasses, are yet to be fully
addressed.

3) Structural directedness: The structural directedness
(SD) property [20] states that for every pair of poten-
tially reachable markings of a live system there is always
a common successor marking. SD is, indeed, a stronger,

structural version of the directedness property [21], which
we will study among the behavioural properties, and holds
for classes such as equal conflict (EQ) systems [20]. SD
is very interesting from the standpoint of liveness analysis
since it implies the absence of killing spurious solutions or,
in other words, of live systems with potentially reachable
markings being non-live.

Unfortunately, SD is only satisfied for the L-S3PR class,
as proven in [22], but none of the higher classes do, including
the S3PR class. The lack of this property hardens liveness
analysis, due to the emergence of killing spurious solutions,
and is obviously extensible to the more general SPQR class;
although the RS of live SB SPQRs is not always directed
either, as shown in figure 2 and discussed later.

B. Behavioural properties

1) On deadlock-freeness and liveness: One of the charac-
teristic properties of the SnPR family (including the L-S3PR
class) is that deadlock freeness does not imply liveness [22].
In this sense, they are trickier than other well-known Petri
net classes such as strongly connected free choice systems
[23], bounded strongly connected EQ systems [20] or CCS
[2], where both properties are equivalent.

On the contrary, liveness is not even monotonic with
respect to the initial marking (neither to the marking of the
process places, nor that of the resource places), with the L-
S3PR as the unique exception ([22]). In fact, for S3PRs and
S4PRs, there is a discontinuity zone between the point where
the resource places are empty enough so that no transition
is ever firable (all the lower markings imply a deadlock),
and the point where every resource place is implicit (higher
markings in them imply liveness). The markings within these
bounds switch discontinuously between liveness and non-
liveness. Of course, the location of those points also depends
on the marking of the process places. However, SPQRs and
b-SPQRs are not (in general) SL, not even being SB, and
this implies that there may no longer exist an upper liveness
region (e.g., the net in figure 4).

2) Reversibility: In S4PRs with an acceptable initial
marking, reversibility is a necessary and sufficient condi-
tion for liveness [14]. However, the class considered here
(SPQR) is more general so, in particular, reversibility is not
necessary for liveness. The figure 2 depicts a system live but
not reversible. Besides, reversibility is neither sufficient for
liveness, provided that it is no longer required that all the
t-components are firable in isolation from m0.

3) Directedness: The directedness property [21] states
that, for every pair of reachable markings in a live system,
there is always a common successor marking. Although the
directedness property obviously holds for the S4PR class
(reversibility equals liveness), it is not verified, in general,
for the SPQR class, as figure 2 reflects. The RS of the net
has two terminal strongly connected components, being the
net live.

For bounded marked nets, the directedness property is
equivalent to the existence of home states [21]. Hence, live
S4PR nets have home states; indeed, every reachable marking

304430563056



is a home state, including the initial marking m0, since the
net is reversible1. This is very useful for determining if the
net is non-live, since the death of the system can be reduced
to: “Is m0 unreachable from some reachable marking?”.
Even more, if it is reachable we can systematically construct
a path that leads to m0, and the length of this path is not
higher than the size of the net, due to the structure of the
S4PR class.

The “bad” news here is that, since the directness property
is not held by the SPQR class, not even if the net is SB,
we cannot ensure (in general) that a home state will exist,
whether the net is live or not. Again, figure 2 is a good
example of this kind of behaviour. This is a severe problem
for determining non-liveness in an efficient way, as will be
patent in the following.

A table in section VI summarizes and compares the main
properties of each class.

V. LIVENESS ANALYSIS FOR SPQR NETS

In the following, we will reference some interesting new
results for liveness analysis in SPQR nets. Unfortunately, we
cannot include detailed proofs of the theorems here due to
extension limits. If interested, the reader will find them in
detail at [16]. However, we consider these results are worth
being referenced here since they highlight some difficulties
that did not exist with previous classes.

In particular, we provide a characterization of liveness
for b-SPQRs, which generalizes previous results on the
simpler S4PR class. We also point at either necessary or
sufficient conditions for non-liveness in SB SPQRs with
lender processes (siphons do not longer work so no structural
characterization could be provided). Non-SB SPQRs with
lender processes are yet open to future work.

A. Basics

First, it is worth stressing that the results presented below
are valid for any non-negative initial marking. On the con-
trary, previous results were only valid for marked nets with
an acceptable initial marking (in which every state machine
should be firable in isolation). This restriction has been
removed, thanks to the introduction of a new behavioural
property, which we call strong reproducibility. Fortunately,
there exists a structural characterization for this property in
SPQR nets under certain conditions.

Definition 7: Let 〈N , m0〉, N = 〈P, T, W 〉, be any
marked consistent P/T net. 〈N , m0〉 is strongly reproducible
iff for every transition t ∈ T exists a firing sequence σ,
t ∈ σ, such that m0[σ〉m0.

We can alternatively say that m0 is strongly reproducible
in N . The idea of strong reproducibility is inspired in that
of reproducibility, as expressed by Lautenbach [24].

Note that strong reproducibility is a behavioural property
and, in general, is neither necessary nor sufficient for re-
versibility (and the same applies with respect to liveness).

1It is interesting to note that, in live L-S3PR systems, a stronger condition
holds: every potentially reachable marking is a home state [22].

Nonetheless, there is an structural necessary condition that
captures this property for the SPQR class:

Lemma 8: [16] Let IN be a finite set of indices, and
〈N , m0〉 be a marked SPQR, N = 〈P, T, C〉. Assuming
that Yr[∅] = 0, then 〈N , m0〉 is strongly reproducible if
∀i ∈ IN . ∃t ∈ Ti such that:

• m0[t〉, i.e., t is enabled at m0, and
• ∀r ∈ PR . m0[r] ≥ maxp∈Pi∪{∅}(Yr[p] − Yr[•t ∩ Pi]).
For marked b-SPQR nets, this condition is necessary and

sufficient when m0[PS ] = 0. Being checkable in linear time
in the size of the net, this property will prove specially
convenient for liveness analysis in this subclass.

The following definition will also prove much useful.
It is worth highlighting the different semantics between
the concept of m-process-enabled transition defined for the
SPQR class and the homonym used in previous works [9].
Here it is slightly changed for notational convenience:

Definition 9: Let 〈N , m〉 be a marked SPQR, N =
〈P, T, C〉:

• t ∈ T is m-process-enabled iff •t ∩ PS = ∅ or
m[•t ∩ PS ] > 0. Otherwise, t is m-process-disabled.

• t ∈ T is m-resource-enabled iff ∀r ∈ •t ∩ PR,
m[r] ≥ Pre[r, t]. Otherwise, t is m-resource-disabled.

B. Liveness analysis for b-SPQR nets

The following theorem generalizes the non-liveness char-
acterization for the S4PR class [9]:

Theorem 10: [16] Let 〈N , m0〉 be a marked SB b-SPQR,
N = 〈P, T, C〉, and T 0 = {t ∈ T | •t ∩ PS = ∅}. Then
〈N , m0〉 is non-live iff

• 〈N , midle〉 is strongly reproducible, where midle is the
unique solution to the linear system:

– midle[PS ] = 0, midle[PR] ≥ 0,
– midle = m0 + C · x, x ≥ 0.

• and ∃m ∈ RS(N , m0) such that the set of m-process-
enabled transitions in T \T 0 is non-empty and each one
of these transitions is m-resource-disabled.

Since N is SB, it can be transformed into an S4PR by
inserting one implicit place p0i per every PBP Ni, where
p0i

• = {t|•t ∩ PS = ∅} and •p0i = {t|t• ∩ PS =
∅}. Then we can proceed the demonstration by using a
reasoning quite similar to that introduced in [9]. In the same
vein, an equivalent condition can be expressed in terms of
insufficiently marked siphons.

The next theorem allows using the previous result for
analyzing the liveness of non-SB b-SPQRs. This is based
on the fact (proved in [16]) that we can safely omit the
unbounded places when analyzing the liveness of a non-
SB b-SPQR. Unfortunately, this does not work with general
SPQRs:

Theorem 11: [16] Let 〈N , m0〉 be a marked b-SPQR, and
let Pu be the set of process places of N that are not covered
by any p-semiflow, i.e. Pu = PS \ (∪r∈PRH(r)). Then
〈N , m0〉 is non-live iff 〈N ′, m′

0〉 is non-live, where N ′ is
the SB b-SPQR generated by restricting N to 〈P \ Pu, T 〉,
and m′

0 is the mapping of m0 over P \ Pu.

304530573057



t1
t2 t4t3 t5

Fig. 7. A PLP net Ni (the arcs from/to PR have been omitted). The white
token marks the result of the state-choice function g(i).

C. Liveness analysis for SB SPQR nets

In case that not every process is borrower, the previously
presented results cannot be applied, since the directedness
property no longer holds. Here we will point at two new
necessary or sufficient conditions that can be implemented in
a computationally efficient manner. Due to extension limits,
they will be presented here in a pretty concise way. An
example will be provided to remark the fact that siphons
are no longer the key to effective liveness analysis. Some
useful definitions will be introduced before.

1) Preliminaries: A state-choice function is a function
that, given an SPQR, selects at most one place per PLP.
This is a key concept for both the necessary and sufficient
condition, and it will also enable us to introduce the concepts
of g-enabled and g-router transition:

Definition 12: Let N be an SPQR, N = 〈P, T, C〉, and
let g be a partial function g : IN → PS . Then g is a state-
choice function on N iff, for every i ∈ Dom(g), g(i) ∈ Pi.

For practical purposes, we will assume that g(i) = ∅ when
i /∈ Dom(g).

Any transition of an SPQR can be g-enabled (or g-
disabled) and also g-router (or not). These conditions depend
both on the net structure and on the state-choice function g,
but not on the marking. A transition will be g-enabled iff its
entry place is selected by the state-choice function. In rough
words, a transition will be g-router iff its firing does not
move the token further away from the target place selected
by g. More formally:

Definition 13: Let N be an SPQR, N = 〈P, T, C〉, and
let g be a state-choice function on N :

• t ∈ Ti is g-enabled iff •t ∩ PS = g(i). Otherwise, t is
g-disabled.

• t ∈ Ti is g-router iff:

– g(i) = ∅, or else,
– t ≤T tg , or else,
– ∃/ t′ ∈ Ti s.t. (Pre[Pi, t] = Pre[Pi, t

′]) ∧
(t′ ≤T tg),

where tg = •g(i).
In figure 7, a PLP net is depicted. In this case, t1, t2

and t5 are g-disabled and g-router; t3 is g-enabled; and t4
is g-disabled but not g-router. The only m-process-enabled
transition is t1, since all the process places are empty (note
that the white token is not a real token of the net).

2) Necessary condition:
Theorem 14: [16] Let IN be a finite set of indices, and

〈N , m0〉 be a marked SB SPQR. 〈N , m0〉 is live if exists a
state-choice function g such that:

• Exists a solution to the linear system:

– mgoal ≥ 0,
– mgoal = m0 + C · x, x ≥ 0,
– ||mgoal[PS ]|| = ∪i∈IN g(i).

• 〈N , mgoal〉 is strongly reproducible, and
• ∃/ m ∈ RS(N , m0) such that the set of transitions that

are m-process-enabled and g-disabled is non-empty and
each one of these transitions is m-resource-disabled and
g-router.

In other words, mgoal is one of the possible markings in
which only the places selected by the function g are marked.
Note that this marking may not be reachable, since there exist
spurious solutions of the net state equation.

In the case of SB b-SPQRs, the condition collapses into the
necessary and sufficient condition introduced before, since it
is enough to consider the state-choice function g(i) = ∅, for
every i ∈ IN (hence mgoal[PS ] = midle[PS ] = 0).

3) Sufficient condition:
Theorem 15: [16] Let 〈N , m0〉 be a marked SB SPQR.

〈N , m0〉 is non-live if exists a state-choice function g and
a reachable marking m, m ∈ RS(N , m0), such that the set
of transitions that are m-process-enabled and g-disabled is
non-empty and each one of these transitions is g-router and
m′-resource-disabled, for every m′ ∈ {m + C · σ | (σ ≥
0) ∧ (σ[Td] = 0)}, where Td = {t ∈ T | t is m-process-
enabled, g-disabled, and g-router}.

Again, the condition collapses into the necessary and suf-
ficient for SB b-SPQRs. For general SPQRs, this condition
is necessary and sufficient if, instead of computing m′ using
the net state equation, we apply the condition only for every
marking m′ ∈ RS(N , m) that can be reached by firing
transitions in T \ Td. Obviously, the tradeoff is a higher
computational complexity.

As an exciting brainstorming exercise, we leave the net
in figure 8 to the reader. This net is doubly within the
gap between the necessary and sufficient conditions: there
is no known characterization of (non-)liveness. In particular,
we want to stress that siphons no longer succeed in fully
capturing liveness for this kind of nets.

VI. CONCLUSIONS

In this paper, a new Petri net class for S-RAS called SPQR
has been introduced. The new framework colligates previous
theoretical achievements for dealing with the resource al-
location problem within this system category. Additionally,
the generalization is enriched providing support for other S-
RAS which were not supported by previous classes. This
includes systems in which there are nested iterations within
the processes, among others.

We have also studied the general properties of the systems
that can be modelled with the class, and compared them with
those of earlier members of the SnPR family. In some cases,
the results are surprising and clearly reveal the inherent com-
plexity of the class. As a result, the previous siphon-based
characterizations for liveness analysis are no longer valid. We
provide instead a necessary as well as a sufficient condition
for non-liveness in SB SPQRs. Check algorithms for both
conditions can be efficiently implemented. Moreover, both

304630583058



c1 c2c0

a1

a2

a3

a4

a0

r3 r4

r2

b1

b3

b4

b2

b0

2

r1

2

3

3 3

3

3

4

3

2

3

2

2

Fig. 8. An ill-fated net with no known structural decision criteria for
(non-)liveness. The net is non-live for the given initial marking, but the
sufficient condition does not work. If we make m0[r4] = 2, then the net
is live, but the necessary condition also fails.

collapse into a necessary and sufficient condition for certain
subclasses, such as b-SPQRs.

The following table highlights the main similarities and
differences between the different members of the SnPR
family:

Property L-S3PR S3PR S4PR S5PR SPQR

Structural
Well-formedness � � � � ×
Structural directedness � × × × ×
Behavioural (for an m0 acceptable for the class)
RS = PRS × × × × ×
DF = Liveness × × × × ×
Liveness monotonicity � × × × ×
Directedness � � � × ×
Live ⇒ Home states � � � × ×
Reversible ⇒ Live � � � � ×

REFERENCES

[1] J. F. Kurose and R. Simha, “A microeconomic approach to optimal re-
source allocation in distributed computer systems,” IEEE Transactions
on Computers, vol. 38, no. 5, pp. 705–717, 1989.

[2] K. Lautenbach and P. S. Thiagarajan, “Analysis of a resource allocation
problem using Petri nets.” in Proc. of the 1st European Conf. on
Parallel and Distributed Processing, Syre, J.C., Ed. Toulouse:
Cepadues Editions, 1979, pp. 260–266.

[3] E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,”
ACM Computing Surveys, vol. 3, no. 2, pp. 67–78, 1971.

[4] X. Xie and M. D. Jeng, “ERCN-merged nets and their analysis using
siphons.” IEEE Transactions on Robotics and Automation, vol. 29,
no. 4, pp. 692–703, 1999.

[5] J. Ezpeleta and L. Recalde, “A deadlock avoidance approach for
non–sequential resource allocation systems,” IEEE Transactions on
Systems, Man and Cybernetics. Part–A: Systems and Humans, vol. 34,
no. 1, 2004.

[6] M. P. Fanti, B. Maione, S. Mascolo, and B. Turchiano, “Event-
based feedback control for deadlock avoidance in flexible production
systems,” IEEE Transactions on Robotics and Automation, vol. 13,
no. 3, pp. 347–363, 1997.

[7] J. Ezpeleta, J. Colom, and J. Martı́nez, “A Petri net based deadlock
prevention policy for flexible manufacturing systems,” IEEE Transac-
tions on Robotics and Automation, vol. 11, no. 2, pp. 173–184, 1995.

[8] J. Ezpeleta, F. Garcı́a-Valles, and J. Colom, “A class of well structured
Petri nets for flexible manufacturing systems,” in Proc. of the 19th Int.
Conf. on Application and Theory of Petri Nets, ser. LNCS, J. Desel
and M. Silva, Eds., vol. 1420. Lisbon, Portugal: Springer–Verlag,
June 1998, pp. 65–83.

[9] F. Tricas, “Deadlock analysis, prevention and avoidance in sequen-
tial resource allocation systems,” Ph.D. dissertation, University of
Zaragoza, Zaragoza, May 2003.

[10] J. Park and S. A. Reveliotis, “Deadlock avoidance in sequential
resource allocation systems with multiple resource acquisitions and
flexible routings,” IEEE Transactions on Automatic Control, vol. 46,
no. 10, pp. 1572–1583, 2001.

[11] S. A. Reveliotis, M. A. Lawley, and P. M. Ferreira, “Polynomial com-
plexity deadlock avoidance policies for sequential resource allocation
systems,” IEEE Transactions on Automatic Control, vol. 42, no. 10,
pp. 1344–1357, 1997.

[12] J. Ezpeleta, F. Tricas, F. Garcı́a-Vallés, and J. Colom, “Bankers–
like approaches to deadlock avoidance in concurrent systems,” IEEE
Transactions on Robotics and Automation, vol. 18, no. 4, pp. 621–625,
2002.

[13] J. M. Colom, “The resource allocation problem in flexible manufac-
turing systems,” in Proc. of the 24th Int. Conf. on Applications and
Theory of Petri Nets, ser. LNCS, Van der Aalst, W. and Best, E., Ed.,
vol. 2679. Eindhoven, Netherlands: Springer–Verlag, June 2003, pp.
23–35.

[14] S. A. Reveliotis, “On the siphon-based characterization of liveness in
sequential resource allocation systems,” in Proc. of the 24th Int. Conf.
on Applications and Theory of Petri Nets, ser. LNCS, Van der Aalst,
W. and Best, E., Ed., vol. 2679. Eindhoven, Netherlands: Springer–
Verlag, June 2003, pp. 241–255.

[15] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[16] J. P. López-Grao and J. M. Colom, “Liveness enforcing in Resource
Allocation Systems with iterative processes: A study on the SPQR
class,” Dept. Informática e Ingenierı́a de Sistemas, Tech. Rep., 2006.

[17] D. Harel, “On folk theorems,” Communications of the ACM, vol. 23,
no. 7, pp. 379–389, 1980.

[18] M. Silva and J. Colom, “On the computation of structural synchronic
invariants in P/T nets,” in Advances in Petri Nets 1988, G. Rozenberg,
Ed. Berlin: Springer–Verlag, 1988, vol. 340, pp. 386–417.

[19] M. Silva, “Introducing Petri nets,” in Practice of Petri nets in manufac-
turing, F. DiCesare, G. Harhalakis, J. Proth, M. Silva, and F. Vernadat,
Eds. Chapman and Hall, 1993, pp. 1–62.

[20] E. Teruel and M. Silva, “Liveness and home states in equal conflict
systems,” in Proc. of the 14th Int. Conf. on Application and Theory
of Petri Nets, ser. LNCS, M. Ajmone Marsan, Ed. Springer–Verlag,
1993, vol. 691, pp. 415–432.

[21] E. Best and K. Voss, “Free choice systems have home states.” Acta
Informatica 21, pp. 89–100, 1984.

[22] F. Garcı́a-Vallés, “Contributions to the structural and symbolic analysis
of place/transition nets with applications to flexible manufacturing
systems and asynchronous circuits,” Ph.D. dissertation, University of
Zaragoza, Zaragoza, April 1999.

[23] D. Hillen, “Relationship between deadlock-freeness and liveness in
free-choice nets.” Newsletter, no. 19, pp. 28–32, Feb. 1985.

[24] K. Lautenbach, “Reproducibility of the empty marking,” in Proc. of the
23rd Int. Conf. on Applications and Theory of Petri Nets, ser. LNCS,
J. Esparza and C. Lakos, Eds., vol. 2360. London, UK: Springer-
Verlag, 2002, pp. 237–253.

304730593059


