A min-max problem for the computation of the cycle time lower bound in interval-based Time Petri Nets *

Simona Bernardi (Centro Universitario de la Defensa, Zaragoza) Javier Campos (Universidad de Zaragoza)

* Accepted in IEEE Transactions on Systems, Man, and Cybernetics: Systems

JCSD 2013 XXI Jornadas de Concurrencia y Sistemas Distribuidos

19-21 de junio de 2013 Donostia-San Sebastián

Selected Oil and Gas Pipeline Infrastructure in the Middle East

UNCLASSIFIED

1

768797AI (G00027) 12-04

Vulnerability analysis of the network

- Analyze the impact of a coordinated attack on the network throughput
 - Maximize throughput after attack
 - Identify critical paths
 - How to distribute the oil-flow between the alternative paths to maximize throughput

- Reduce the economic loss due to an attack

Distribution network

^t Interval time Petri net, i.e. when [a,b] enabled, *t* fires within interval [a,b]of time.

Routing intervals, i.e. per each firing of t_1 , t_2 must fire in average a number of times in [r,s]

Distribution network

Sources: oil fields (jointly produce 8-9 mmbbl/day of crude oil)

Distribution network

Seaport terminals: Ras Tanura (6 mmbbl), Janbu (4.5 mmbbl), Al Ju'aymah (3 mmbbl)

Selected Oil and Gas Pipeline Infrastructure in the Middle East

UNCLASSIFIED

768797AI (G00027) 12-04

Example of two critic pipes (to Janbu) and a critic junction (Qadif)

(A) Petri net model of the attacked network.

traversal time = 1/throughput of transition 'end'

(B) Subnet of a coordinated attack on three targets(Qadif junction and Janbu pipes) and repairs.

- The Problem in *PN model terms*:
 - Test different coordinated attack scenarios.
 - Identify worst coordinated attack
 - = find attacked network with minimum throughput, and for it.
 - Compute the throughput = throughput of transition "end"
 - Identify critical points
 bottleneck subnets
 - 3. Compute optimum oil paths
 - = optimum routing ratios at choice places

Before this work

Problem 1. Compute the throughput = throughput of transition "end", efficiently solved:

Proposition 1^(*)Let $\mathcal{TF} = (\mathcal{T}, \mathcal{R})$ be a live and bounded TPNF system. A throughput upper bound $x[t_1]$ of a transition $t_1 \in T$, can be computed by solving the LPP:

$$P_{0} = \text{maximize } x[t_{1}]$$

$$s.t. \mathbf{M} = \mathbf{M}_{0} + \mathbf{C}^{T} \sigma$$

$$\sum_{t \in \bullet_{p}} x[t]F[t, p] = \sum_{t \in p^{\bullet}} x[t]B[t, p], \forall p \in P$$

$$M[p] \ge x[t]a[t]B[t, p], \forall t \in T \text{ and } \forall p \in \bullet t$$

$$\underline{r}^{j}x[t_{k}] \le \overline{r}^{k}x[t_{j}], \ \underline{r}^{k}x[t_{j}] \le \overline{r}^{j}x[t_{k}], \forall t_{j}, t_{k} \in ECS$$

$$\mathbf{x}, \sigma \ge \mathbf{0}_{T}, \ \mathbf{M} \ge \mathbf{0}_{P}$$

(1)

^(*) Bernardi & Campos: "Computation of performance bounds for real-time systems using Time Petri Nets", *IEEE Transactions on Industrial Informatics*, 5(2):168-180, May 2009.

Before this work

Problem 2. Identify critical points
 bottleneck subnets

Not (efficiently) solved

Problem 3. Compute optimum oil paths
 optimum routing ratios at choice places

Not (efficiently) solved

After this work

 Problem 1. Compute the throughput = throughput of transition "end", efficiently solved:

Proposition 2 Let $\mathcal{TF} = (\mathcal{T}, \mathcal{R})$ be a live and bounded TPNF system where all the timed transitions are persistent (that is, once enabled they eventually fire). A cycle time lower bound of a transition t_1 (i.e., the inverse of its throughput upper bound) can be computed by solving the min-max problem:

$$P_{1} = \min_{\mathbf{v}\in D_{v}} \max_{\mathbf{y}\in D_{y}} \mathbf{y}^{\mathbf{T}}(\mathbf{B}^{\mathbf{T}}\odot\mathbf{a}) \mathbf{v}$$

$$s.t. \ D_{y}: \left\{ \mathbf{C}\mathbf{y} = \mathbf{0}_{T}, \mathbf{M}_{\mathbf{0}}^{\mathbf{T}}\mathbf{y} = 1, \mathbf{y} \ge \mathbf{0}_{P} \right\}$$

$$D_{v}: \left\{ \mathbf{R}\mathbf{v} \le \mathbf{0}_{K}, \mathbf{C}^{\mathbf{T}}\mathbf{v} = \mathbf{0}_{P}, v[t_{1}] = 1, \mathbf{v} \ge \mathbf{0}_{T} \right\}$$

$$(3)$$

After this work

Problem 2. Identify critical points
 bottleneck subnets, efficiently solved:

Support of vector **y*** of the optimal solution of the previous problem

 Problem 3. Compute optimum oil paths = optimum routing ratios at choice places, efficiently solved:

Vector \mathbf{v}^* of the optimal solution of the previous problem

Results (in this case study)

Worst coordinated attack with minimum risk for terrorists

Technically speaking

The main result of the paper is in the 5-pages Appendix:

$$P_1 = 1 / P_0$$

where

$$P_{0} = \text{maximize } x[t_{1}]$$

$$s.t. \mathbf{M} = \mathbf{M}_{0} + \mathbf{C}^{T} \sigma$$

$$\sum_{t \in \bullet_{p}} x[t]F[t, p] = \sum_{t \in p^{\bullet}} x[t]B[t, p], \forall p \in P$$

$$M[p] \ge x[t]a[t]B[t, p], \forall t \in T \text{ and } \forall p \in \bullet t$$

$$\underline{r}^{j}x[t_{k}] \le \overline{r}^{k}x[t_{j}], \ \underline{r}^{k}x[t_{j}] \le \overline{r}^{j}x[t_{k}], \forall t_{j}, t_{k} \in ECS$$

$$\mathbf{x}, \sigma \ge \mathbf{0}_{T}, \ \mathbf{M} \ge \mathbf{0}_{P}$$

$$\begin{array}{ccc} \mathbf{y^*} & P_1 &=& \min_{\mathbf{v}\in D_v} & \max_{\mathbf{y}\in D_y} & \mathbf{y^T}(\mathbf{B^T}\odot\mathbf{a}) & \mathbf{v} \\ & & \mathbf{s}.t. \ D_y: \left\{ \mathbf{Cy} = \mathbf{0}_T, \mathbf{M_0^T}\mathbf{y} = 1, \mathbf{y} \geq \mathbf{0}_P \right\} \\ & & D_v: \left\{ \mathbf{Rv} \leq \mathbf{0}_K, \mathbf{C^Tv} = \mathbf{0}_P, v[t_1] = 1, \mathbf{v} \geq \mathbf{0}_T \right\} \end{array}$$

Additional results

- Proposal of two algorithms to solve the new programming problem (P_1) :
 - An approximate sub-gradient method
 - Another exact method that previously requires the solution of P_0
- A benchmark of PN models to compare both solution algorithms
 - 40 Time PN models, several of them being case studies taken from the literature

Questions?