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Abstract. The time Petri net with firing frequency intervals (TPNF)
is a modeling formalism used to specify system behavior under timing
and frequency constraints. Efficient techniques exist to evaluate the per-
formance of TPNF models based on the computation of bounds of per-
formance metrics (e.g., transition throughput, place marking). In this
paper, we propose a min-max problem to compute the cycle time of a
transition under optimistic assumptions. That is, we are interested in
computing the lower bound. We will demonstrate that such a problem is
related to a maximization linear programming problem (LP-max) previ-
ously stated in the literature, to compute the throughput upper bound of
the transition. The main advantage of the min-max problem compared
to the LP-max is that, besides the optimal value, the optimal solutions
provide useful feedback to the analyst on the system behavior (e.g., per-
formance bottlenecks). We have implemented two solution algorithms,
using CPLEX APIs, to solve the min-max problem, and have compared
their performance using a benchmark of TPNF models, several of these
being case studies. Finally, we have applied the min-max technique for
the vulnerability analysis of a critical infrastructure, i.e., the Saudi Ara-
bian crude-oil distribution network.

1 Introduction

Nowadays, there is increasing demand for large scale and distributed systems
that are required to fulfil their mission in a timely manner, despite the presence of
both accidental and malicious faults. The assessment of timing and performance
requirements is a key issue in the development of such systems and often the
analysis techniques used in the validation process are based on modeling.

The Time Petri Net with firing frequency intervals (TPNF) [1] is a modeling
formalism that enables the system behavior to be specified under timing con-
straints, related to the duration of activity, and frequency constraints, related to
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alternative behaviors. Such constraints are expressed by firing time/frequency
intervals associated to the transitions of the TPNF model.

TPNF can be applied in different application domain contexts [1, 2], e.g.,
flexible manufacturing systems, embedded real-time domain, and, in general,
wherever timing and performance evaluation is a primary concern in the valida-
tion process.

The TPNF analysis techniques basically consist in formulating (and solving)
proper linear programming problems [1] where the objective function —to be ei-
ther maximized or minimized— represents a metric in the Petri net context (e.g.,
a transition throughput, a place marking), and the set of constraints includes
marking reachability and routing restrictions, considering the net topology, and
enabling operational law constraints.

In this paper, we propose a convex optimization problem for the computation
of the lower bound cycle time of a transition t of a TPNF model, that is the
time duration between two consecutive firings of t under the best performance
case assumption. Such a problem is a min-max problem [3], where the objective
function is quadratic and characterized by two kinds of variable vectors: the ys,
related to places, that enable the identification of the subset of the TPNF model
where the weighted sum of tokens is constant (i.e., place invariant), and the vs,
the visit ratios associated to transitions (i.e., relative throughputs). The set of
linear constraints can be partitioned into two subsets, each one involving one
variable vector, and the optimum value is computed by maximizing with respect
to the place variables ys and minimizing with respect to the transition variables
vs.

The paper is organized as follows. The rest of this section explains the contri-
bution of the paper and describes related works. In Section 2 the basic notions of
TPNF and the associated LP-max for the computation of the throughput upper
bound of a transition are recalled. Section 3 introduces the min-max problem
by reasoning on the net behavior. The solution algorithms and the analysis of
their performance, using the TPNF benchmark, are described in Section 4. Sec-
tion 5 describes the case study and, finally, Section 6 concludes the paper. In
Appendix A, we formally derive the min-max problem from the LP-max.

1.1 Paper contribution

The main contribution of this paper is the statement of a new optimization
problem. This is an alternative to the LP-max problem, which was introduced
in [1] to compute the throughput upper bound of a transition t of a TPNF model.
We also prove formally (Appendix A) that the two problems are related; in
particular, the proposed problem can be derived from the LP-max problem and
the optimal value of the min-max (i.e., the cycle time lower bound of transition
t) is the inverse of the optimal value of the LP-max (i.e., throughput upper
bound of t).

The advantage of the proposed min-max problem compared to the LP-max is
that, besides the optimal value, the optimal solution vectors y∗ and v∗ provide
useful feedback to the analyst on the system behavior. In particular, the y∗s
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enable the slowest subnet(s) of the model to be identified, where the cycle time
of the transitions in such subnet(s) corresponds to the optimal value. Further-
more, the optimal visit ratios v∗ indicate the frequencies of alternative system
behaviors that minimize the cost function, i.e., the cycle time.

It is worth noticing that the min-max problem provides a generalization of
a linear programming problem (LPP), previously stated in literature [4], for a
particular structural class of Timed Petri Nets, namely freely-related T-semiflows
(FRT). Indeed, for FRT Timed Petri Nets, the firing delays and firing frequencies
associated to transitions are fixed values (rather than intervals) and there is a
single visit ratio vector that can be computed —in polynomial time— by solving
a homogenous system of linear equations. Then, when the min-max problem is
applied to FRT Timed Petri Nets we obtain the LPP stated in [4].

A second contribution of this work is the comparative performance analysis of
two solution algorithms for the min-max problem. The solution algorithms have
been implemented using the CPLEX Callable Library [5]: one is based on the
sub-gradient method [3] and thus provides an approximate solution; the other
computes instead the exact solution. It requires, however, the computation of
the optimal solution of the related LP-max.

The analysis of the algorithms has been carried out with the support of a
benchmark of models that has been built for this purpose. We have gathered 40
TPNF models, several of them being case studies from the literature [1, 6–8, 2,
9–14].

Finally, we show the applicability of the min-max technique in the vulnera-
bility analysis of a critical infrastructure, i.e., the crude-oil distribution network
of Saudi Arabia [15], a terrorist target in 2006. In particular, we have studied the
effect of different attack plans, where up to three resources of the network are
attacked in order to reduce the network throughput to half of the current over-
all capacity (under normal behavior). The optimal solution y∗ of the min-max
problem allowed us to identify the critical parts of the network which should
be protected against coordinated attacks. In addition, the optimal solution v∗

provided suggestions for improving the survivability of the system, i.e. on how to
distribute the oil-flow between alternative paths in order to reduce the economic
loss due to an attack.

1.2 Related work

Time Petri Nets [16] have been extensively used for the validation of timing
requirements. Most of the proposed solution techniques, e.g., [17], [18], [19], are
enumerative, i.e., based on the construction of the state space of the TPN model.
Vicario [17] computes tight bounds on the maximum and minimum execution
time of feasible traces. Wang et al. [18] verify timing requirements using on-
the-fly techniques to avoid the complete generation of the state space. Xu et
al. [19] propose a compositional technique to manage the complexity of the
schedulability analysis.

On the one hand, extensions of the TPN formalism have been proposed to
support the modeling of activity preemption [20] as well as performance analy-
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sis [21]. On the other hand, different classes of Petri Nets have been extended
with timing interval specifications to verify end-to-end time constraints, e.g.,
in context-aware systems [22] and in workflow management systems [23]. How-
ever, the solution techniques remain basically enumerative: Lime and Roux [20]
define Scheduling Extended Time Petri Nets (SETPN) and provide an approxi-
mation method for computing the state space of a SETPN model as a stopwatch
automaton. Stochastic preemptive Time Petri Nets [21] are proposed for the per-
formance analysis of real-time systems, based on the generation of a stochastic
class graph. Han and Yong [22] introduce interval time Colored Petri Nets, where
time stamps are associated to colored tokens and timing intervals are assigned
to transition output arcs. Wang and Zeng [23] extend Work-Flow nets by char-
acterizing each place with a minimum and a maximum duration time. Places
model workflow activities. The timeline analysis in [22] and [23] relies on the
construction of the states reachable from the initial state, via the considered
firing sequence.

Linear programming techniques have been applied to the performance analy-
sis of Petri Net models (e.g., [1, 4, 24–26]) mainly to overcome the state explosion
problem, which is often suffered by enumerative methods. Beside the bound com-
putation, linear programming techniques and, in general, optimization methods
are powerful techniques that enable the identification of those subnets of a Petri
Net model which are critical with respect to a given system non-functional re-
quirement, such as performance, timing or dependability.

Rodŕıguez and Julvez [27] propose an iterative algorithm to compute tight
performance bounds for stochastic Marked Graphs (a structural PN subclass).
The algorithm produces also the performance bottleneck subnet, which is deter-
mined through the solution of a linear programming problem associated to the
Petri Net model.

In [2], we applied TPN bound techniques for the assessment of timing require-
ments in software design. Similarly to [27], the solution of the LPP associated
to a TPN model enables the location of the bottleneck subnets. The latter cor-
respond to risk causes in the design (i.e., highest demanded hw/sw components,
time consuming interaction paths) and their identification provides useful feed-
back to the software engineer.

In the dependability analysis context, Ramı́rez et al. [28] consider the diag-
nosability problem of permanent and operational faults in discrete event systems
and use interpreted Petri Nets to model the normal and faulty behaviour of the
system. An efficient algorithm is provided to check whether a model is diagnos-
able and, in such a case, to identify the influence areas of a fault. The latter are
subnets defined by P-semiflows and are located by exploiting linear programming
techniques.

Ohl [29] defines optimization problems similar to the one proposed in this
paper. He considers timed PNs (not intervals, but fixed durations) in the partic-
ular case of the FRT subclass. The stated min-max problem is then transformed
into a LPP that includes as many constraints as the number of P-semiflows (Y),
which grows exponentially as a function of the net size. In this paper, we consider
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instead interval time PNs for arbitrary net subclasses, and propose a problem
with a linear number of variables and constraints on the net size.

Optimization problems for particular net subclasses have also been proposed
in the context of max-plus [30] and min-plus algebras [31]. In [30] linear systems
are considered that are equivalent to PN marked graphs, and optimization prob-
lems are defined to express situations in which some of the system coefficients
may vary within certain intervals. In our proposal, we include similar interval
variations in the time durations and in the firing frequencies of transitions, but
these are not restricted to marked graphs.

The work in [31] states a throughput optimization problem, but minimizing
other criteria such as the work in process, in the framework of min-plus algebras
for the particular case of marked graphs and weighted T-systems.

Finally, El Amraoui et al. [32] address related problems in a different setting,
i.e., the domain of the Hoist Scheduling Problem (HSP). The work considers
the cyclic time optimisation of handling devices in electroplating facilities with
time-window constraints and uses techniques like branch and bound or genetic
algorithms to solve proper mixed linear programming problems.

2 Background

In this section, we introduce the basic definitions of interval-based Time Petri
Nets and the associated linear programming problem (LPP) —stated in [1]— for
the computation of transition throughput upper bounds.

2.1 Time Petri Net

A Time Petri Net (TPN) [16] is a bipartite directed graph T = (P, T,B,F,a,b,M0),
where P and T are the disjoint sets of nodes, namely places and transitions. The
former, signified by circles, are used to model conditions; the latter, graphically
depicted by bars, represent events/activities that may occur in the system. Im-
mediate transitions are drawn with thin black bars, while timed ones are drawn
with thick white bars (Figure 1).

The directed arcs, shown by arrows, describe which places are pre- or post-
condition for which transitions. Weights are associated to arcs and they are
defined by the pre- and post-incidence matrices B and F (|T |×|P | sized). The
two |T | sized, non negative rational valued vectors, a and b specify, respectively,
the static earliest and latest firing times of each transition (in the Figure, they
are shown by an interval [ai, bi] near to the transition Ti). Places may contain
tokens (drawn as black dots), and a token distribution over the set of places is
called marking. M0 is a |P | sized, natural valued vector that defines the initial
marking of the TPN.

The TPN dynamic is governed by the transition enabling and firing rules.
A transition t is enabled in a marking M if in each of its pre-condition places
there are at least as many tokens as the weights of the corresponding arcs. The
earliest and latest firing times [a, b] of t are relative to the instant at which the
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P1

P2 P3

P4 P5

P6

T6

T1 T2

T3 T4

[0,0] [0,0]

[6,7]
[4,4][3,5]

T5[0,0]

(1,1)(1/2,2)

Fig. 1. A simple TPN model

transition was last enabled. Hence, if t has been last enabled at time τ then it
may not fire before τ + a and it must fire before or at τ + b, unless it is disabled
previously by the firing of a conflicting transition. The firing itself is immediate
and produces a new marking M′ = M+ F[t, ·]−B[t, ·].

2.2 TPN subnets

A TPN subnet T ′ of T , defined by P ′ ⊆ P and T ′ ⊆ T , is characterized by the
pre- and post-incidence matrices: B′ = B[T ′, P ′] and F′ = F[T ′, P ′]. Its initial
marking and the timing specification of its transitions are those of T restricted to
the subset of places P ′ and transitions T ′, respectively (M′

0 = M0[P
′], a′ = a[T ′]

and b′ = b[T ′]). Subnets defined by a subset of places (transitions), with all their
adjacent transitions (places), are called P- (T-) subnets.

2.3 Boundedness and liveness

Boundedness and liveness are among the desirable Petri Net (PN) system prop-
erties. A PN system is bounded when every place is bounded, e.g., its token
content is less than some bound, at every reachable marking. A PN system is
live when every transition is live, e.g., it can ultimately occur from every reach-
able marking.

The annullers of the incidence matrix CT = (F−B)T and its transpose, C,
play an important role in PN theory since they induce invariant relations which
are useful for reasoning about PN properties such as boundedness and liveness.
In particular, semiflows are integer and non negative annullers of CT and C:
they are called T- and P-semiflows, respectively. A semiflow is called minimal
when its support ∥x∥, i.e., the set of the non-zero components of the annuller x,
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is not a proper superset of the support of any other semiflow, and the greatest
common divisor (GCD) of its elements is one.

Qualitative analysis of Petri nets is out the scope of this paper, therefore
we will just assume in the following that proper functional properties, such as
boundedness and liveness, hold and have been tested for the models considered.
Notice that other stronger model properties such as home state existence or
reversibility are not needed since the goal of this paper is not to compute an
average behaviour of the state (marking process) of the model, but just to bound
the maximum transition throughput considering all possible model behaviours
(possibly, different livelocks) or, equivalently, the lower bound for a transition
cycle time (we define cycle time of a transition as the inverse of its throughput).

2.4 Time Petri Net with firing frequency intervals

Throughout the paper, we will consider a subclass of TPN, namely Time Petri
Nets with firing frequency intervals (TPNF). A TPNF is a pair T F = (T ,R),
where T is the underlying TPN model and R : T ↪→ IR+ × IR+ is the partial
function that assigns an interval of firing frequencies (rt, rt), rt ≤ rt, to each
transition in equal conflict relation.

The equal conflict relation [33]:

ti EQ tj iff BT[ti, P ] = BT[tj , P ] ̸= 0.

is an equivalence relation that partitions the set of transitions of the net into
equivalence classes ECSj , called equal conflict sets. For each equal conflict set
ECS ⊆ T , the function R satisfies the following constraint: there exists a
transition t0 ∈ ECS, where R(t0) = (1, 1). Without loss of generality, we as-
sume that the transitions belonging to an equal conflict set are immediate (i.e.,
a[t] = b[t] = 0) [6].

When the ECS of a TPNF is enabled (i.e., all the transitions t ∈ ECS are
enabled in a given marking M), the conflict among the conflicting transitions is
resolved in a probabilistic manner by a discrete random variable (d.r.v.) from the
family F = {Xp}p∈R, where each d.r.v. Xp specifies which transition tj ∈ ECS
will fire once enabled, as follows:

Pr{Xp = tj | ECS enabled} =

{
p0 > 0 if tj = t0,

pj otherwise.

Since Xp is a d.r.v. then
∑n

j=0 pj = 1. Moreover, the following relations hold
between the firing probability and the firing frequency intervals of such transi-
tions:

R = {p = (p0, . . . , pn) ∈ [0, 1]n ⊆ IRn : rj ≤ pj
p0

≤ rj , tj ∈ ECS}.

Observe that the selection of the d.r.v. from the family F occurs when the ECS
becomes enabled and is not deterministic.
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In Figure 1, there is one equal conflict between transitions T1 and T2; accord-
ing to the firing frequency specification (i.e., the intervals in round-brackets, near
to the transitions), the firing ratio of T1, with respect to T2, ranges between half
the firing ratio of T2 and double the latter.

TPNF can be used to model dynamic systems. Efficient techniques exist to
evaluate the performance of these modeled systems, based on the computation
of performance metric bounds. In [1], a linear programming problem (LPP) was
proposed to compute the throughput upper bound of a transition t. The following
proposition recalls the result:

Proposition 1 Let T F = (T ,R) be a live and bounded TPNF system. A
throughput upper bound x[t1] of a transition t1 ∈ T , can be computed by solving
the LPP:

P0 = maximize x[t1] (1)

s.t. M = M0 +CTσ∑
t∈•p

x[t]F [t, p] =
∑
t∈p•

x[t]B[t, p], ∀p ∈ P

M [p] ≥ x[t]a[t]B[t, p], ∀t ∈ T and ∀p ∈ •t

rjx[tk] ≤ rkx[tj ], rkx[tj ] ≤ rjx[tk], ∀tj , tk ∈ ECS

x, σ ≥ 0T , M ≥ 0P

where 0T and 0P are, respectively, the T -column and P -column null vectors.

The first set of constraints is derived from the net structure and the initial
marking; these represent the marking reachability equations. The second set
of constraints represents the token flow equations that hold for each bounded
place. The third set of constraints is derived by applying the utilization law
for queueing network systems [34] to each transition of the TPNF, considering
their earliest firing times. The routing inequalities are determined by the firing
frequency intervals assigned to the immediate transitions belonging to the same
ECS. Finally, all the problem variables (i.e., transition throughput x and firing
count σ vectors, place marking vector M) are non negative.

By applying the LPP to compute, for example, the throughput upper bound
of the transition T6, in Figure 1, we get 7

27 ≈ 0.26. Observe that the afore-
mentioned LPP, though useful for calculating the transition throughput upper
bound, it does not enable the slowest subnet to be identified (i.e., performance
bottleneck).

3 The min-max problem

In this section, we define a problem for computing the cycle time lower bound of a
transition t1 ∈ T of a live and bounded TPNF model. The transition cycle time is
defined as the time duration between two consecutive firings of t1 or, equivalently,
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the inverse of its throughput. First, we introduce the problem variables that have
a precise interpretation at the Petri net level, provided that they satisfy a set
of constraints. Subsequently, we state the min-max problem assuming that the
timed transitions are persistent (i.e., once enabled they eventually fire). The
min-max problem can be derived from the LP-max problem P0 (1), stated in
Section 2. The formal proof is given in Appendix A. Herein, we provide instead
the rationale behind the objective function and its optimization, which is based
on an implicit decomposition of the net into the P-subnets generated by P-
semiflows. In particular, we follow a reasoning similar to that used in [4], where
a LPP was proposed to compute the cycle time lower bound of transitions in a
Freely Related T-semiflow Timed Petri Net. An exemplification of the min-max
problem is also given by using the running example of Figure 1. Finally, we give
a proof sketch of the equivalence between the LP-maxP0 (1) and the min-max
problem.

3.1 The problem variables and constraints

We consider two types of non negative variables y[i](i = 1, . . . , P ) and v[j](j =
1, . . . , T ). The former are associated to places and they enable us to identify the
P-subnets of the TPNF model where the weighted sum of tokens is constant
in every marking M reachable from the initial marking M0. Such variables are
solutions to the linear system of equationCy = 0T ; indeed, from the reachability
constraints of the LPP P0 (1), we get yTM = yTM0. Figure 2 shows two P-
subnets of the net in Figure 1, defined by the sets ||y1|| and ||y2||, respectively,
where y1 = [1, 1, 0, 0, 1, 1] and y2 = [1, 0, 1, 1, 0, 1] are the minimal P-semiflows
of the net.

P1

P2

P5

P6

T6

T1 T2

T3

[0,0] [0,0]

[6,7]
[3,5]

T5[0,0]

(1,1)(1/2,2)

P1

P3

P4

P6

T6

T1 T2

T4

[0,0] [0,0]

[6,7]
[4,4]

T5[0,0]

(1,1)(1/2,2)

S1 S2

Fig. 2. Net decomposition into P-subnets.

The second type of variables corresponds to the transition visit ratios, that
is the transition throughputs relative to the reference transition t1:

v[tj ] =
x[tj ]

x[t1]
= Γ [t1]x[tj ] (2)
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where Γ [t1] = 1
x[t1]

is the cycle time of t1. Obviously, the visit ratio of the

reference transition is one (i.e., v[t1] = 1). Like the throughput variables, the visit
ratios satisfy the token flow constraints and the routing constraints defined in
LPP P0 (1). We rewrite such constraints in matrix form. Thus, the visit ratios are
solutions to both the linear system of equations CTv = 0P (token flow) and the
linear system of inequalities Rv ≤ 0K (routing). In particular, R is the routing
matrix, K× |T| sized positive real valued —where K =

∑n
k=1 2(|ECSk| −1) and

n is the number of equal conflict sets (see definition in Appendix A).
The visit ratio vectors of the net in Figure 1 have the general form v =

[v1, v2, v1, v2, v1 + v2, v1 + v2] where, v1, v2 ≥ 0 (i.e., they are non negative right-
annullers of the incidence matrix). Moreover, the visit ratios of the conflicting
transitions T1, T2 satisfy the routing constraints: 1

2v2 ≤ v1 ≤ 2v2. If, for example,
we are interested in computing the cycle time of transition T6, then its visit ratio
should be set to one (which implies: v1 + v2 = 1).

3.2 Problem statement

The following proposition defines the min-max problem in order to compute the
cycle time lower bound of a transition t1. The problem can be derived from the
LPP-max P0, defined in Section 2, as formally proved in Appendix A.

Proposition 2 Let T F = (T ,R) be a live and bounded TPNF system where all
the timed transitions are persistent (that is, once enabled they eventually fire).
A cycle time lower bound of a transition t1 (i.e., the inverse of its throughput
upper bound) can be computed by solving the min-max problem:

P1 = min
v∈Dv

max
y∈Dy

yT(BT ⊙ a) v (3)

s.t. Dy :
{
Cy = 0T ,M

T
0 y = 1,y ≥ 0P

}
Dv :

{
Rv ≤ 0K ,CTv = 0P , v[t1] = 1,v ≥ 0T

}
Rationale behind the objective function The problem is quadratic. In
particular, the objective function F (y,v) = yT(BT ⊙ a)v is a function of the
two types of variable vectors previously introduced. The latter must satisfy two
disjonted sets of constraints: Dy and Dv. Set Dy identifies the P-semiflows y of
the net, subject to the normalization constraint MT

0 y = 1, and Dv identifies the
possible visit ratios v of the net, normalized to the visit ratio of transition t1.
Given a P-semiflow y ∈ Dy, the objective function defines a cycle time lower
bound of the transitions of the P-subnet generated by y. Such quantity is the
weighted sum of the earliest firing time delays (vector a) associated to the timed
transitions of the P-subnet, where the weights are the corresponding visit ratios,
divided by the total number of tokens circulating in the subnet (which is a
constant).

In the running example (Figure 1), the net is characterized by two P-semiflows
that satisfy the normalization constraint MT

0 y = 1: y1 = [ 12 ,
1
2 , 0, 0,

1
2 ,

1
2 ] and
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y2 = [ 12 , 0,
1
2 ,

1
2 , 0,

1
2 ]. The subnets S1 and S2 generated by the two P-semiflows

are shown in Figure 2. A lower bound cycle time of the transitions belonging to
the subnet S1 is equal to F (y1,v) = (3v3 + 6v6)/2, where v3, v6 are the visit
ratio variables associated to the timed transitions T3 and T6, with earliest firing
time delays equal to 3 and 6, respectively. Similarly, a lower bound cycle time of
the transitions belonging to the subnet S2 is equal to F (y2,v) = (4v4 + 6v6)/2.
Observe that the total number of tokens circulating in both the subnets is equal
to 2.

Rationale behind the function optimization Let us start by focusing on
the net behavior at the finer-grained level, that is we consider the subnets of the
TPNF model defined by a single place together with its ouput transitions.

We apply Little’s law [34] to obtain inequalities that include the cycle time
of a transition t1. According to Little’s formula, each place p ∈ P satisfies the
equation:

M [p] = (BT[T, p] · x) r[p], ∀p ∈ P

where r[p] is the average time spent by the tokens in p, M [p] is the mean number
of tokens in p, and BT[T, p] · x is the output rate of the tokens from place p.
Considering the relationship between the transition throughputs and visit ratios
(i.e., v = Γ [t1]x, Eq. 2), we can rewrite the above equation in terms of the cycle
time of the reference transition t1:

Γ [t1]M [p] = (BT[T, p] · v) r[p], ∀p ∈ P.

Due to the persistency assumption, place p can have at most one timed
transition t as an output transition, hence the residence time of tokens in p
is greater than (or equal to) the earliest firing time delay a[t]. Let us consider
the simple net in Figure 3, where the transition t is an output transition for
both places p1 and p2, and it is not enabled in the given marking. The token
residence time in place p1 (p2) takes into account the time elapsed from the token
entrance in the place until the transition enabling, as well as the time delay from
the instant of enabling until the firing, which is greater or equal to the earliest
firing time delay a.

Little : N = XR

M [p1] = B(p1, t)x[t]r[p1] = x[t]r[p1]

M [p2] = B(p2, t)x[t]r[p2] = 2x[t]r[p2]

p1

t

p2
[a,b]

B(p1,t)=1

B(p2,t)=2

Fig. 3. Application of Little’s formula to places in a TPNF model.

Then, the following inequality holds (also in the case of several immediate
transitions —i.e., a[t] = 0— sharing the input place p), for every place p ∈ P
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and every transition t ∈ T : B(p, t) > 0:

Γ [t1]M [p] = (BT[T, p] · v) r[p] ≥ (BT[T, p] · v) a[t]. (4)

The inequalities (4), written for each place p of the net, relate the cycle time of
transition t1 to unknown quantities, that is the transition visit ratios (vector v)
and the mean number of tokens in p (M [p]) which are also variables. A possible
approach to make such inequalities explicit with respect to the interested metric
(i.e., Γ [t1]) is to write a linear combination of the inequalities such that the M [p]
variables can be removed. We consider then the P-subnets defined by the set of
places where the weighted sum of tokens is constant (and greater than zero)
in every marking M reachable from the initial marking M0. Such subnets are
identified by non negative variables y that, being the annullers of the matrix C,
satisfy the equation yTM = yTM0.

For each P-subnet T ′
∥y∥, we can write a linear combination of the inequalities

(4) by multiplying each one with the corresponding p-entry of y:

Γ [t1] ≥
yT(BT ⊙ a) v

yTM0
, ∀ T ′

∥y∥ (5)

where BT ⊙ a is the P × T matrix obtained by multiplying the t-column of BT

by the scalar a[t]. A lower bound for the cycle time of t1 is obtained by taking
the maximum over the P-subnets:

Γ [t1] ≥ max
T ′
∥y∥

yT(BT ⊙ a) v

yTM0
. (6)

Since the TPNF is live, the weighted sum of tokens in the initial marking is
greater than zero (yTM0 = q > 0). Considering the change of variables ȳT =
yT/q, the lower bound can be rewritten as:

Γ [t1] ≥

Γ [t1](v)︷ ︸︸ ︷
max
ȳ∈Dy

ȳT(BT ⊙ a) v︸ ︷︷ ︸
F (ȳ,v)

(7)

where Dy =
{
Cy = 0T ,y

TM0 = 1,y ≥ 0P

}
.

Observe that, if there exists a single visit ratio vector v, then the inequality
(7) boils down to the LPP stated in [4] for Freely Related T-semiflow Timed
Petri Nets, where the earliest firing time delays (vector a) are the mean service
times of the timed transitions.

However, when TPNF are considered, the right member of the inequality (7)
is a function of the visit ratio vectors, i.e., Γ [t1](v). On the other hand, each
function F (ȳ,v), where ȳ ∈ Dy is a P-semiflow, provides a lower bound for the
cycle time of the transitions in the P-subnet T ′

∥y∥. Then, the best lower bound
for the cycle time of the transition t1 is given by the visit ratios that minimize
the cycle time of the transitions in the slowest P-subnets.
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Graphical representation of the min-max problem The min-max prob-
lem associated to the running example can be solved graphically. Indeed, the
TPNF can be decomposed into the two subnets in Figure 2, generated by the
P-semiflows y1 = [ 12 ,

1
2 , 0, 0,

1
2 ,

1
2 ] and y2 = [ 12 , 0,

1
2 ,

1
2 , 0,

1
2 ], respectively. The

cycle time lower bound of the transitions of the P-subnets can be rewritten as
functions of the visit ratio of transition T2:

F (y1, v2) =
3

2
− 3

2
v2 + 3 and F (y2, v2) = 2v2 + 3,

where 1
3 ≤ v2 ≤ 2

3 . The two curves are plotted in Figure 4 versus the visit

Fig. 4. Graphical resolution of the min-max problem for the running example.

ratio of transition T2: the slowest subnet is S1 (red line), when v2 ∈ [ 13 ,
3
7 );

when instead v2 ∈ ( 37 ,
2
3 ], the slowest subnet is S2 (blue line). The minimum of

the function Γ [T6](v2) = max{F (y1, v2), F (y2, v2)} is reached at v2 = 3
7 and

is equal to 27
7 . Then, the lower bound cycle time of T6 is equal to 27

7 and the
optimal visit ratio vector is v∗ = [ 47 ,

3
7 ,

4
7 ,

3
7 , 1, 1]. Observe that the point ( 37 ,

27
7 )

is the intersection of the two curves; this means that the transitions of both
the P-subnets S1 and S2 are characterized by the same lower bound cycle time.
Indeed, the min-max problem for the running example has two optimal solutions
y∗1 = [ 12 ,

1
2 , 0, 0,

1
2 ,

1
2 ] and y∗2 = [ 12 , 0,

1
2 ,

1
2 , 0,

1
2 ], whose supports ||y∗1 || and ||y∗2 ||

define the two P-subnets S1 and S2, respectively.
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3.3 Equivalence with the LP-max problem

The min-max problem P1 (3) can be derived from the LPP P0 (1) stated in
Prop. 1, Section 2. Moreover, an optimal solution of the min-max is equal to the
inverse of the optimal solution of the initial LPP. In Appendix A, we formally
prove the equivalence of the two problems. Here we provide a the general idea
of the proof.

Proposition 3 Let T F = (T ,R) be a live, bounded and persistent TPNF sys-
tem. The following relation holds between the optimal values of the min-max
problem P1 (3) and of the LPP P0 (1):

P1 =
1

P0
.

Proof (Proof sketch). Firstly, by considering the inverse relationship between
the transition throughput and the transition cycle time, the initial LPP P0 is
transformed into an equivalent LPP Q = 1

D(P0)
, where D(P0) is the dual of

P0. Secondly, a Lagrangian relaxation is applied to the LPP Q. Thirdly, by
reasoning on the meaning of the problem variables, the domain of the Lagrangian
multipliers is restricted, then leading to the min-max problem P1 which provides
an upper-bound of the minimum transition cycle time (i.e., P1 ≥ Q). Afterwards,
we apply the same reasoning to the dual of Q, i.e., D(Q), and we obtain a max-
min problem P2 (where D(Q) ≥ P2). Finally, we prove that P2 and P1 are
equivalent, that is an optimal solution of P2 is an optimal solution of P1 (and
viceversa).

4 Performance analysis of the solution techniques

4.1 Solution algorithms

We have used the CPLEX Callable Library [5] to solve the problems P0 and P1.
The implementation of the former is straightforward since it is an LP problem.
On the other hand, the min-max problem is actually a convex optimization
problem. We have implemented two algorithms that solve it.

Algorithm 1 is based on the sub-gradient method [3] and thus provides an
approximate solution. Firstly, an initial visit ratio vector v0 is computed (line
1). After initialization of the variables (line 2), the loop (lines 3-17) is executed
until either the maximum number of iterations is reached or the optimal solution
is found. At each iteration k, the Lagrangian multiplier vector vk is fixed and
the sub-problem Pmax is solved (line 4). The optimal solution yk of Pmax is used
to compute the sub-gradient in vk (line 5). If the sub-gradient is not the null
vector, we calculate the step δ (line 9), where α is an input parameter, LB is
a lower bound for the problem P1

3 and the denominator is the square of the
length of the sub-gradient. If δ is not negligible (line 10), then we set a new

3 We have set α = 1 and LB = 1/P0 in the experiments.
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Algorithm 1 MinMax (sub-gradient method)

Require: BT,CT, a,M0,R, t1 { reference transition } , max it, α, LB;
Ensure: P1(ỹ, ṽ) { approximate }
1: Find v0 ∈ Dv

2: k = 0; found = false;
3: while k < max it and not found do
4: Compute Pmax(yk) = maxy∈Dy yT(BT ⊙ a) vk

5: Compute sk = yT
k (BT ⊙ a)

6: if sk = 0 then
7: found = true
8: else
9: Compute δ = α

Pmax(yk)−LB

||sk||2

10: if δ << 0 then
11: found = true
12: else
13: vk+1 = vk − δ sk { Set any negative component vk+1[i] to zero }
14: end if
15: end if
16: k = k + 1
17: end while
18: if vk ̸= v0 then
19: Compute projection ṽ = ΠDv (vk)

20: Compute Pmax(ỹ) = maxy∈Dy yT(BT ⊙ a) ṽ

21: end if

Lagrangian multiplier by moving a step in the opposite direction of the sub-
gradient (line 13). We are looking for a multiplier that minimizes the objective
function from the current direction vk. Observe that, the multipliers (line 13) are
not necessarily visit ratios. Having exited from the loop, the multiplier vector
vk( ̸= v0) is projected onto the set of feasible solutions (line 19) and a post-
evaluation is carried out by solving Pmax with the projected vector (line 20).

Algorithm 2 provides an exact solution. However, it requires the computation
of the optimal solution of the LP-max problem P0 (line 1). Indeed, as the relation
between the visit ratio and the throughput vectors is known (line 2), it is possible
to obtain the optimal visit ratios from the solution of P0 and then solve Pmax

to obtain the optimal values y∗ (line 3).

Algorithm 2 MinMax (direct method)

Require: BT,CT, a,M0,R, t1 { reference transition };
Ensure: P1(y

∗,v∗)
1: Compute LP-max P0(x

∗, σ∗)
2: v∗ = x∗/x∗

1

3: Compute Pmax(y
∗) = maxy∈Dy yTBT ⊙ a v∗

4.2 TPNF benchmark

We have collected 40 TPNF models (Table 1) that belong to different struc-
tural PN classes defined in the literature (i.e., monoT-semiflow, free-related
T-semiflow, deterministic systems of sequential processes and free-choice) [4].

15



Table 1. The TPNF benchmark

Net id Modeled system Metric Size (P,T)

1 flexible manufacturing system [1] production time (37,34)
2 communication protocol [6] turnaround time (12,11)
3 job shop [7] cycle time (22,13)
4 alternating bit protocol [7] cycle time (16,12)
5 flexible manufacturing system [8] production time (25,22)
6 software execution multi-scenario response time (167,109)
7 computer assisted braking system [2] response time (72,53)
8 software execution scenario [2] response time (36,26)
9 example [7] cycle time (6,6)
10 example cycle time (9,9)
11 e-health system failure scenario [9] response time (89,88)
12 example [7] cycle time (11,10)
13 data-flow graph [7] execution time (26,28)
14 example cycle time (13,12)
15 example cycle time (36,29)
16 example cycle time (53,33)
17 example cycle time (28,28)
18 example cycle time (39,29)
19 example cycle time (16,15)
20 example cycle time (21,14)
21 Ada tasking system [7] execution time (13,10)
22 producer-consumer system [7] response time (11,8)
23 example cycle time (16,13)
24 example cycle time (13,12)
25 example [7] cycle time (14,14)
26 sw retrieval system (e-commerce) [10] response time (48,40)
27 example cycle time (12,9)
28 example cycle time (30,30)
29 example cycle time (13,13)
30 example cycle time (10,10)
31 example cycle time (14,16)
32 assembly line (push strategy) [11] production time (37,20)
33 assembly line (on-demand strategy) [11] production time (35,19)
34 assembly line (Kanban strategy) [11] production time (31,20)
35 flexible manufacturing system [11] production time (prod. B) (86,74)
36 oil pipeline network (Sect. 5) distribution time (140,110)
37 oil pipeline network under attack (Sect. 5) distribution time (150,117)
38 Universal Control Hub architecture [12] response time (21,16)
39 web-service application [13] response time (82, 63)
40 mobile agent application [14] response time (63, 55)

There are several models of case studies, including that illustrated in Section 5.
The others are examples that do not represent particular systems. The metric
of interest is basically a cycle time, which for the TPNF modelling case studies
has been interpreted in the modelled system context. The last column of Table 1
shows the size of the TPNF models in terms of number of places and transitions,
respectively.

4.3 Performance results

The LP-max and min-max solvers have been run on an Intel Core Duo laptop
with 2,4GHz CPU. The TPNF benchmark has been used to validate the solvers
as well as to evaluate their performance. The execution time has been consid-
ered as a performance metric. Table 2 shows the results of the analysis. Columns
2-4 are related to the solver of the LP-max problem P0; they indicate, respec-
tively, the size of the reduced LPP4 in terms of number of rows (R), columns
(C) and non zero entries in the LPP matrices, the optimal value (i.e., transition
throughput) and the solver execution time (ET). Columns 5-7 show the data of

4 Indeed, the CPLEX pre-solver is called on to reduce the size of the problem before
executing the simplex algorithm.
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Algorithm 1, that is the (approximated) optimal value of the min-max problem
P1, the solver execution time and the number of iterations (k) required to ob-
tain the optimal value. Finally, the last two columns shows the results of the
Algorithm 2, i.e., the optimal value of P1 and the solver execution time.

Table 2. Performance results on the TPNF benchmark.

Net id
LPP solver Algorithm 1 Algorithm 2

LPP size Value ET Value ET k Value ET
(R, C, NZ) (P0) (ms.) (P1) (ms.) (P1) (ms.)

1 (13, 12, 38) 0.277741 5.826 3.600480 4.567 1 3.600480 6.667
2 (5, 3, 10) 0.173010 5.185 5.780000 3.535 1 5.780000 7.297
3 (18,10, 54) 0.111111 4.646 9.000000 5.296 1 9.000000 10.046
4 (9, 6, 27) 3.857839 4.246 0.259212 3.593 1 0.259212 7.095
5 (17, 15, 45) 0.500000 4.736 2.000000 4.460 1 2.000000 6.969
6 (98, 58, 333) 0.028196 11.341 35.841376 30.664 2 35.466631 15.004
7 (38, 23, 111) 0.241935 8.754 4.133333 6.379 1 4.133333 11.886
8 (22, 14, 63) 0.049505 8.319 20.200000 8.031 1 20.200000 8.503
9 (3, 2, 6) 0.259259 4.029 3.989011 7.469 2 3.857143 7.736
10 (8, 6, 25) 0.196078 4.570 5.100000 6.095 1 5.100000 7.589
11 (67, 57, 208) 0.000257 8.433 3891.567783 18.672 2 3890.956548 11.477
12 (8, 6, 20) 1.125000 4.781 0.888889 5.924 1 0.888889 6.590
13 (18, 15, 61) 0.086022 5.532 13.734375 13.434 3 11.625000 7.347
14 (11, 7, 32) 1.166667 5.085 0.964286 10.058 2 0.857143 6.885
15 (20, 13, 59) 0.109375 6.526 9.142857 6.662 1 9.142857 7.788
16 (35, 18, 100) 0.083333 5.650 12.000000 4.833 1 12.000000 7.883
17 (21, 16, 83) 0.618558 6.362 1.616664 4.486 1 1.616664 7.952
18 (28, 19, 90) 0.211641 5.546 4.799884 11.468 2 4.724985 7.545
19 (10, 7, 34) 0.250000 4.811 4.000000 4.370 1 4.000000 6.715
20 (17,10, 54) 0.666667 5.533 1.710000 10.549 2 1.500000 6.903
21 (5, 4, 15) 0.250000 5.324 4.000000 3.352 1 4.000000 5.863
22 (4, 4, 12) 0.142857 4.132 7.000000 3.535 1 7.000000 6.392
23 (8,7, 25) 0.333333 2.369 3.000000 3.576 1 3.000000 6.363
24 (7, 4, 14) 0.333333 4.791 3.570000 8.487 2 3.000000 5.751
25 (14, 10, 36) 0.428571 4.635 2.589160 9.163 2 2.333333 6.176
26 (36, 28, 132) 0.004470 6.208 224.811869 13.036 2 223.727483 8.913
27 (5, 5, 15) 0.090909 4.294 11.000000 3.890 1 11.000000 5.690
28 (24, 17, 83) 0.128713 5.113 7.769341 6.141 1 7.769341 7.728
29 (10, 8, 35) 0.230769 4.572 4.592469 9.188 2 4.333333 6.199
30 (9, 5, 26) 0.250000 4.550 4.000000 3.789 1 4.000000 6.933
31 (21, 16, 73) 0.142857 4.743 7.000000 4.499 1 7.000000 5.804
32 (23, 12, 64) 0.222222 4.986 4.500000 3.859 1 4.500000 6.757
33 (23, 12, 64) 0.222222 4.712 4.500000 4.200 1 4.500000 6.670
34 (14, 11, 38) 0.285714 4.520 3.500000 3.727 1 3.500000 6.198
35 (58, 45, 221) 0.266667 7.320 3.750000 7.396 1 3.750000 10.657
36 (67, 63, 206) 1.098901 9.426 1.030714 22.637 2 0.910000 11.742
37 (76, 66, 228) 0.523560 9.971 2.039953 22.876 2 1.910000 13.956
38 (12, 9, 29) 0.019608 5.525 51.000000 4.740 1 51.000000 8.218
39 (49, 33, 131) 0.467513 6.663 2.138980 5.615 1 2.138980 9.422
40 (36, 28, 108) 0.014200 6.162 83.065165 13.034 2 70.421333 9.018

From the results of Algorithm 1, observe that for most of the TPNFs the al-
gorithm requires just one iteration and, in this case, the exact optimal value and
solution are calculated. On the other hand, when more iterations are needed (de-
noted in the Table by grey rows) the algorithm simply provides an approximate
value (and solution).
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Concerning the performance of the solvers, the results show that they are
all fast (a few milliseconds are needed to execute them), including for TPNFs
with large sizes in terms of places and transitions (e.g., the net id 6). The ETs
of the LPP solver and Algorithm 1, for a given TPNF, are similar when just
one iteration is executed by the latter. As expected, the ET of Algorithm 1
becomes greater in the case of more than one iteration. Algorithm 2 performs
less well than the LPP solver and Algorithm 1 (in the case of one iteration),
since it always requires the solution of two LPPs (see Algorithm 2, lines 1 and
3). Nevertheless, it provides better performance than Algorithm 1 when more
than one iteration is carried out by the latter and, more importantly, it computes
the exact optimal solution.

Of the two min-max solvers, indeed Algorithm 2 is certainly preferable, even
though it implies solving the LPP P0 first, since knowledge of the optimal solu-
tion vectors v∗ and y∗ enables the critical part of the TPNF (and hence of the
modelled system) to be identified.

5 Vulnerability analysis of an oil pipeline network

As a case study, we consider the Saudi Arabian oil pipeline network that was
a terrorist target in 2006 [35]. Figure 5 shows a map of Middle Eastern coun-
tries, including Saudi Arabia, where the oil and gas pipeline infrastructures are
highlighted with green and red lines, respectively.

A previous vulnerability analysis of the network was conducted in [15]. Herein,
we build a TPNF model of the network taking into consideration this previous
analysis [15] and the report pulished in [35]. Afterwards, we apply the min-max
technique to the TPNF model in order to analyze the impact of a coordinated at-
tack on the network throughput. In particular, we show that the optimal solution
of the min-max problem enables identification of critical parts of the network
which should be protected against attacks.

5.1 The TPNF model

The Saudi Arabian oil pipeline network has been modelled with a TPNF, as
shown in Figure 6. The sources place represents different oil fields that jointly
produce 8-9 mmbbl/day5 of crude oil. Saudi Arabia has three primary oil seaport
terminals: Ras Tanura (on the Arabian Gulf, with 6 mmbbl capacity), Yanbu
(on the Red Sea, with 4.5 mmbbl capacity) and Al-Ju’aymah (on the Persian
Gulf, with 3 mmbbl capacity). Together with two minor terminals (Ras Al-
Khafji and Jubail), these are represented by places in the TPNF model. The
oil produced by the fields is distributed to the main pathways leading to the
terminals, according to the capacity of the latter (this is taken into account
by the multiplicities of the output arcs of transition start). The oil distribution
network consists of pipelines and junctions with limited capacities, these being

5 millions of barrels per day.
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Fig. 5. Oil and Gas Pipeline Infrastructure in the Middle East [35]

target of the attackers. They are modelled by the marked places pi (pipes) and
jk (junctions). The oil flow from the sources to the terminals takes time and
the delays are represented by the timed transitions Dlpi (pipe delays) and Dljk
(junction delays). For a given terminal, several alternative paths (modelled by
free-choice transitions) can be taken by the oil flow. The choice of a path among
the possible ones is constrained by the interval firing frequencies associated to
the corresponding free-choice transitions. The end transition synchronizes the
different paths and its throughput corresponds to the throughput of the network.
We have computed the upper bound of the distribution network throughput
by solving the problem P0 associated to the TPNF model in Figure 6. The
network throughput is 1.098901 (net id 36, Table 2) and corresponds to 8.791208
mmbbl/day6.

The goal of the terrorists is to decrease the network throughput to half of
the current capacity, in order to cause worldwide economic distress. To achieve

6 The quantity is given by number of oil barrels produced daily, 8 mmbbl/day, multi-
plied by the throughput.
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Fig. 6. TPNF model of the oil pipeline network.

their goal, terrorists draw up a coordinated attack that involve damaging as few
facilities as possible. In particular, their objectives are the two pipes p1 and p3,
leading to the Janbu terminal, and j5, the Qadif junction [15]. As a consequence
of an attack, the damaged facilities need to be repaired. Figure 7(A) sketches the
TPNF model of the distribution network under a coordinated attack, where the
two clouds represent TPNF subnets: the distribution network subnet (rounded
by the dotted rectangle in Figure 6) and a coordinated attack & repair subnet.
The latter models a coordinated attack on several targets and the subsequent re-
pair work. For example, Figure 7(B) shows the attack & repair model in the case
of a coordinated attack on three targets: the two pipes and the Qadif junction.
In particular, the places p1,p3 and j5-Qadif are shared with the distribution
network subnet and the timed transitions Rp1, Rp2 and Rj5 model the repair
work. The metric of interest is the cycle time of the transition start (or, equiv-
alently, its end) that corresponds to the traversal time of the token from the
firing of the start until the firing of the end. Observe that, since the two subnets
are concurrently enabled, after the firing of the start, the traversal time takes
account of the delay(s) caused by the coordinated attack.

5.2 Application of the min-max technique

We aim to identify those facilities that mainly affect the network throughput in
case of a coordinated attack. We have applied the min-max technique to different
TPNF models representing different attack plans. The structure is shown in
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Fig. 7. (A) TPNF model of the attacked network. (B) TPNF subnet of a coordinated
attack on three targets & repairs.

Figure 7(A). In particular, we consider that from one to three facilities can be
concurrently attacked, so 6 TPNF models have been built (i.e., one per each
possible attack plan) that are characterized by the same distribution network
subnet and differ in the attack & repair subnet.

Table 3. Attack plans

Facilities Throughput ||y∗||
Path ratios

To Janbu To Al-Ju’aymah To Ras Tanura
v∗
pathi

v∗
path1

, i = 1, 2
v∗
pathi

v∗
path5

, i = 3, 4, 5
v∗
pathi

v∗
path6

, i = 6, 7, 8

j5 0.549048 {j5, s34, s83, s114, s145} {1; 0.75} {1.5; 1.5; 1} {1; 1.25; 1.5}
p1 0.552826 {p1, s9, s146} {1; 1.25} {1.5; 1.5; 1} {1; 1.25; 1.5}
p3 0.561798 {p3, s10, s147} {1; 0.75} {1.5; 1.5; 1} {1; 1.25; 1.5}

p1, p3 0.523560 {p1, s9, s146} {1; 1} {1.5; 1.5; 1} {1; 1.25; 1.5}
j5, p1 0.549048 {j5, s34, s83, s114, s145} {1; 1.25} {1.5; 1.5; 1} {1; 1.25; 1.5}
j5, p3 0.549048 {j5, s34, s83, s114, s145} {1; 0.75} {1.5; 1.5; 1} {1; 1.25; 1.5}

j5, p1, p3 0.523560 {p1, s9, s146} {1; 1} {1.5; 1.5; 1} {1; 1.25; 1.5}

Table 3 summarizes the results of the analysis (each row refers to a different
TPNF model), where the first and the second columns indicate the attacked
facilities and the throughput of the attacked network, respectively. The third
column shows the set of places of the TPNF model which support the optimal
solution vector y∗ of the min-max problem P1. The subnets generated by such
sets correspond to the slowest parts of the modeled system, i.e., they model the
acquisition/release of the attacked facilities. The last three columns indicate the
firing frequency ratios of the free-choice transitions representing the alternative
paths from the sources to the three main terminals: Janbu, Al-Ju’aymah and Ras
Tanura, respectively. Such ratios are computed considering the optimal solution
vector v∗. In all cases, the network throughput has been drastically reduced
and, in the worst case, is equal to 0.523560 (Table 3, fourth and last rows),
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meaning that the crude-oil output drops to 4.188480 mmbbl/day7. Then, the
most damaging attack plans are either the simultaneous attack on the two pipes
p1 and p3, or the attack on all the three facilities. Observe that for both plans
the same slowest subnet is identified, corresponding to p1. From the attackers
point of view, the best plan is to damage just the two pipes.

The optimal solution vector v∗ also gives useful information on the net be-
havior. Specifically, in the modeled system it provides suggestions on how to
distribute the oil-flow between the alternative paths in order to reduce the eco-
nomic loss due to an attack. In particular, we can observe that when just one
of the two pipes p1, p3 is attacked, the oil-flow is directed as much as possible
to the alternative path, according to the firing frequency interval restrictions
associated to path1 and path2. On the other hand, in the case of a simultaneous
attack on the two pipes, the best survivability solution is to split the oil-flow
fifty-fifty between the two alternative pipelines to Janbu.

6 Conclusions

We have proposed a min-max problem to compute the lower bound cycle time
of a transition t in a TPNF model. The min-max is an alternative to the LP-
max problem previously stated for TPNF for the computation of the throughput
upper bound of a transition.

We have formally proved that the optimal value of the min-max is the inverse
of the optimal value of the LP-max. The main advantage of solving the former
problem compared to the latter is that, besides the optimal value, the optimal
solution also provides useful feedback to the analyst on the modeled system.
In particular, the place variables indicate the slowest part of the system and
the transition variables provide the best frequency assignment to the alternative
behaviors that minimizes the cycle time of the slowest part.

We have implemented two solution algorithms for the min-max problem us-
ing CPLEX APIs, and have evaluated their performance considering a TPNF
benchmark, built for the purpose.

Finally, we have used the min-max technique in a vulnerability analysis of
the Saudi Arabian crude-oil distribution network, which has been a terrorist
target in the past. The case study shows that the TPNF modeling formalism
and its associated min-max problem technique are promising for the survivability
analysis of critical systems and deserve further research.

As future work, we aim to study the applicability of the technique to other
survivability-critical systems. Moreover, in order to provide support for the
TPNF analysis under pessimistic assumptions, we plan to formulate similar op-
timization problems for computing the upper bound cycle time of a transition
in a TPNF model.

7 = 8 mmbbl/day · 0.523560.
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A Deriving the min-max from the LP-max problem

The min-max problem, introduced in Section 3, can be derived through a set of
steps from the LP-max problem P0 (1), recalled in Section 2. The former steps
basically transform the initial LPP into equivalent LPPs, provided that the
net is persistent, by considering the inverse relationship between the transition
throughput and the transition cycle time. Afterwards, we apply a Lagrangian
relaxation of the LP-max resulting from the previous steps. Reasoning on the
meaning of the problem variables, we restrict the domain of the Lagrangian
multipliers, thus leading to a min-max problem that provides an upper-bound
of the minimum transition cycle time. Finally, we will prove that such a min-
max problem is equivalent to the initial LP-max, i.e., an optimal value of the
min-max is equal to the inverse of the optimal value of the initial LP-max.

A.1 Rewriting the initial LPP

The objective function and the linear constraints of the problem P0 (1) can be
rewritten in matrix form as follows:

P0 = maximize χT
1 x

s.t. M = M0 +CTσ (reachability)

CTx = 0P (token flow)

M ≥ (BT ⊙ a) x (enabling operational law)

Rx ≤ 0K (routing)

x, σ ≥ 0T , M ≥ 0P (non negativity)

where χ1[i] =

{
1 i = t1,

0 i ̸= t1.
is the indicator function and x is the transition

throughput vector.
The token flow constraints are expressed using the incidence matrix CT =

(F−B)T . Observe that the enabling operational law constraints can be written
in such a matrix form, where ⊙ is the component-wise product operator, under
the assumption of net persistency. Indeed, for each place it is possible to write
a unique enabling constraint. In particular, when a place is a pre-condition for
several transitions, then the latter are immediate and the constraint boils down
to a non negativity constraint for the marking variable associated to the place.
The routing constraints are specified by a set of linear inequalities Rx ≤ 0K ,
whereR is the routing matrix,K× |T| sized positive real valued —K =

∑n
k=1 2(|

ECSk | −1) and n is the number of equal conflict sets. The routing matrix is
defined as follows:

R =



R1 0 0 0 0
...

. . .
...

...
...

0 0 Rk 0 0
...

...
...

. . .
...

0 0 0 0 Rn



2(|ECS1| −1)
...
2(|ECSk| −1)
...
2(|ECSn| −1)
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where each sub-matrix Rk defines the firing frequency intervals of the transi-
tions in the conflict set ECSk, with reference transition tk0 . It has the following
structure:

Rk =

tk0 tk1 . . . tki . . . tkJk

−rk1 1 . . . 0 . . . 0
rk1 −1 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . .
−rki 0 . . . 1 . . . 0
rki 0 . . . −1 . . . 0
. . . . . . . . . . . . . . . . . .

−rkJk 0 . . . 0 . . . 1
rkJk 0 . . . 0 . . . −1


We can then eliminate the marking variables M by merging the reachability

and the enabling operational law constraints:

P0 = maximize χT
1 x (8)

s.t. (BT ⊙ a) x−CTσ ≤ M0 (merged constraints)

Rx ≤ 0K (routing)

CTx = 0P (token flow)

x, σ ≥ 0T (non negativity)

A.2 Stating an equivalent LPP

Let us now consider the dual of the LPP (8):

D(P0) = minimize MT
0 α1

s.t. (aT ⊙B)α1 +RTα2 +Cα3 ≥ χ1

−Cα1 ≥ 0T

α1 ≥ 0P , α2 ≥ 0K , α3 R 0P

Since the net is live, the objective function of D(P0) is strictly positive. Then,
the dual problem is equivalent to maximizing, over the same set of constraints,
the fractional problem with the objective function 1

MT
0 α1

. Let us consider, then,

the change of variables: yi = αit, where i = 1, 2, 3 and t > 0. The fractional
problem is transformed into the following LP-max:

Q = maximize t (9)

s.t. χ1t− (aT ⊙B)y1 −RTy2 −Cy3 ≤ 0T (10)

Cy1 ≤ 0T (11)

MT
0 y1 = 1 (12)

t > 0,y1 ≥ 0P ,y2 ≥ 0K ,y3 R 0P (13)
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A.3 Applying a Lagrangian relaxation

We relax the LP-max problem (9) by eliminating the T constraints (10) and by
taking them into account in the objective function. Let v ∈ IR+

0 be the T -sized
vector of Lagrangian multipliers, then the relaxed problem is:

Lv(Q) = maximize t(1− χT
1 v) + yT

1 (B
T ⊙ a) v +

+yT
2 Rv + yT

3 C
Tv

s.t. y1,y2,y3, t ∈ D

where D is the admissible region defined by the set of remaining constraints
(11,12,13) and the (positive) term added to the objective function of problem
Q is a linear combination of the constraints (10). The objective function of
the relaxed problem is greater than (or equal to) the objective function of the
LP-max Q, over the admissible region of Q, so the optimal solution of Lv(Q)
provides an upper bound for the optimal solution of Q, for all v ∈ IR+

0 .
Now, the interesting problem is to identify the Lagrangian multipliers that

guarantee the best upper bound, that is:

Lv∗(Q) = min
v≥0

Lv(Q).

A.4 Restricting the domain of the Lagrangian multipliers

We can first observe that the domain D in Lv(Q) identifies the annullers y1 of
C. Indeed, by assumption, the net is live and inequality constraints (11) can be
replaced by equality ones, i.e., Cy1 = 0T . Then, the weighted sum of tokens
circulating in the set of places ∥y1∥ is constant, and —by constraint (12)— in
all reachable markings, y1[p] represents the ratio of tokens in p.

Secondly, the term yT
1 (B

T ⊙ a) v ≥ 0 in Lv(Q) evaluates the cycle time of
the transitions belonging to the P-subnet generated by the set ∥y1∥ if and only
if v is the vector of visit ratios associated to the transitions in the P-subnet.

Then, we choose the transition visit ratios as Lagrangian multipliers. This
choice leads to introducing into the problem Lv(Q) the following restrictions:
Dv =

{
Rv ≤ 0K ,CTv = 0P , v[t1] = 1,v ≥ 0T

}
, where v[t1] is the visit ratio

associated to the transition of reference in the net.
Consequently, the first and the last term in Lv(Q) i.e., t(1−χT

1 v) = t(1−v[t1])
and yT

3 C
Tv, are null in the admissible region. The term yT

2 Rv is not positive
in the admissible region. Then, for a fixed visit ratio v ∈ Dv, a (maximizing)
optimal solution for the problem Lv(Q) is characterized by y2 = 0. Considering
the restrictions on the Lagrangian multipliers, we can rewrite the problem as:

P1 = min
v∈Dv

max
y∈Dy

yT(BT ⊙ a) v (14)

s.t. Dy :
{
Cy = 0T ,M

T
0 y = 1,y ≥ 0P

}
Dv :

{
Rv ≤ 0K ,CTv = 0P , v[t1] = 1,v ≥ 0T

}
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Finally, the following relations hold among the stated problems:

P1 ≥ Lv∗(Q) = D(Q) ≥ Q =
1

D(P0)

whereD(Q) is the dual ofQ. It is well known from the literature that the problem
of finding the optimal Lagrangian multipliers v∗ is equivalent to solving D(Q).
On the other hand, observe that we can assert that P1 is an upper bound problem
of Lv∗(Q) since the optimal Lagrangian multipliers v∗ are necessarily transition
visit ratios. Indeed, if one of the constraints inDv were not satisfied, then Lv∗(Q)
would be unbounded.

A.5 Equivalence with the initial LP-max

The next step is to prove that the min-max problem P1 (14) is actually equivalent
to the initial LP-max problem P0, that is the optimal value of P1 is equal to
the inverse of the optimal value of P0 (and viceversa). For this purpose, let us
consider the dual problem of Q:

D(Q) = min γ (15)

s.t. x[t1] ≥ 1 (16)

−(BT ⊙ a) x+CTσ +M0γ ≥ 0P (17)

−Rx ≥ 0K (18)

CTx = 0P (19)

x, σ ≥ 0T , γ R 0 (20)

A Lagrangian relaxation of D(Q) is obtained by subtracting from the objective
function a linear combination of the P contraints (17) and by eliminating the
latter from the set of constraints:

Ly(D(Q)) = minimize (1− yTM0)γ + yT(BT ⊙ a) x− yTCTσ

s.t. γ,x, σ ∈ D

where D is the admissible region, defined by constraints (16,18,19,20), and y ≥ 0
are the non negative Lagrangian multipliers. The optimal solution of Ly(D(Q))
provides a lower bound for D(Q) and the Lagrangian multipliers that guarantee
the best lower bound are solutions of the problem:

Ly∗(D(Q)) = max
y≥0

Ly(D(Q)).

Now, reasoning on the meaning of the problem variable as we did for the
Lagrangian relaxation of Q, the Lagrangian multipliers y must satisfy the fol-
lowing constraints: Dy = {Cy = 0T ,M

T
0 y = 1,y ≥ 0P }. We can then rewrite

the problem as:

P2 = max
y∈Dy

min
x∈Dx

yT(BT ⊙ a) x (21)

s.t. Dx : {CTx = 0P ,Rx ≤ 0K , x[t1] ≥ 1,x ≥ 0T }
Dy : {Cy = 0T ,M

T
0 y = 1,y ≥ 0P }.
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Observe that the problems P1 and P2 can be converted one into the other con-
sidering the change of variables v = x/x[t1] and the following relations hold:

P1 ≥ D(Q) ≥ Q ≥ P2. (22)

Proposition 4 The two problems P1 and P2 are equivalent.

Proof. We prove the equivalence by showing that an optimal solution (ỹ, x̃) of P2

satisfies the property x̃[t1] = 1. Let us assume, by contradiction, that there exists
an optimal solution (ỹ, x̃) such that x̃[t1] > 1. Then (ỹ, ṽ) —where ṽ = x̃

x̃[t1]
— is

an admissible solution of P1 and:

Φ(ỹ, ṽ) = ỹT(BT ⊙ a) ṽ

= ỹT(BT ⊙ a)
x̃

x̃[t1]
< ỹT(BT ⊙ a) x̃ =

= Ψ(ỹ, x̃)

where Φ, Ψ are the objective functions of P1 and P2, respectively. This contradicts
the relation (22), i.e., P1 ≥ P2.

Summarizing:

– Every optimal solution (ỹ, x̃) of P2 is an optimal solution (ỹ, ṽ) of P1 and
viceversa, since x̃ = ṽ, and:

Φ(ỹ, ṽ) = F (t̃, ỹ,0, ỹ3) = G(γ̃, σ̃, x̃) = Ψ(ỹ, x̃)

where Φ,F,G and Ψ are the objective functions of the problems P1, Q, D(Q)
and P2, respectively.

– Since Q = 1/D(P0), the optimal value of the LP-max problem P0 is equal
to 1

Φ(ỹ,ṽ) , where (ỹ, ṽ) is an optimal solution of P1.
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