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Abstract

Proving properties of Place/Transition Nets through Linear Algebraic
Techniques is very interesting because of the polynomial complexity of the
algorithms used for this purpose. In this sense, many works have been de-
voted to the linear analysis of marking related properties (e.g. boundedness
of the state space, mutual exclusions, etc.). Nevertheless, few results exist
related to linear analysis of liveness properties. In this note, we investigate
some applications of linear techniques to partial characterization of liveness
properties. First, a necessary condition for structural liveness in structural
bounded nets is presented. It is based on the rank of the incidence ma-
trix. Finally, given an initial marking, some sufficient conditions for dead
transitions and for deadlock-freeness are presented.

1 Introduction

The interest in parallel and distributed systems grows constantly according to the new
domains of application of this kind of systems. One of the main problems arising from
these systems is their complexity that implies a stressed necessity for analysis techniques
of properties of good behaviour before the implementation.

Petri nets have been proved specially adequate to model parallel and distributed
systems. Moreover, they have a well founded theory of analysis that allows to investigate
a great number of properties of the system.

Two properties of a system that can be considered as paradigmatic are: Boundedness,
related with the finiteness of the state space, and Liveness that concerns the infinite
activity of all actions of the system from any reachable state.
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The boundedness of a net system (N, M) characterizes the finiteness of the marking
space and is a decidable property. Tipically, it is decided computing the coverability
graph [FINK 90], but it is an exponential space hard problem. Structural Boundedness
(SB) is a stronger condition in which all net systems that are built by defining an M over
N are asked to be bounded. Hoppefully, structural boundedness allows the following
linear algebraic characterization [SILV 88]:

NisSB <3V >0,YT.C<0

where C' is the incidence matrix of the net.

Thus, SB can be characterized in polynomial time proving that there exists at least
one solution of a linear system of inequalities. In order to prove this, Linear Program-
ming techniques can be used by solving a Linear Programming Problem (LPP) that it is
of polynomial time complexity [KARM 84]. Moreover, we can use the simplez algorithm
to solve an LPP that even if it is of exponential complexity in theory, in practice it
frequently becomes linear [SAKA 84]. For the above proposed system of linear inequal-
ities, the existence of a solution can be proved through phase I of the simplex algorithm
applied to the following LPP:

maximize 07 .Y (1)
subject to YT .C <0
Y>1

Phase I of the simplex works by computing (if there exists) a basic feasible solution
of the set of constraints of the LPP.

The goal of this note is to improve the study of liveness property in structurally
bounded nets by means of linear algebraic techniques. We firstly present a necessary
condition computed through the rank of the incidence matrix of the net. After that, we
present a sufficient condition for dead transitions and a sufficient condition for deadlock-
freeness.

In this note we assume that the reader is familiar with concepts of P/T nets. The
definitions and notations throughout the note follow [BRAM 83, SILV 85].

2 Previous Results

2.1 Conservativity and Consistency

In this subsection we present some classical necessary conditions for a net to be struc-
turally live and structurally bounded. They will be used in the proofs of the results of
section 3.

Theorem 2.1 (Necessary condition for structural liveness) Let N be a connected P/T
net.

1) N is Structurally Live (SL) = N Structurally Repetitive (SR).

2) N is Structurally Repetitive (SR) and Structurally Bounded (SB) < N is Con-
servative (C,) and Consistent (Cy).
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Figure 1: Illustrating the two cases in the proof theorem.

3) N is Conservative (C,) and Consistent (Cy) = N is Strongly Connected (S.).

Proof. Theorems 2.1.1 and 2.1.2 are classical and their proofs can be found in
[BRAM 83, SILV 85], for example.

Proof of theorem 2.1.3. If A/ is not strongly connected it implies that there exist
two nodes x,y € PUT such that x is connected to y by one directed arc but there
is not a path from y to x. From this statement two alternative cases arise:

1) x € P,y €T and y € z* but there is not a path from y to z (figure 1.a), or
2) z €T,y € P and y € x° but there is not a path from y to = (figure 1.b).

The proof is done verifying that if A/ is not strongly connected then N is non-
conservative (derived from Case 1) or N is non-consistent (derived from case 2).
Therefore, the theorem is proved.

Let us consider Case 1 first. We try to build a vector ¥ > 0 such that Y7 -C =0
and z € [|Y]. In order to do that, we must combine the corresponding row of
place z in the incidence matrix with each row of places belonging to y*® in such a
way that the entry of the dot product Y7 - C corresponding to transition y is zero.
In other words, to build the vector Y we proceed constructing all paths starting
from x and ending in a place p € y°. Iterating the scheme with respect to the new
incidence matrix that contains the new rows obtained in the above combinations
we obtain a vector Y > 0 such that Y7 - C' = 0 if there exists at least one path
from y to z (since the entry of the dot product Y7 -C corresponding to transitions
*z will be zero if we go from y to x in the built path). But, this is not possible
because the net is not strongly connected. Therefore the net is non-conservative
since all vector Y > 0 such that Y7 -(C = 0 cannot include an entry corresponding
to place x different from zero.

To prove Case 2 we can reason in a similar way to case 1 but now we proceed to
build a vector X > 0 such that C'- X =0 and y € || X||. Therefore, we conclude
that if the net is not strongly connected then the net is non-consistent. .

Assuming nets are connected, the former theorem can be rewritten in the following
more compact way:

SL and SB = SR and SB < C, and C; = S.

The extremal parts of the above relations (i.e. SL and SB = S.) represent a par-
ticular case of the proposition 11.4.7 in [SHIE 87]: A finite connected P/T net which
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is live and bounded for a marking M, is strongly connected. Nevertheless, this is non
comparable with the second embedded statement: C, and C; = S..
The above theorem allows us to obtain the following obvious corollary.

Corollary 2.2 Let N be a structurally live and structurally bounded net. Then
rank(C) < min(m — 1,n — 1).

Example 2.3 shows that theorem 2.1 (and corollary 2.2) is a poor characterization
of structural liveness and structural boundedness.

Example 2.3 The four nets in figure 2 are conservative and consistent (thus they verify
the rank formula of the corollary 2.2), but structurally non live.

1) Figure 2.a: rank(C) < min(n — 1,m — 1) = min(6,4) = 4 and rank(C) = 4
2) Figure 2.b: rank(C) < min(n —1,m — 1) = min(4,6) = 4 and rank(C) = 4
3) Figure 2.c: rank(C) < min(n —1,m — 1) = min(5,3) = 3 and rank(C) =3
4) Figure 2.d: rank(C) < min(n — 1,m — 1) = min(4,4) = 4 and rank(C) = 4

2.2 (Structurally) Implicit Places

In this subsection, implicit and structurally implicit place definitions are recalled in
order to obtain some results which will be needed in section 3.

Let N be any net and AP be the net resulting from adding a place p to N. If M, is
an initial marking of N, M} denotes the initial marking of N?. The incidence matrix
of N is C and [, is the incidence vector of place p.

Definition 2.4 (Implicit place [SILV 85]) Given a net < NP, M§ >, the place p is
Implicit (IP) iff LIN?, M{) = LN, My) (i.e. it preserves the firing sequences, thus
liveness).

Definition 2.5 (Structurally implicit places [COLO 89b]) Given a net NP, the place p
is Structurally Implicit (SIP) iff VMy, there exists an M{[p] such that p is an IP in
< NP M§ >.

The following theorem presents a necessary and sufficient condition for a place to be
a SIP. The use of Convex Geometry Techniques allows a polynomial time computation
algorithm to decide if a place is SIP (proofs and extensions can be found in [COLO 89b]).

Theorem 2.6 (Linear Characterization of SIP [COLO 89b]) A place p is a SIP in
NP iff Y > 0 such that YT - C < 1,

Marking structurally implicit places (MSIP) are a special class of SIPs. Their
characterization is based on the existence of a vector ¥ > 0 such that the equality
holds: YT - C =1,. The following results concern MSIPs and they will be used in the

proof of the main theorem of section 3.
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Figure 2: Four consistent, conservative and structurally non live nets.



Corollary 2.7 Let N be a conservative net. A place p is an MSIP in NP iff it is a
linear combination of other places: p is MSIP < 3Y such that YT - C =1,.

Proof. A place p is an MSIP in N? < 3Y’ > 0 such that Y7 - C = [,. The
corollary follows because the net is conservative and then there exists a vector
Y, > 0 such that Y, - C = 0. Therefore, all vectors Y =k Y, +Y' with k € Z
verify Y7 - C = [,,. "

Proposition 2.8 If N is a conservative and structurally live net and p is a place such
that YT - C' =1, then N7 is also conservative and structurally live.

Proof. If N is a conservative net then the place defined by the linear equality
YT.C =1,is an MSIP (by corollary 2.7). Therefore, the addition of p preserves
structural liveness. If N is a conservative net then there exists Y, > 1 such
that Y7 - C = 0. We select a number k € IN such that k-Y, —Y > 0 (e.g.

= maz{Yi]|i = 1,...,n}). From this last relation we obtain a p-semiflow of
the net NP that it includes the place p:

C

(=YY |

c|. .. )

] =0, where C? = l I ] is the incidence matrix of NP
p

Therefore the net N'? is also conservative. m

3 About structural liveness in structurally bounded
nets

This section improves the necessary condition for a net to be structurally live and
structurally bounded in theorem 2.1, adding an upper bound for the rank of the incidence
matrix. The main stream for the proofs is a generalization of a scheme sketched in
[CAMP 90]. Before presenting the main result we introduce a new concept.

Definition 3.1 Two transitions t, and t, are said to be in equality conflict relation
(ECR) iff PRE|[t,| = PRE[ty], where PRE]t,| and PRE[t,] are the pre-incidence func-

tions of transitions t, and ty, respectively.

Since ECR is based on the equality of vectors, it is an equivalence relation on the
set of transitions. Each equivalence class will be called equality conflict set (ECS). Let
D be an ECS, the number 6p = |D| — 1 is called number of non-redundant conflicts of
D. The number of non-redundant conflicts of a net is the sum of all dp corresponding
to the ECSs of the net. This number will be denoted as 6: § = 3 per/per Op-

We present bellow the main theorem of this section.

Theorem 3.2 Let N be a structurally live and structurally bounded net. Then N is
conservative, consistent and rank(C) < m — 6 — 1; where C' is the incidence matriz of
N, m=|T|, n=|P| and § is the number of non-redundant conflicts of the net.
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Figure 3: Introduction of a local scheduler at an ECS.

In order to prove the above theorem we previously present some lemmatas. The first
lemma concerns the reduction of the non-determinism at equality conflicts, preserving
the liveness property, by means of the merging of a special class of nets (local schedulers).

Let D={t;Ji=1,...,6p + 1} be an ECS of the net N'. A local scheduler for D is
a net, LSp, defined as (see figure 3):

ESD - (PLSD7T£SD7PRELS[):POSTCSD)

Tps, NT =D
T2s, U Trs, = Prsy,
Prs, NP =10

Lemma 3.3 Let N be a net and D an ECS of N. Let LSp be a local scheduler for
D. If N and LSp are structurally live in isolation, then the net obtained by merging
the common transitions of N and LS p, N*5P, is structurally live.

Proof. Let M, and Mg, be initial markings making live the nets A and LSp,
respectively. Let MOCSD be an initial marking of N“5P such that its projection
on P is My and its projection on Pgs, is Mo,s,. Let M*5P € R(N*5p, MESP)
and t a transition of N. We prove that there exists a firing sequence, ¢*5?, in
< NESp MESp > that yields to a marking enabling ¢ (i.e. the net N45? is live
under Mg5P).

The projection of M*5P on P is a marking M € R(N, My) from which there exists
at least one o € L(N, M), yielding to a marking M’ that enables ¢ (because the
net N is live). From this fact, three cases arise:

a) If o does not contain any transition belonging to D then it is also firable in
the net M550,

b) If o contains one transition t, € D, that is o = ogt,0,, then there exist (§p+1)
firable sequences from M of the form ogt;o;, t; € D, i =1,...,0p + 1, that
allow to reach a marking enabling ¢. This is because N is live and M[og) Mp;
Vti € D, MD[tz>Ml S R(N, M()) andVi=1,...,6p + 1, Ml[O'l>Mll[t> There-
fore, at least one of the sequences oyt;0; can be fired in N'*°P: ¢, and o; are
firable according to the above case (a); at least one ¢; € D is firable because
LSp is a live net (eventually, after the firing of some internal transitions of
the local scheduler in order to eniable ti).



Figure 4: Counterexample to the converse of lemma 3.3.

c¢) If o contains more than one transition of D we can find a firable sequence in
N that it is firable in N*5P. This can be done by applying repeatedly the
above case (b).

Liveness of transitions belonging to £LSp can be proved with similar arguments.
Therefore, the net N457 is live under MFS? and then structurally live. .

Unfortunately, the converse of lemma 3.3 is not true. Let us consider, for instance,
the structurally non live net in figure 4.a. The net of figure 4.b is a structurally live
local scheduler for transitions a and b. The composition of the two nets is the net of
figure 4.c that now is structurally live.

In the sequel, we consider a simple class of local schedulers called regulation circuits.
These nets are used as a tool to proof the main theorem. Nevertheless, they are not the
unique local schedulers that can be used for that purpose.

Let t, and ¢, be two transitions of A in equality conflict relation. A regulation
circuit for tq, ty is a net rop =< P, ,, T, ,, PRE, ,, POST, , >; where: P, , = {pab, Pva},
T.., = {ta, tp} and

.pab = {ta}:p;b = {tb}7 PRET‘ab [pab7tb] = POSTTQb [pa!hta] =1

.pba = {tb}yp[:a = {ta}7 PRETab [pbmta] = POSTTab[pba: tb] =1

The composition of N and 74, (by merging the common transitions t,, t,) will be
denoted as N7+, The incidence matrix of N« will be denoted as C"e.

Let N be a net and D = {t;]i = 1,...,0p + 1} be an EC'S. The net obtained
from AN by adding a regulation circuit per each pair of transitions t;, ;.1 € D,k =
1,...,6p will be denoted NP and its corresponding incidence matrix C®2. The net
obtained by adding regulation circuits for all EC'S as above will be denoted N and
the corresponding incidence matrix C¥.

The following lemma presents some properties of N'#P derived from the correspond-

ing properties of N. .



Lemma 3.4 Let N be a net and D = {t;]i = 1,...,0p + 1} be an ECS. If N is
structurally live and structurally bounded then N'EP is structurally live and structurally
bounded.

Proof. The set of regulation circuits added to A is a local scheduler for D.
Let 74 ,+1 be a regulation circuit for t;,%,+; € D. Because all pair of regulation
circuits 74 x+1 and 7441 g4+ share the transition ¢;;, the local scheduler is a strongly
connected marked graph and therefore structurally live [MURA 89]. The net N
is also structurally live and then, by lemma 3.3, the net A7 is structurally live.

All places of N are structurally bounded. Taking into account the definitions of
Ptptry, and py 4, it is easy to see that CHto [Peptes) + CHto Ptysiti) = 0 (ie. the
sum of the rows in the incidence matrix corresponding to these places is zero).
Therefore all new places added to N are also structurally bounded and then N Fp
is structurally bounded. "

Lemma 3.5 Let D = {t;|i = 1,...,0p + 1} be an ECS. If N is structurally live and
structurally bounded, then

min(m — 1,n+2-dp — 1) > rank(C*?) = rank(C) + dp

Proof. N'Ev is structurally live and structurally bounded (lemma 3.4). Therefore,
rank(C®r) < min(m®fr —1,nfr —1) (corollary 2.2); where mfr = |THr| = |T| =
m and n*? = |P2| = |P|+ |Py, |+ ... 4+ [Py |+ o+ [Py | = n42-0p. So,
we obtain: rank(CH?) < min(m —1,n+2-6p — 1).

Let NP2t be a net obtained from N by adding the place p;,;, belonging to the
regulation circuit r15. NP2t is non-conservative because for all marking that
enables the transitions of D we can decide to fire always the transition ¢, (i.e. the
place py,q, is structurally unbounded). Taking into account the proposition 2.8 we
conclude that there is not a vector Y such that Y7 - C' = CPt2t1[p,,,, ] (i.e. the row
vector CP2'1[py,, | is linearly independent with respect to the row vectors of the
incidence matrix of the net N'). Therefore, rank(C?=2t) = rank(C) + 1. If we
add the place py;, to the net NP2t1 we obtain the net N2, This last net has
the same rank that the net NP2t because C™2[py,,] = —C"™2[py,,]. Therefore,
rank(C™?) = rank(C) + 1.

Let AN'®+-1 be the net obtained from N by adding the regulation circuits
P12,y o1k N1 verifies rank(CR 1) = rank(C) + (k — 1). We prove now
that if we add the regulation circuit ry 4. to the net N1 then rank(CH) =
rank(CHe-1) + 1.

We add the place py, ¢, belonging to the regulation circuit 74 x4 to the net NBr—1,
This place is unbounded because for all marking that enables some transition of
the set {t1,...,tx}, tks1 is also enabled at this marking and then we can decide
to fire always the transition ¢44,. By proposition 2.8 the row vector C™[p,, , 4]
is linearly independent with respect to the row vectors of the incidence matrix of
the net N#-1. Therefore, rank(C") = rank(C™-1) + 1 (because CF[p, 4| =
—CT [ptktk+1])'

The number of added regulation circuits is dp, therefore rank(C*r) = rank(C) +

op. 9 .
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Figure 5: Structurally live and structurally bounded net

Now we prove the theorem 3.2.

Proof of theorem 3.2. N is conservative and consistent by theorem 2.1. If
we add a local scheduler per each ECS of the net, we obtain a net denoted N
that satisfies: min(m — 1,n+2-8§ — 1) > rank(C®) = rank(C) + . Then,
rank(C) < min(m — 6 — 1,n + § — 1). Taking into account that the net N
is structurally live and structurally bounded, by corollary 2.2, we also have that
rank(C) < min(m—1,n—1). Therefore, combining the two above upper bounds of
rank(C), we obtain: rank(C) < min(m—3§—1,n—1). But, N being conservative,
rank(C) < n —1 and the theorem follows. .

The rank condition improves the result in theorem 2.1.2.

Example 3.6 Let us consider the four nets in figure 2. Applying the rank condition of
theorem 3.2, for three of them we conclude on non-liveness.

1) Figure 2.a: There exists only one conflict set: D = {a,b}; and 6 = 1. Taking into
account that rank(C) = 4 we conclude: 4 = rank(C) > m —§ — 1 = 3 and then
the net is structurally non live.

2) Figure 2.b: There exist two conflict sets: Dy = {2,6}, 6; = 1; Dy = {3,7}, 6o =1
and 6 = 01 + 6o = 2.The application of the condition gives the following relations:
4 =rank(C) <m—0—1=4. Therefore, we cannot conclude about the structural
non liveness (i.e. the condition is sufficient but non-necessary for structural non
liveness).

3) Figure 2.c: D = {a,b}; and§ = 1. Then, 3 =rank(C) > m—06—1 = 2. Therefore
the net is structurally non live.

4) Figure 2.d: D = {a,b}; and§ = 1. Then, 4 = rank(C) > m—0—1 = 3. Therefore
the net is structurally non live.

Example 3.6.2 shows that the proposed upper bound of the rank of the incidence
matrix is not good enough for some nets. Nevertheless, if D is an ECS of N, there
is no other regulation circuit between transitions ¢;,¢; € D,i < j and @ + 1 # j such
that its addition to NBP increases the rank of its incidence matrix. In effect, the
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place py;, is a linear combination of places belonging to existing regulation circuits:
bpiye, = C2pyitiy,] + .. + CF2[py,_ . ]. Therefore, the rank cannot be increased.

In order to improve this upper bound we must increase the constant d. This can
be eventually done by considering a class of conflicts greater than that of equality
conflicts. Let us explore the (dominating conflicts), a “natural” generalization of equality
conflicts. Two transitions ¢, and ¢, are said to be in dominating conflict relation (DCR)
iff PRE[t,] > PRE]ty] (i.e. t, enabled = t, enabled; t;, dominates t,).

Unfortunately, with this definition of conflicts is not possible to improve the rank
condition in theorem 3.2. Effectively, the addition of a regulation circuit between two
transitions in DC'R does not preserves, in general, structural liveness (i.e. lemma 3.4
is not true, in general, with this kind of conflicts). To see this, we consider the net in
figure 5.a. This net is SB&SL but if we add the regulation circuit of figure 5.b between
the transitions b and ¢ (both are in DC'R), the resulting subnet is non-live. In effect,
for any live marking of the original net and of the regulation circuit, in the composed
net we can always apply a firing sequence such that M[1] = M[4] = M[py.] = 0:

Mo[1] 0 0

Mp[2] M[2] M"[2]

M3 ;| M3 s g | M'[3
o= | Apid ey =| 4w — | P

MO[pbc] 0 0

MO [pcb] MI [pcb] M, [pcb]

and therefore a deadlock is reached. At this moment we do not know if the rank condition
can be improved for general P/T nets.

The following result shows for generalized extended free choice nets (i.e. they are
nets where *t; N*t; # ) & PRE|[t;] = PRE[t;] < t;,t; € ECR) a stronger condition
than that presented in theorem 3.2.

Theorem 3.7 Let N be a structurally live and structurally bounded generalized extended
free choice net. Then N is conservative, consistent and rank(C) =m —§ — 1; where C
is the incidence matriz of N, m = |T| and § is the number of non-redundant conflicts
of the net.

Proof. The rank equality condition holds if A'® has a unique (elementary) t-
semiflow. So let us proof this condition.

The number of t-semiflows of A% is greater than or equal to 1 because it is
consistent.

We compute t-semiflows, X > 0 and C' - X = 0, applying the algorithm presented
in [COLO 89a] to the net A%, To do so, we eliminate first the places py,,,, that
connect two transitions in equality conflict relation (obviously, if we eliminate
Dt;tin, We also eliminate py,, ¢, because C¥[pyy,,, | = —C%[py,, 1 ]). The elimination
of py1,,, generates a unique new column that is a linear combination of the columns
corresponding to ¢; and #;;;. In order to eliminate p;, ., We generate again a
unique column that is a linear combination of the above added column and the
column of #;1o. If we repeat this procedure for all places py;, ., belonging to an
ECS we obtain a unique new column in which all entries corresponding to places



of the local scheduler are zero. The non-null entries of this row are *ECSUECS®.
Applying this procedure for all FC'S of the net we obtain a matrix in which there
is a new column per EC'S and all columns in the original net corresponding to
transitions that do not belong to any ECS. This matrix can be interpreted as
the incidence matrix of a structurally persistent net (there are no shared input
places). Obviously, if a transition belongs to a t-semiflow, all output transitions of
its ouput places must belong to the t-semiflow. Since the net is strongly connected
(theorem 2.1.3) there exists at most one t-semiflow.

Therefore, applying the rank formula of lemma 3.5 with rank(C%?) = m — 1 we
obtain: rank(C)=m —§ — 1. .

Corollary 3.8 Let N be a SL and SB free choice net. Then N is conservative, con-
sistent and rank(C) = m—1— (a—n); where C is the incidence matriz of N, m = |T),
n = |P| and a is the number of input arcs to transitions.

Proof. Let agcs, be the number of input arcs to all transitions of the equality
conflict set FCS; and ngcs, = |*ECS;|. Let a; be the number of input arcs to a
transition ¢ that it does not belong to none EC'S and n; = |*t|.

By the free choice property dgcs, = |ECS;| — 1 = agcs, — npes,. Therefore,
d = Y,(agcs, — necs;). For all transition ¢ that does not belong to any ECS,
a; — ny; = 0. Therefore, § = a — n. Substituting 6 = a — n in the formula of
corollary 3.7 we obtain: rank(C) =m — (a —n) — 1. 0

As the reader can easily check, the above formula does not apply even for extended
free choice nets. In [CAMP 90] the statement of the above corollary is presented in a
slightly different way: Let N be a strongly connected structurally bounded free choice
net; if N is structurally live then rank(C) = m — (a — n) — 1. But for free choice nets,
also the reverse can be proved. The importance of this result for free choice nets lies on
the fact that several key results of free choice theory appear as corollaries. For example
[CAMP 90, ESPA 90]: 1) the characterization of simultaneous structural liveness and
structural boundedness in free choice nets is of polynomial complexity, and 2) the duality
theorem.

4 About the liveness of a net system

In this section we consider the analysis of dead transitions and deadlock-freeness by
means of linear techniques.

4.1 Dead transitions

In [MEMM 78, LASS 89] the following necessary condition for liveness is presented in
the context of p-semiflows and analysis of Petri Nets: If a net system (N, M) is live
then VY > 0 such that Y7 -C' =0, YT (My— PRE|[t]) > 0,Vt € T is satisfied. Checking
this property by observing p-semiflows is an exponential problem.

In this subsection we obtain a more general result that for conservative nets coincides

with the above condition but in a form that can be checked in polynomial time. We
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also obtain for this result an easy interpretation in net terms: If a net system (N, M)
is live then all transitions are at least once firable.

Theorem 4.1 Let < N, My > be a marked P/T net. If the transition t € T is at least
once firable then the following linear system has a solution:

M=»M+C-c (2)
M,3>0
M > PREJt]

where PRE[t] is the column corresponding to transition t in the pre-incidence matriz.

Proof. If ¢ is at least once firable, there exists a marking M € R(N, M) such
that M > PRE][t] (i.e. ¥p € °t, M[p] > PRE][p,t]). Because M is a reachable
marking, Moo > M = M = My +C -3, M,5 > 0. .

The converse of the above theorem is not true because if the linear system has a
solution, this can be non-reachable (i.e. it can be a spurious solution [COLO 89b]).
Obviously, the negation of this theorem gives a sufficient condition for a transition ¢ to
be dead.

If the net is live then all transitions of the net are at least once firable, and for all ¢
the above system has a solution. Therefore, the necessary condition for liveness requires
in the worst case to solve m = |T'| linear systems.

The corollary presented below gives the dual system (in the Linear Programming

sense) of the system in theorem 4.1. This alternative system is more general than the
condition presented in [MEMM 78, LASS 89].

Corollary 4.2 Let < N, My > be a marked P/T net. If the transition t € T is at least
once firable then the following linear system has no solution:

Yr.C <0 (3)
Y >0
YT.PRE[t] > YT M,

Proof. The system of the corollary can be easily obtained from the system in
theorem 4.1 by the direct application of the Alternatives Theorem [MURT 83]. m

If the above system has a solution this means that there exists a structurally bounded
component (i.e. an invariant marking relation such as YT.M < YT-MO) with less tokens
than needed for firing the transition ¢ from any reachable marking. If it has no solution
it means that VY > 0 such that Y7 - C <0, YT . PRE[t] < YT . M, is satisfied. This
condition coincides with that in [MEMM 78, LASS 89] for conservative nets.

4.2 On deadlock-freeness

The deadlock-freeness property concerns the existence of some activity from any state.
A deadlock in a net system characterizes the existence of a marking from which none
transition is firable.
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We build a linear necessary condition for the existence of a deadlock under a given
marking M that contains m = |T'| “complex conditions”, each one concerning the non-
firability of the transitions of the net:

M=M+C-& (4)
M>0,6>0
t1 is not firable under M

t,, 1s not firable under M

Now, transition t; is not firable under a marking M if the following condition holds:

(M[pj] < PRE[p],tl]) or ... or (M[pj+k] < PRE[ijrk,tl]) with Djs -y Djt+k € .tz‘ (5)

Obviously, the above condition is non linear. If we consider the m = |T'| “complex
conditions” in system (4) we need to solve in the worst case |*t1] - |*t2| - ... |*tm_1]| - |*tm]
linear systems. Each one of these systems is composed by the net state equation and
m = |T'| inequalities of the form: M(p;,| < PRE[p;;,t;], i = 1,...,m; where p;; is an
input place of ;.

Nevertheless, we can reduce the number of systems to solve considering the following
rules:

1) If there exist two transitions ¢; and ¢ such that PRE[t;] < PRE|[ty], then all
markings M that enable t5 also enable t;. Therefore, to verify that ¢; and ¢, are
not firable from M is sufficient to verify that #; is not firable. Thus the number
of systems to be solved is divided by |*¢5].

According with this rule, in system (4) we only need to consider one transition
(the transition with the less number of input arcs) per each totally ordered set of
transitions in dominating conflict relation.

2) Compute the structural marking bound (SB) of all places of the net by means of
the following LPP [SILV 88]:

SB(p) = maximize M]|p]
subject to M = My+C -7 (6)
M>0,6>0

If SB(p) < PRE|p,t] then remove transition ¢ from system (4) because it is a
dead transition. In this case, the number of systems to solve is divided by |*%|.

3) If there exists a transition ¢ such that |*t| = k and j < k places p; €° t verify that
SB(p;j) = PRE|pj,t], then the first j conditions in the “complex expression” (5)
for ¢ can be substituted by the following linear condition:

> Mlp;] <> PRE[p;, 1]
j<k j<k
This is because, VM > 0 such that M = My + C - 5,6 > 0, 3, M[p;] <



Therefore, the number of systems to solve is divided by |*¢t| — (j — 1).

In the particular case in which all input places p of t verify SB(p) = PRE|p,t],
then the full complex condition can be substituted by the following unique linear
inequality:

> Mp] < > PREIp,t]

pest peP
In this case, the number of systems to solve is divided by [*¢.

In net systems where V¢t € T, Vp € *t, SB(p) = PRE|p, t] is satisfied, the existence
of a deadlock can be done by means of a unique linear system of inequalities. In effect,
from the above rule 3 each “complex condition” in system (4) is substituted by a linear
inequality. Therefore, the resulting system is a unique linear system of inequalities: if
there exists a deadlock in the net system (N, My), then the following linear system has
a solution:

M>0,6>0
Z1’J€°t1 M[p] < ZpEP PRE[p7 tl]

Zpe'tm M[p] < ZpeP PRE[pv tm]

or rewriting in a more compact way,

M=My+C-& (8)
M>0,6>0
PRET .M < PRET - 1

Obviously, the non-existence of a solution for the above system is a sufficient con-
dition to be the net deadlock-free. Because liveness and deadlock-freeness collapse
in strongly connected structurally bounded free choice nets [BEST 87], system (8)
gives a sufficient condition for liveness. Additionally, for structurally bounded nets
with a unique elementary t-semiflow (mono-t-semiflow nets, [CAMP 89]), liveness and
deadlock-freeness are equivalent, thus system (8) also gives a sufficient condition for
liveness.

Therefore, in safe and strongly connected free choice nets it is a sufficient condition
for liveness because deadlock-freeness is equivalent to liveness.

5 Conclusions

In this note we have illustrated the use Linear Algebraic Techniques to analyze some
liveness properties.

A necessary condition for a net to be structurally live and structurally bounded has
been presented. This condition can be applied to generalized Place/Transition nets and
it is based on an upper bound of the rank of the incidence matrix of the net. As a
by-product of the proof of this condition we have shown that the addition of a SL&SB
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local scheduler to an equality conflict set of a SL&SB net preserves structural liveness
and structural boundedness. Unfortunately, the converse is not true.
Finally, sufficient conditions for dead transitions and for deadlock-freeness have been

presented.

In the first case it is based on a unique LPP. In the second, for some

Place/Transition net systems we only need an LPP.
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Definition 0.1 A net N =< T, P, PRE, POST > is strongly reversible iff for every
k € IN there exists a reversible marking Mp € IN" such that Mgr(p) 2 k for every
pEP.

Lemma 0.2 Let N =< T,P,PRE,POST > be a structurally live net and D =
it1,-- . lsp1} an ECS of N. Let Rp =< Tgr, Pr,PREgR. POSTR > be a strongly re-
versible local scheduler for D. The net N U Ryp is structurally live.

Proof. Take any live marking of N, say My € IN". We shall construct a marking
Mp € IN'F such that MoU Mp is live in N U Rp.

Define d(M,t) = man{#(D,o) | M|ot)} for every A € [Myland t € T. According
to liveness of V| d(M.t) is well defined. Let d(t) = max{d(M.t) | M € [M,]}.

I'he function d(t) 1s well defined even if the net 1s unbounded. due to the following

argumentation:

lLet’s fix some t € T. There are only finitelv manv minimal markings in
the reachability set H/.J} (Dickson’s lemma). If M’ > M" then d(M'.t) <

-

d{ M"” t), so the maximum value of d(M.t) 1s the value of some M, ... from
the fimte set of minimal reachable markings. Hence d(1) 1s finite.

S>o d(t) 1s a bound precising that for every reachable marking M € [M,], there
exists a firing sequence ¢ such that M|o) activates ¢ and there are at most d(t)
transitions of ) 1n o.

\ "

s defined in such a way that any word o5 € D such that #(t.o0p) < d(t), for

Define Mzr° € IN": for each p € P we put Mz (p) = D reqr A j-E LA P L), Mz"

cach t € D, can be run in Rp from Mz".

Let Mp € IN'R be any reversible marking of Rp such that Mp > Mz. We'll
prove that Mo U Mz is live in N URp .

Take any M € [My|UMP” and any t € T. We'll prove the existence of such o € T*
that M|c) activates t. First we show that there exists M; € IN"Y'® such that
\l] \PH — A’f’]z 1




From the reversibility of Mr we conclude that there exists a sequence o € D~
such that Mplog)Mg. Let op = tp,,...,tp,. In the original net it was possible to
fire a sequence of transitions of 7' — D from M |p such that the resulting marking
activated the set of transitions D (otherwise A" wouldn’t be live). In the scheduled
net AU Rp the same sequence activating D can be fired starting from M, since
the local scheduler affects only firing the transitions of D. Having D activated we
choose tp, to be hred, resulting some new marking M’. Now again we can activate
D firing the transitions from 7' — D. We fire then tp, , and so on until we fire

{p, coming to some marking M*. We conclude that M“'IPR = My, because the
marking of places from PR can be affected only by hring transitions from the set
D .

In the net A we could fire a sequence ot starting from M*|p, such that #(t,,0) <

o

d(t;) for each t; € D. The same o can be fired from M* in the scheduled net

N U Rp, since the places from Pr hold enough tokens in order not to constraint

firing the transitions of D during the execution of o. s




