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Abstract. In recent times, Petri nets have consolidated as a powerful
formalism for the analysis and treatment of deadlocks in Resource Alloca-
tion Systems (RAS). In particular, the methodological framework yielded
by the S4PR class has raised considerable interest on the grounds of a
well-balanced compromise between modelling flexibility and the provi-
sion of sound and effective correction techniques. These are strengthened
by the advantages of the abstraction process, which allows the effective
application of these techniques to diverse application domains. Most of
the works on this class focus on providing tools and algorithms for deal-
ing with the so-called resource allocation problem. This paper takes a
different approach to provide an insight into the inherent computational
complexity of the problem, from the perspective of optimality in either
prevention, avoidance or detection of deadlocks. In particular, we will
prove that most of the problems involved fall within the category of NP
or co-NP-complete problems.

1 Introduction

A Resource Allocation System (RAS) is, in rough words, a discrete event system
in which a finite set of concurrent processes share a finite set of resources. This is
strongly connected to the resource allocation problem, which consists in meeting
the demand of resources by the set of processes, eventually accomplishing certain
goals. From the qualitative standpoint, the objective is often dealing with the
set of potential system deadlocks: the focus of this paper.

A RAS is in a deadlock state if a set of processes are indefinitely waiting for
a set of resources that are already held by the same set of processes. Coffman
defined in [1] four necessary conditions for the existence of a deadlock, but a
general characterization remains elusive, leaving place for a wide family of works
which study different subclasses of RAS, often providing solutions over abstract
models that allow their application on different domains.

The strategies for handling deadlocks are categorized in three groups. Dead-
lock prevention techniques consist in constructing a system such that, by defi-
nition, no deadlock is reachable. Deadlock avoidance techniques ensure that a
deadlock is not reachable by deciding on-line if a resource allocation request is
granted or not, based on the current system state information (e.g., the banker’s
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algorithm [2]). Finally, deadlock detection techniques act ‘a posteriori’, allowing
the deadlock situation to occur and subsequently resolve it.

Among formal models, Petri nets [3] has proven to be a fruitful tool for the
modelling, analysis and synthesis of RAS ([4,5,6,7]). In particular, the S4PR
class [8] (S3PGR2 in [7]) has attracted significant attention since it deals with a
very general class of Sequential RAS (S-RAS, i.e., RAS in which the processes
are sequential), while exist efficient characterizations for deadlock states, i.e.
states from which a given transition cannot be fired anymore. Despite that most
of those works stress the application on Flexible Manufacturing Systems, the
fact that we employ a purely systemic approach enables applying this Petri net
models, as well as their well-known analysis and synthesis techniques, to very
different application domains, such as distributed systems or communication
protocols.

The S4PR class is capable to model systems in which the processes are al-
lowed to decide between alternative execution paths all along their execution,
provided there are no internal iterations. Besides, several resources of several
types can be reserved at the same time, and they can be acquired and released
at any execution state. Note that we assume that the resources are used in a
conservative way by every process (i.e. the resources are serially reusable).

This work investigates the computational complexity on providing optimal
solutions for the problems of deadlock prevention, avoidance and detection for
S-RAS supported by the S4PR class. Some previous works have successfully
studied computational issues on S-RAS, although they differ from this both in
the type of systems and the problems subject to analysis. In [2] the problem of
deciding whether a resource allocation is safe is studied, and proved NP-complete
for S-RAS with multi-resource requests and processes without routing decisions.
In this model, resources that are freed in intermediary states are immediately
required back. Additionally, some restrictions on this problem are presented,
which are proved polynomial. In [9], it is proved that optimal deadlock avoidance
is NP-complete for a subclass of S-RAS in which no alternative paths per process
are allowed. Finally, in [10] the same problem is proven NP-complete for a class
of S-RAS in which alternative paths are allowed, but only one resource type is
used in each stage, which is again a subclass of our model.

In section 2, we provide a motivating example that hopefully will enlighten
the scope of the S4PR class. The class is also formally introduced, along with
some basic results that are used in section 3. Section 3 is divided in four parts.
First, we introduce the computational complexity of characterizing non-liveness
for a marked S4PR with an acceptable initial marking. Second, the results are ex-
tended to the case in which any arbitrary reachable marking is considered. This
is strongly related to optimal deadlock prevention. Third, we state the compu-
tational complexity in determining the markings that are doomed to deadlock,
which is the key to optimal deadlock avoidance and detection in this context.
And four, the computational complexity in determining spurious markings is re-
vealed, which severely affects the efficiency of structural techniques for this type
of models. Finally, section 4 summarizes the conclusions of the paper.
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2 The S4PR Class

2.1 A Motivating Example

Suppose we are considering the installment of an on-line, on-demand video
streaming service business on the Internet. In order to provide a reasonably good
service, certain Quality of Service (QoS) requirements must be formally estab-
lished and satisfied, for every requested transmission. These QoS specs obviously
depend on a wide range of parameters such as the client type, her/his maximum
supported bandwidth, the format and resolution of the requested video, etc.

To provide the service, we own a pool of video servers. These video servers
are connected to a mesh network of router nodes. Some of these nodes act as
gateways to the Internet. We will assume that multicast video streams will dis-
seminate from the gateways onwards, so as to not increase our internal traffic.
Figure 1 depicts the system structure (on the left, the video servers; on the right,
the gateways; in the middle, the intermediate routers).

Fig. 1. Our video streaming system, simultaneously transmitting two video streams

A video stream is composed of a set of fixed-size packets that must be trans-
mitted from the sender (video server) to the receiver (client). When a receiver
requests a video stream to one of the servers, a virtual circuit is constructed. All
the packets of the video stream will travel through the same virtual circuit. Be-
sides, each node of the circuit assumes its own minimum resource requirements
(CPU, storage, bandwidth) for processing and transmitting each packet of the
stream. These requirements will be based on the QoS specs for the transmission.

Both (circuit and resource requirements) can be determined and established
through a signaling protocol in a similar vein to RSVP [11,12]. In order to
maximize our system productivity and reduce costs, however, we want to ‘relax’
the resource reservation strategy. Hence once a packet is effectively transmitted
from a node to the next one, the required resources are freed, and must be
reacquired for the next packet. Doing so, nodes can accept and manage a higher
amount of concurrent streams minimizing resource idling. As a drawback, when
the traffic is high and resources are overused, some jittering could appear since
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some packets could be idle in intermediate nodes, waiting for the release of some
required resources. In the worst case, a circular wait for resources could appear,
and the system would reach a deadlock.

Such a kind of systems can be effectively modellized and studied via the S4PR
class. Figure 2 models the system of figure 1. The different constructive elements
in the model will be presented in the next subsection. In the example, the sys-
tem has reached a deadlock. The existing analysis and synthesis techniques will
allow us to handle deadlocks. In particular, we will be able to apply prevention
(e.g. disallow a pre-established circuit if there might be a potential deadlock
situation), avoidance (e.g. retain temporarily packets if they lead to deadlock
situations) or detection and correction techniques (e.g. abort a video stream
to free resources and unlock the system). In the following, we will study the
computational complexity of the optimal approach for these three strategies.

2.2 Formal Definition of the Class

From now on, we assume the reader has some basic knowledge on Petri nets.
Some useful definitions are provided in the appendix A.

As it was already pointed out, the S4PR is a P/T net class aimed to the mod-
elling, analysis and synthesis of S-RAS. In an S4PR, each process is a strongly
connected state machine in which no internal cycles are allowed throughout its
execution. Besides, each process has an initial local state in which no resource is
used, represented by the idle place. Resources are modelled as tokens within the
resource places, and their usage by every process is conservative, which imposes
restrictions on the form of the set of p-semiflows. In formal terms:

Definition 1. [13] Let IN be a finite set of indices. An S4PR is a connected
generalized pure P/T net N = 〈P, T, C〉 where:

1. P = P0 ∪ PS ∪ PR is a partition such that:
(a) [idle places] P0 =

⋃
i∈IN

{p0i}.
(b) [process places] PS =

⋃
i∈IN

PSi , where
∀ i ∈ IN , PSi �= ∅, and ∀ i, j ∈ IN , i �= j, PSi ∩ PSj = ∅.

(c) [resource places] PR = {r1, r2, r3, ..., rn}, n > 0.
2. T =

⋃
i∈IN

Ti, where ∀i ∈ IN , Ti �= ∅, and ∀i, j ∈ IN , i �= j, Ti ∩ Tj = ∅.
3. For each i ∈ IN the subnet generated by {p0i}∪PSi , Ti is a strongly connected

state machine such that every cycle contains p0i .
4. For each r ∈ PR there exists a unique minimal p-semiflow Yr ∈ IN|P | such

that {r} = ‖Yr‖ ∩ PR, P0 ∩ ‖Yr‖ = ∅, PS ∩ ‖Yr‖ �= ∅, and Yr[r] = 1.
5. PS =

⋃
r∈PR

(‖Yr‖ \ {r}).

Meanwhile, we call process net [13] to the subnet generated by {p0i}∪PSi ∪PRi

and Ti, where i ∈ IN and PRi = {r ∈ PR | (‖Yr‖ ∩ PSi �= ∅)}.
In the case of figures 1 and 2, each video stream is modelled as a concurrent

sequential process. Resources associated to each node Ni are modellized using the
places labelled R-Ni. Note that there could be several resource places per router
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Fig. 2. A marked S4PR which models the system in figure 1. The system is deadlocked.

(one per each resource type, be it physical, e.g. available storage space or CPU
slots, or logical, e.g. maximum number of simultaneous packets). Equivalently,
there is a resource place per each node interconnection, modelling the available
bandwidth and labelled BW-Ni-Nj.

All these resources can be shared among both concurrent processes. In this
case, the local resources of the nodes N5 and N6 (held by resource places R-N5
and R-N6) are shared among both video streams. The resources are requested,
used and freed when a packet (a token in the process net) is visiting the corre-
sponding node. Finally, the idle places limit the number of potentially concurrent
packets per video stream (it is assumed that this number is finite). Speaking in
general terms, it is worth noting here that idle places can also be seen as spe-
cial resource places, and then interpreted as the maximum number of process
instances in concurrent execution for each process type.

Definition 2. [13] Let N = 〈P0∪PS ∪PR, T, C〉 be an S4PR. An initial marking
m0 is acceptable for N iff ||m0|| = P0 ∪PR and ∀p ∈ PS , r ∈ PR . m0[r] ≥ Yr[p].

Figure 4 depicts a marked S4PR with an acceptable initial marking. The marking
shown in figure 2 is not an acceptable initial marking but, however, it is reachable
from an acceptable initial marking, as the reader can check. This acceptable
initial marking would correspond to the system state in which no video stream
has begun to transmit yet (and hence every resource is available).

2.3 Non-liveness Characterization in the S4PR Class

During the paper, we will use the following definitions extensively. They will be
used in several demonstrations and are basic for the non-liveness characterization
that is stated in theorem 1. This well-known characterization will be the base
for our first complexity result in section 3.

Definition 3. [13] Let 〈N , m0〉 be a marked S4PR with an acceptable initial
marking, N = 〈P0 ∪ PS ∪ PR, T, C〉. Also, let m ∈ RS(N , m0).

Then t ∈ T is m-process-enabled iff •t∩PS �= ∅ and m[•t∩PS ] > 0. Otherwise,
t is m-process-disabled. Besides, t is m-resource-enabled iff ∀r ∈ •t∩PR, m[r] ≥
Pre[r, t]. Otherwise, t is m-resource-disabled.
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Theorem 1. [13] Let 〈N , m0〉, N = 〈P, T, C〉 be an S4PR with an acceptable
initial marking. The system 〈N , m0〉 is non-live iff exists a reachable marking
m ∈ RS(N , m0) such that the set Sm ⊆ T of m-process-enabled transitions is
non-empty and every transition in Sm is m-resource-disabled.

The system in figure 2 is non-live; indeed, it is a total deadlock. The reader can
easily check that the set of m-process-enabled transitions is {t1, t2, t3} and each
one of those is m-resource-disabled: the resource places R-N5, R-N6 and R-N7
disallow their firing.

3 Complexity Results

In this paper, we will assume the reader is instructed on the basics of complexity
theory [14] and particularly NP-completeness. Onwards, several problems will
be proved either NP or co-NP-complete. All the problem reductions will be
based on the well-known (general) satisfiability problem of boolean formulas in
conjunctive normal form, commonly named SATISFIABILITY (SAT), which is
NP-complete. A brief reminder is included in appendix B.

3.1 Non-liveness

The problem of optimal deadlock prevention requires determining whether a
given system is non-live, in order to apply correction techniques to make the
system live, such as those presented in [13]. Here we will devoted to the study
of the complexity of the problem of non-liveness for a given acceptable initial
marking. In particular, we will demonstrate that this problem is NP-complete.
A couple of basic demonstrations are previously required, and hence will be
introduced in the following. The studied problem is formally defined in this way:

Problem 1. S4PR-Non-Liveness (S4PR-NL)
Given: A marked S4PR 〈N , m0〉, being m0 an acceptable initial marking.
To decide: Is 〈N , m0〉 non-live?

Proposition 1. Let 〈N , m0〉, N = 〈P, T, C〉, be a marked S4PR with an accept-
able initial marking. Let m be a reachable marking m ∈ RS(N , m0). Then exists
a firing sequence σ, m0[σ〉m, such that there is no t-semiflow X with σ−X ≥ 0.

Proof. Without loss of generality, let X be a minimal t-semiflow such that σ −
X ≥ 0. Then we will prove that there exists a firing sequence σ′, m0[σ′〉m, where
σ′ − X � 0, and σ′ = σ − k · X , with k ∈ IN \ {0}.

m is potentially reachable from m0 with σ′ because of the net state equation:
m = m0 + C · σ = m0 + C · (σ′ + k · X) = m0 + C · σ′.

The sequence σ′ is also firable because a t-semiflow X is a circuit of a state
machine and the completion of X corresponds to the movement of a token in this
state machine from the idle place throughout the circuit returning to the idle
place. Taking into account that this token in the idle place does not use resources,
while in the rest of the places of the circuit uses some resource, freezing this token
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in the idle place leaves a greater number of resources to fire the rest of transitions
of σ. Therefore σ′ is also firable, reaching m. �

Lemma 1. Let 〈N , m0〉, N = 〈P, T, C〉, be a marked S4PR with an accept-
able initial marking, and let m be a reachable marking from 〈N , m0〉, m ∈
RS(N , m0). Then exists a firing sequence σ from m0 to m, m0[σ〉m, such that
|σ| ≤ K · |T |, where K =

∑
p∈P0

m0[p]

Proof. By proposition 1, a firing sequence σ1 exists, m0[σ1〉m, such that there
is no t-semiflow X with σ1 − X ≥ 0. Let us suppose that |σ1| > K · |T |. It
is straightforward that there exists a transition t ∈ T such that t is fired at
least K + 1 times in σ1. Since the process subnets are conservative, and the
process places are empty in m0, for every reachable marking m′ ∈ RS(N , m0),∑

p∈P0∪PS
m′[p] = K.

This means that if we labelled each token in the process places with a unique
identifier i ∈ [1, K], at least one of them should visit twice the process place p,
where {p} = •t ∩ (P0 ∪ PS), i.e., the active process (the token) should travel
through a circuit of the state machine. Since every circuit in a S4PR induces a
minimal t-semiflow ([8]) then exists a t-semiflow X , σ1 − X ≥ 0, contradicting
the hypothesis. �

The size of the firing sequence σ in lemma 1 is polynomial in the size and
population of the net. This will let us prove that S4PR-NL is in NP.

Theorem 2. S4PR-NL is NP-easy.

Proof. We will use the following problem for our demonstration:

Problem 2. S4PR-Bad-Marking (S4PR-BM)
Given: A marked S4PR 〈N , m0〉, being m0 an acceptable initial marking,

and a firing sequence σ such that (|σ| ≤ K · |T |), (m0[σ〉m) and (m �= m0),
where K =

∑
p∈P0

m0[p].
To decide: Does 〈N , m〉 hold that every m-process-enabled transition is m-
resource-disabled?

1. S4PR-BM is in P. Given σ, m can be easily computed using the net state
equation. For every transition, m-process-enabledness and m-resource-
disabledness can be checked in deterministic linear time in the size of N .

2. Let (N , m0, σ) be a valid input for S4PR-BM, being (N , m0) an input for
S4PR-NL. Since the length of σ is polynomial in the size of the input,
it is trivial to find two encodings e1(N , m0, σ) and e2(N , m0) such that
|e1(N , m0, σ)| ≤ c′ · |e2(N , m0)|c, given c, c′.1

3. S4PR-NL can be verified in deterministic polynomial time. By theorem 1,
S4PR-NL returns YES with input (N , m0) iff exists a firing sequence σ,
m0[σ〉m and m �= m0, such that every m-process-enabled transition is m-
resource-disabled. In that case, by lemma 1, a firing sequence σ can be found
such that with |σ| ≤ K · |T |. Thus S4PR-NL(N , m0) returns YES iff exists
σ such that S4PR-BM(N , m0, σ) returns YES. �
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Fig. 3. SAT → S4PR-NL. Net N j
i for each literal xi in Cj .

Now we will devote to prove NP-hardness, reducing SAT to S4PR-NL. Let
F = C1 · C2 · ... · CNc be a formula in conjunctive normal form, and let X =
{x1, ...xk} be the set of its variables. For every xi ∈ X let Nxi (Nxi) be the
number of clauses of F in which the literal xi (xi) appears.

Also please note that, for every j ∈ [1, Nc], we define the index j ⊕ 1 as either
j + 1 (iff j < Nc) or 1 (iff j = Nc). Similarly, we define the index j � 1 as either
j − 1 (iff j > 1) or Nc (iff j = 1).

We will construct the net NF in the following compositional manner:

1. For every xi ∈ X , i ∈ [1, k], we add the place xi (in case Nxi > 0) and the
place xi (in case Nxi > 0).

2. For every clause Cj, j ∈ [1, Nc], we add two places to NF , called oj and sj⊕1
j .

3. For every literal xi in Cj, i ∈ [1, k], j ∈ [1, Nc], we add four places (aj,i, bj,i,
dj,i, ej,i) and five transitions (tj,i, uj,i, vj,i, wj,i, yj,i), and we connect them
to the rest of the net as depicted in figure 3.

4. For every literal xi in Cj , i ∈ [1, k], j ∈ [1, Nc], we add the same places
and transitions as in the last point, but we do not exactly connect them as
depicted in figure 3. Instead, we must follow the same pattern of the figure
but interchanging xi per xi, and Nxi per Nxi.

In order to avoid unnecessary confusions, we want to remark the fact that the
place sj

j�1 in figure 3 is the same place as sj′⊕1
j′ , for j′ = j � 1 (j = j′ ⊕ 1).

The initial marking m0 of every place will be as shown in figure 3. The reader
can check that the resulting net system 〈NF , m0〉 is a marked S4PR with an ac-
ceptable initial marking, where INF = [1, Nc], every clause Cj results in a process
net where oj is the idle place, and the resource places are every xi, xi, and sj⊕1

j .
In figure 4 it is depicted the resulting net NF for the formula F = x1(x1 +

x2)(x2 + x3). In this example, SAT(F) returns YES since the formula is satisfi-
able, e.g. assigning x1=”true”, x2=”false” and x3=”false”.

Theorem 3. SAT → S4PR-NL

Proof. We will prove that SAT(F) returns YES iff S4PR-NL(NF , m0) returns
YES. By theorem 1, 〈NF , m0〉 is non-live iff exists a reachable m, m �= m0,
such that every m-process-enabled transition is m-resource-disabled. The four
necessary conditions defined by Coffman [1] establish that in this state a circular
1 By |e| we denote the length of the encoding e.
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Fig. 4. SAT → S4PR-NL. Example: F = x1(x1 + x2)(x2 + x3)

wait exists. This is only possible with a circular wait on the resource places
sj⊕1

j , since (by construction) the only transitions that can be m-process-enabled
and m-resource-disabled are vj,i or wj,i. Since it is also necessary that every
locked process is in a “hold and wait” state on the blocking set of resources (as
expressed by Coffman [1]), we can easily infer: 〈NF , m0〉 is non-live iff exists
m ∈ RS(NF , m0) such that ∀j ∈ [1, Nc] . ∃|i ∈ [1, k] such that m[dj,i] = 1 (thus,
m[sj⊕1

j ] = m[aj,i] = m[bj,i] = m[ej,i] = m[oj ] = 0).
Now, ∀j ∈ [1, Nc], i ∈ [1, k] such that m[dj,i] = 1, there are two mutually

exclusive alternatives: either (1) Yxi [dj,i] = 1, Yxi [dj,i] = 0, or (2) Yxi [dj,i] = 1,
Yxi [dj,i] = 0. Note that Yxi and Yxi are the minimal p-semiflows induced by the
resource places xi, and xi, respectively.

By construction, (1) is applied to NF when literal xi appears in the clause Cj

of the formula F . Equivalently, (2) is applied to NF when literal xi appears in
the clause Cj of the formula F .

If (1) holds, then �j′ ∈ [1, Nc], j �= j′, such that Yxi [dj′,i] = 1 and m[dj′,i] = 1.
Otherwise, tj,i and tj′,i should have been fired to reach m. But the firing of tj,i
requires that no token from xi is taken, and the firing of tj′,i requires that no
token from xi is taken, so tj,i cannot be fired after tj′,i and viceversa, leading
to a contradiction. By an analogous reasoning, if (2) holds, then �j′ ∈ [1, Nc],
j �= j′, such that Yxi [dj′,i] = 1 and m[dj′,i] = 1.

Let f be a truth assignment for the set of boolean variables X , f : X → {true,
false, don’t care}. For every xi ∈ X we define f(xi) as:

– f(xi)=“true” iff ∃j ∈ [1, Nc] such that (m[dj,i] = 1) ∧ (Yxi [dj,i] = 1). This
corresponds to case (1).

– f(xi)=“false” iff ∃j ∈ [1, Nc] such that (m[dj,i] = 1) ∧ (Yxi
[dj,i] = 1). This

corresponds to case (2).
– f(xi)=“don’t care”, iff �j ∈ [1, Nc] such that m[dj,i] = 1.
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As we have seen, this assignments are mutually exclusive. Without loss of
generality, we can finally redefine the non-liveness condition in the following way,
which proves the hypothesis: 〈NF , m0〉 is non-live iff exists a truth assignment f
such that ∀j ∈ [1, Nc] . ∃i ∈ [1, k] such that either f(xi) = “true” and xi appears
in Cj, or f(xi) = “false” and xi appears in Cj. �
Note that, as expected, the net system in figure 4 is non-live: the total dead-
lock 〈NF , m〉 is reachable from 〈NF , m0〉, where m[d1,1] = m[d2,2] = m[d3,3] =
m[x1] = m[x2] = 1, being the rest of the places empty. Finally, we can conclude:

Theorem 4. S4PR-NL is NP-complete.

Proof. S4PR-NL is NP-hard since, by theorem 3, SAT is reducible to S4PR-NL,
and it is also NP-easy by theorem 2. �

3.2 Non-liveness Beyond the Initial Marking

The reader may have been left wondering why we chose to define the S4PR prob-
lem beginning from an acceptable initial marking. Instead, we could have studied
the more general problem of determining if, given 〈N , m〉, m ∈ RS(N , m0), the
system is non-live. Indeed, the same complexity result applies: we can easily re-
duce this problem to S4PR-NL. This is rather obvious from the fact that we can
fire an arbitrary sequence from m trying to lead every active process to the idle
places. If we are able to reach m0, then the reduction applies. If we are not able
to reach m0, we will have found a marking such that every m-process-enabled
transition is m-resource-disabled, and the system is thus non-live.

Note that this is not true in general for every solution of the net state equation,
m = m0 + C · X , X≥\ 0. The problem resides in the fact that S4PR nets may
have killing spurious solutions, i.e., solutions of the net state equation that are
not reachable and which are non-live while the system 〈N , m0〉 is live. Note that
the problem of determining if a given marking is a spurious solution is studied
in subsection 3.4, and it is proven to be co-NP-complete.

3.3 Deadlock Avoidance and Detection

In previous works ([2,9,10]), the complexity of the deadlock avoidance problem
has been determined for different classes of RAS, in some sense more restric-
tive than the S4PR category, as explained in section 1. These seminal results are
based on the study of safeness (as defined in the deadlock prediction problem [2],
“the existence of a feasible sequence in which to allocate the remaining resource
requirements of the processes”). However, the process structure in these earlier
models was finite and acyclic: once a process had satisfied all the resource re-
quirements, it was terminated and hence removed from the system. On the other
hand, a marked S4PR does not have a target state; instead, the processes are
structurally repetitive. Hence, it is desirable to ensure that the feasible sequence
is arbitrarily long. This leads us to the following definition:

Definition 4. Let 〈N , m0〉, N = 〈P, T, C〉 be an S4PR with an acceptable ini-
tial marking, and let m be a reachable marking, m ∈ RS(N , m0). Then 〈N , m〉
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(or simply, m) is doomed to deadlock iff ∃ k ∈ IN such that for every firable
sequence σ, m[σ〉, exists t ∈ T such that t is fired at most k times, σ[t] ≤ k.

The negation of this property (i.e. m is not doomed to deadlock) is somehow
an extension of that concept of safeness and leads us to the optimal deadlock
avoidance strategy: in our relaxed terminology, a resource allocation will be
“safe” iff m is not doomed to deadlock. Soon we will see that markings which
are doomed to deadlock are well characterized in the S4PR class.

In contrast, an optimal deadlock detection strategy should detect iff a marking
m is doomed to deadlock, and apply recovery techniques in that case. It must be
remarked that here we understand optimality in the strictest sense: the ability
to detect the problem as soon as possible, i.e., as soon as a transition in the net
is bound to die. Please note that other works define optimal detection as simply
deciding iff there exists a transition which is effectively dead, i.e. no longer firable,
in the current marking. The latter is less general and also computationally easier.
The earlier will be proved co-NP-complete:

Problem 3. S4PR-Deadlock-Detection (S4PR-DD)
Given: A marked S4PR 〈N , m0〉, being m0 an acceptable initial marking,

and a reachable marking m, m ∈ RS(N , m0).
To decide: Is 〈N , m〉 doomed to deadlock?

Lemma 2. Let 〈N , m0〉, N = 〈P, T, C〉 be an S4PR with an acceptable initial
marking, and let m be a reachable marking, m ∈ RS(N , m0). Then 〈N , m〉 (or
simply, m) is doomed to deadlock iff m0 /∈ RS(N , m).

Proof. The necessary part (“only if”) is rather obvious: every minimal t-semiflow
is firable in isolation from m0. This means that we can build a repetitive sequence
in which we successively fire every minimal t-semiflow, hence firing every transi-
tion an arbitrarily large number of times. Regarding the sufficient part (“if”), let
us proceed by reduction to absurd. Suppose that m0 /∈ RS(N , m), and that ex-
ists an infinite finite sequence σ, m[σ〉 such that every transition is fired infinite
times. In that case, every time a transition t ∈ •P0 is fired in σ (so the marking
of an idle place is increased), we can freeze the token in the correspondent idle
place (i.e. leave the token there). Since the idle places are the unique places in
which no resource is used, this augments the number of resources available in
the system, so the rest of active processes (i.e. tokens in the process places) can
be moved in the same way as in the original sequence σ. Proceeding this way,
we could construct a sequence σ′ that moves all the tokens to the idle places,
reaching m0, unless there exists a place p ∈ PS with frozen tokens in it (m[σ′〉m′,
m′[p] > 0). But this is impossible, since that would imply that p• is m′-resource-
disabled. Since the number of available resources has not been decreased, that
would imply that p• was not infinitely firable in σ, reaching a contradiction. �

Thus the problem of deadlock avoidance can be reduced to the problem of deter-
mining the reachability of the initial marking: a problem that is NP-complete,
as we will see.
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Problem 4. S4PR-Reachable-Initial-Marking (S4PR-RIM)
Given: A marked S4PR 〈N , m0〉, being m0 an acceptable initial marking,

and a reachable marking m, m ∈ RS(N , m0).
To decide: Is m0 reachable from 〈N , m〉?

Theorem 5. S4PR-RIM is NP-complete.

Proof. In order to prove NP-easiness, let us introduce the following problem:

Problem 5. S4PR-Path-to-Initial-Marking (S4PR-PIM)
Given: A marked S4PR 〈N , m0〉, being m0 an acceptable initial marking,

a reachable marking m ∈ RS(N , m0), and a firing sequence σ,
|σ| ≤ K · |T |, where K =

∑
p∈P0

m0[p].
To decide: Is m0 reached firing m[σ〉?

1. S4PR-PIM is in P (this is rather trivial: checking the firability of every
transition in the sequence can be done in deterministic linear time).

2. Let (N , m0, m, σ) be a valid input for S4PR-PIM, being (N , m0, m) an input
for S4PR-NL. As the size of σ is polynomial in the number of transitions and
population of the net, it is trivial to find two encodings e1(N , m0, m, σ) and
e2(N , m0, m) such that |e1(N , m0, m, σ)| ≤ c′ · |e2(N , m0, m)|c, given c, c′.

3. S4PR-RIM can be verified in deterministic polynomial time. By lemma 1,
but reasoning over the reverse net, if m0 is reachable there is a firing sequence
σ, m[σ〉m0, with (|σ| ≤ K · |T |). Hence, S4PR−NL returns YES with input
(N , m0) iff exists a firing sequence σ such that S4PR-PIM returns YES.

Now that NP-easiness is proven, it is required to prove NP-hardness. But this
part is rather straightforward, due to the fact that (as commented before) the
problem of safeness in previous works ([2,9,10]) can be easily proven a subcase of
S4PR-RIM. Since the problem was already NP-hard for this models, we conclude
that the problem is NP-hard through restriction [14]. �
Summing up, S4PR-DD is co-NP-complete (i.e., optimal deadlock detection in
the S4PR is co-NP-complete)2. The problem of optimal deadlock avoidance re-
mains NP-complete for the S4PR class.

3.4 Spurious Markings

A spurious marking is a solution of the net state equation, m = m0 + C · X ,
X � 0, that is not reachable from m0. A killing spurious solution is a spurious
marking such that 〈N , m〉 is non-live. There exist Petri net subclasses, such
as equal conflict (EQ) systems [15], for which killing spurious solutions are not
possible. In those cases, the linear description provided by the net state equation
can be used to determine the liveness of the system.

Unfortunately, the S4PR class is not one of those classes, and this limits the
potential of the net state equation for this purpose. Unless that, noticeably,
2 However, we remind the reader that there exists a reachable marking m′ such that

it can be structurally characterized as a bad marking by theorem 1, but this does
not affect the inherent computational complexity of the problem.



Resource Allocation Systems: Some Complexity Results on the S4PR Class 335

spurious solutions were efficiently detectable for a given S4PR system. As we
will see, however, this is a co-NP-complete problem:

Problem 6. S4PR-Spurious-Detection (S4PR-SD)
Given: A marked S4PR 〈N , m0〉, being m0 an acceptable initial marking,

and m ∈ IN|P |, m = m0 + C · X , X ≥ 0.
To decide: Is m an spurious marking?

Intuitively, m is an spurious marking iff m0 is not reachable from m in its reverse
(note that there may be isolated spurious solutions, i.e. not connected to the reach-
ability space). Meanwhile, the reverse net of a S4PR is another S4PR. This is quite
trivial, since the polarity inversion of the incidence matrix does not affect its (left
or right) annullers, so the p and t-semiflows are preserved with respect to N .

It is easy to see now that S4PR-SD is co-NP-complete. This is bad news since,
unless NP=P, this implies that we cannot verify that a marking is spurious in
deterministic polynomial time using solely the structure of the net.

4 Conclusions

RAS is an abstraction of real systems allowing to concentrate on the study
of problems such as deadlocks due to the sharing of resources used in mutual
exclusion. Modelling RAS with Petri nets is particularly easy through the iden-
tification of processes with state machines and resources with monitor places
representing the allocation of copies of resources. As a consequence, the S4PR
subclass has already been proven specially useful and suitable for the RAS ab-
straction of Flexible Manufacturing Systems (FMS) [13]. For this reason, we
have devoted an insight on the complexity of some problems related to handling
with deadlocks using this kind of models.

As expected, many of the important problems are proven computationally
intractable, and for this reason, the heuristics presented in [8,13] have special
interest. Regarding optimal deadlock prevention, we have established that the
problem of determining if a marked S4PR is non-live is NP-complete. Besides, we
have provided evidence for NP-completeness of optimal deadlock avoidance for
this class, generalizing earlier results for other types of RAS which were already
proven NP-hard. This was accomplished thanks to proving the equivalence of this
problem with that of deciding the reachability of the initial marking. The inverse
problem (optimal deadlock detection, in the strictest sense) is co-NP-complete.

Moreover, because the mathematical methods presented in [13] are based on
the net state equation, an insight on the complexity of the detection of spurious
markings is also relevant. The intractability of the problem, along with the ex-
istence of killing spurious solutions, constrains the practicality of the net state
equation for determining non-liveness.

Finally, a motivating example was also introduced, in order to depict the
utility of our conceptual framework in the study and correction of deadlock
problems in distributed systems and protocols, beyond the FMS context.

Obviously, the modelling power of the S4PR class is limited if we consider,
e.g., certain applications coming from the world of distributed computing. The



336 J.-P. López-Grao and J.-M. Colom

generalization of the S4PR subclass for modelling RAS hence emerges as an
appealing future research direction. [16] is a first effort in this vein. For the
generalized net classes, the problems here studied will fall, at best, within the
same complexity classes. Nevertheless, their study will give us insight on more
complex behaviours that can observed in these systems [16].
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A Petri Nets: Basic Definitions

A place/transition net (P/T net) is a 3-tuple N = 〈P, T, W 〉, where W is a
total function W : (P × T ) ∪ (T × P ) → IN, being P , T non empty, finite and
disjoint sets. Elements belonging to the sets P and T are called respectively
places and transitions, or generally nodes. P/T nets can be represented as a
directed bipartite graph, where places (transitions) are graphically denoted by
circles (rectangles): let p ∈ P , t ∈ T , u = W (p, t), v = W (t, p), there is a directed
arc, labelled u (v), beginning in p (t) and ending in t (p ) iff u �= 0 (v �= 0).

The preset (poset) or set of input (output) nodes of a node x ∈ P∪T is denoted
by •x (x•), where •x = {y ∈ P ∪T | W (y, x) �= 0} (x• = {y ∈ P ∪T | W (x, y) �=
0}). The preset (poset) of a set of nodes X ∈ bag(P ) ∪ bag(T ) is denoted by •X
(X•), where •X = {y | y ∈ •x, x ∈ X} (X• = {y | y ∈ x•, x ∈ X}

A generalized P/T net is a net with positive arc weights. If the arc weights are
unitary (i.e., W can be defined as a total function (P × T ) ∪ (T × P ) → {0, 1})
the net is called ordinary. A state machine is an ordinary net such that for every
transition t ∈ T , |•t| = |t•| = 1.

Let N = 〈P, T, W 〉 be a P/T net. Its reverse net N r = 〈P, T, W r〉 is the same
net with its arcs inverted, i.e. W r(p, t) = W (t, p) and W r(t, p) = W (p, t).

A self-loop place p ∈ P is a place such that p ∈ p••. A pure P/T net (also
self-loop free P/T net) is a net with no self-loop places. In pure P/T nets, the
net can be also defined by the 3-tuple N = 〈P, T, C〉, where C is called the
incidence matrix, C[p, t] = W (p, t) − W (t, p).

A marking m of a P/T net N is a vector IN|P |, assigning a finite number
of marks m[p] (called tokens) to every place p ∈ P . Tokens are represented by
black dots within the places. The support of a marking, ‖m‖, is the set of places
which are marked in m, i.e. ‖m‖ = {p ∈ P | m[p] �= 0}.

We define a marked P/T net (also P/T net system) as the duple 〈N , m0〉,
where N is a P/T net, and m0 is a marking for N , also called initial marking. N
is said to be the structure of the system, while m0 represents the system state.

Let 〈N , m0〉 be a marked P/T net. A transition t ∈ T is enabled (also firable)
iff ∀p ∈ •t . m0[p] ≥ W (p, t), which is denoted by m0[t〉. The firing of an
enabled transition t ∈ T changes the system state to 〈N , m1〉, where ∀p ∈
P . m1[p] = m0[p] + C[p, t], and is denoted by m0[t〉m1. A firing sequence σ
from 〈N , m0〉 is a non-empty sequence of transitions σ = t1 t2 ... tk such that
m0[t1〉m1[t2〉 ... mk−1[tk〉. The firing of σ is denoted by m0[σ〉tk. We call the
firing count vector σ of σ to the Parikh mapping σ → IN|T | (i.e. σ[t] is equal to
the number of times t appears in σ). The support of σ is denoted by ‖σ‖.

A marking m is reachable from 〈N , m0〉 iff there exists a firing sequence σ such
that m0[σ〉m. The reachability set RS(N , m0) is the set of reachable markings,
i.e. RS(N , m0) = {m | ∃ σ . m0[σ〉m}.

The net state equation of a marked P/T net 〈N , m0〉 is an algebraic equation
defined as m = m0 + C · σ, where σ≥\ 0. Every reachable marking holds the
net state equation, but there may exist solutions to the equation which are not
reachable markings. Thus we will call m a potentially reachable marking. The
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potential reachability set PRS(N , m0) is defined as PRS(N , m0) = {m | ∃ σ ∈
IN|T |. m = m0 + C · σ, σ≥\ 0}.

A transition t ∈ T is live iff for every reachable marking m ∈ RS(N , m0),
∃m′ ∈ RS(N , m) such that m′[t〉. The system 〈N , m0〉 is live iff every transition
is live. Otherwise, 〈N , m0〉 is non-live. A transition t ∈ T is dead iff there is
no reachable marking m ∈ RS(N , m0) such that m[t〉. The system 〈N , m0〉 is
a total deadlock iff every transition is dead, i.e. no transition is firable. A home
state mk is a marking such that it is reachable from every reachable marking,
i.e. ∀m ∈ RS(N , m0) . mk ∈ RS(N , m). The net system 〈N , m0〉 is reversible
iff m0 is a home state.

A p-semiflow (t-semiflow) is a vector Y ∈ IN|P |, Y �= 0 (X ∈ IN|T |, X �= 0),
which is a left (right) annuler of the incidence matrix, Y · C = 0 (C · X = 0).
The support of a p-semiflow (t-semiflow) is denoted ‖Y ‖ (‖X‖), and its places
(transitions) are said to be covered by Y (X). The P/T net N is conservative
(consistent) iff every place (transition) is covered by a p-semiflow (t-semiflow).
A minimal p-semiflow (minimal t-semiflow) is a p-semiflow (t-semiflow) such
that the g.c.d of its non-null components is one and its support ‖Y ‖ (‖X‖) is
not an strict superset of the support of another p-semiflow (t-semiflow).

A path π of a P/T net N is a sequence of nodes π = x1 x2 ... xn such that the
odd components are places and the even components transitions, or viceversa,
and for every pair (xi, xi+1), W (xi, xi+1) �= 0. An elementary path is a path such
that ∀i, j ∈ [1, n] . xi �= xj , except for x1 = xn (which is allowed). A general
circuit is a path such that x1 = xn. An elementary circuit (or simply circuit) is
both an elementary path and a general circuit.

B The Problem of Satisfiability(SAT)

Let X = {x1, ..., xn} be a set of boolean variables. By the process of truth
assignment, every variable in X is assigned one value: either true or false. Let
xi ∈ X , we call a literal to either xi or its negation, xi. Intuitively, if the variable
xi is assigned the value true, the literals xi and xi are true and false, respectively
(and viceversa if false is assigned). We define a clause Cj as a non-empty set of
literals. The value of a clause is the disjunction of its literals, i.e., it is true iff at
least one literal is true; and false otherwise. Finally, a formula F is a non-empty
set of clauses, and its value is the conjunction of them, i.e., it is true iff all its
clauses are true; false otherwise.

Without loss of generality, we will assume that, given a formula F = C1 · ... ·Ck

and the set of its variables X , every variable xi ∈ X appears in at least one clause,
and also that xi appears at most once in each clause, be it negated or not.

Problem 7. SATISFIABILITY (SAT)
Given: A formula F and the set of its variables X .
To decide: Is there a truth assignment for X such that F is true?
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