
90 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

Timing-Failure Risk Assessment of UML Design
Using Time Petri Net Bound Techniques

Simona Bernardi, Javier Campos, and José Merseguer

Abstract—Software systems that do not meet their timing con-
straints can cause risks. In this work, we propose a comprehensive
method for assessing the risk of timing failure by evaluating the
software design. We show how to apply best practises in software
engineering and well-known Time Petri Net (TPN) modeling
and analysis techniques, and we demonstrate the effectiveness
of the method with reference to a case study in the domain of
real-time embedded systems. The method customizes the Aus-
tralian standard risk management process, where the system
context is the UML-based software specification, enriched with
standard MARTE profile annotations to capture nonfunctional
system properties. During the risk analysis, a TPN is derived, via
model transformation, from the software design specification and
TPN bound techniques are applied to estimate the probability of
timing failure. TPN bound techniques are also exploited, within
the risk evaluation and treatment steps, to identify the risk causes
in the software design.

Index Terms—MARTE profile, risk assessment, time Petri net
(TPN) bound techniques, unified modeling language (UML).

I. INTRODUCTION

T HE quantitative evaluation of software systems early in
the life cycle is not yet a common practice for most of the

software projects. The software engineering community lacks
of quantitative evaluation techniques properly integrated within
the software standards and the current development method-
ologies. On the other hand, formal quantitative methods, such
queueing networks [1], timed automata [2] or Petri nets [3], [4],
when adequately applied to software system design, have been
proved to be useful to predict and validate a large number of
their nonfunctional properties, e.g., performance, timeliness or
reliability.

In particular, the assessment of timing constraints is crucial
for real-time systems, since the inability of the system to meet a
deadline may result in an incorrect system behavior then leading

Manuscript received March 18, 2010; revised August 03, 2010 and October
18, 2010; accepted December 01, 2010. Date of publication December 17,
2010; date of current version February 04, 2011. This work was supported
in part by the Distributed Supervisory Control of Large Plants Project (DISC
n.INFSO-ICT-224498), under the Seventh Framework European Program.
Paper no. TII-10-03-0055.

S. Bernardi is with the Centro Universitario de la Defensa, Academia General
Militar, 50018 Zaragoza, Spain (e-mail: simonab@unizar.es).

J. Campos and J. Merseguer are with the Departamento de Informática e In-
geniería de Sistemas, Universidad de Zaragoza, 50090 Zaragoza, Spain (e-mail:
jcampos@unizar.es; jmerse@unizar.es).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2010.2098415

to an unpredictable consequence. Then, the consequences of
software failures have to be analyzed not only early in the life
cycle but also using an appropriate paradigm.

In this work, we consider the early development stages of soft
real-time systems, when the detection of timing violations is
aimed at reducing the number of missed deadlines. We show
how to apply best practises in software engineering and well-
known Time Petri Net (TPN) [5] modeling and analysis tech-
niques to propose a comprehensive and low-cost method for as-
sessing the risk of timing failures by evaluating the software de-
sign. We also demonstrate the effectiveness of the method with
reference to a case study in the domain of real-time embedded
system.

In order to make the proposed method useful, from the
software engineers point-of-view: 1) we fit our proposal into a
standard risk assessment methodology and 2) we assume the
software system specified using standard OMG [6] languages.
Concerning the first point, we have identified several standards
which aim at managing mainly security risks in different soft-
ware contexts. However, since there is not a widely accepted
software risk process, we have decided to learn from other areas
where the activities involved in risk assessment have been also
standardized, such as business or chemical industry. Finally,
among the different processes, we have chosen the standard for
Risk Management Process (RMP) [7] that provides a waterfall
model easy to apply for risk assessment and to customize in
the software domain. Regarding the second point, UML [8]
is used for the software and hardware platform specification,
and the “Modeling and Analysis of Real Time and Embedded
Systems” profile [9] (MARTE) is applied for the definition of
nonfunctional properties, input values and parameters.

According to RMP, the risk analysis consists in computing
the risk as the function of two factors: the likelihood and the
consequence. In our context, the former is the probability that
the service is delivered too late (or too early), and the latter is
the impact of the late (early) service delivery on the software
system users and/or environment. Indeed, Avizienis et al. [10]
classify a timing failure as a type of service failure that occurs
when the service is delivered either too late or too early, i.e., the
system does not meet the timing constraints. For the likelihood
estimation, we apply TPN and their efficient bound techniques
[11]. Regarding the consequence factor, our method resorts to
standard analysis techniques (e.g., Functional Failure Analysis
or Preliminary Hazard Analysis) used in the software domain to
determine it [12]–[14].

We choose TPN since they are suited for modeling real-time
systems early in the life-cycle, where the software timing spec-
ifications are not deterministic, but still can be expressed as

1551-3203/$26.00 © 2010 IEEE

BERNARDI et al.: TIMING-FAILURE RISK ASSESSMENT OF UML DESIGN USING TIME PETRI NET BOUND TECHNIQUES 91

interval (i.e., min/max) values. Besides, the TPN bound tech-
niques are based on the formulation and solving of linear pro-
gramming problems and the computational effort to get results
is significantly lower than using conventional enumerative tech-
niques, so also complex systems can be analyzed. The results
from the TPN bound analysis will be also exploited by iden-
tifying and evaluating critical elements in the design. The risk
likelihood is then estimated as the probability that the service
response time is not greater (less) than the maximum (min-
imum) timing constraint. We assume the service response time
uniformly distributed between the computed upper and lower
bounds. In probabilistic risk assessment, the uniform distribu-
tion is usually recommended to determine likelihood when no
information about the shape of the random variable is known
[15], [16]. It represents the state of knowledge for the situations
where little a priori information exists. The selection of uniform
is based on the Laplace’s “principle of insufficient reason” (first
enunciated by Jakob Bernoulli): The uniform distribution leads
to the most conservative estimate of uncertainty; i.e., it gives the
largest standard deviation. From the usefulness point-of-view,
the uniform assumption permits to provide not trivial estima-
tions with respect to the deterministic one.

The proposed technique supports a preliminary risk evalu-
ation in the software life-cycle; as system measures become
available, later in the life-cycle, other assumptions on the type
of distribution over the bound interval could be more appro-
priate. In order to analyze the sensitivity of the risk likelihood,
with respect to the distribution assumption, we have compared
the probability of service timing-failure of the running example
under the uniform and normal hypothesis. The analysis results
show that both distribution lead to similar outcomes. In general,
the difference in the risk likelihood evaluation depends not only
on the timing constraint but also on the mapping of the quanti-
tative values onto likelihood categories.

This paper is structured as follows:Section II reviews the re-
lated works; Section III gives an overview of the method and
introduces basic concepts. Section IV addresses the risk context
and identification steps; Section V describes the approach to es-
timate the risk likelihood; Section VI addresses the risk evalu-
ation and treatment steps; Section VII presents the case study;
finally, conclusions are given in Section VIII.

II. RELATED WORK

Our approach conforms to the RMP standard [7] to support
the risk assessment in the early stages of the software life-cycle.
The risk assessment metamodel, defined in the UML profile
for “Modeling QoS and Fault Tolerance Characteristics and
Mechanisms” (QoS&FT) [17], also relies on the RMP stan-
dard. Nevertheless, we use the UML profile MARTE [9] due
to two main reasons. First, the specification of nonfunctional
properties (NFPs) is more rich in MARTE than in QoS&FT;
indeed, the latter is mainly based on use case diagrams, that are
not enough for our purposes. Second, the specification of the
system functional properties in QoS&FT is independent of the
risk specification, then leading to the introduction of new UML
model elements to represent NFPs.

Some standards deserve to be discussed and compared with
RPM. Hence, ISO has proposed the 2700 series, the closest

to RPM is the ISO 27005 [18] which is devoted to information
security risk management, however no specific method for risk
management is prescribed. In the American context, the NIST
[19] standard is a comprehensive guide for risk management of
IT systems and it encompasses risk assessment as well as risk
mitigation. In the German context, BSI [20] is an standard for IT
information security managers that describes step by step how
an information security management system can be designed.
As discussed in [21], these standards propose qualitative evalu-
ation, which differs from the quantitative needs of our proposal,
that are indeed offered by RPM. Other nonstandard proposals
also deserve to be mentioned such as CORAS [22], OCTAVE
[23], EBIOS [24], and CRAMM [25]. All of them are related to
security management but do not deal with timing aspects as it is
the focus of our work. Among them, only CORAS offers a quan-
titative evaluation. CORAS, as our proposal, follows the RPM
steps and uses UML diagrams to model the system behavior.
OCTAVE is a comprehensive approach, compliant with the U.S.
Department of Defense and more related to procedures such as
organizational data. EBIOS was developed for the French Na-
tional Defense and offers a detailed guide about how to identify
security needs, characterize attacks or identify vulnerabilities.
CRAMM undertakes risk analysis of information systems and
networks, and can be used during analysis and design of infor-
mation systems, as well as for existing systems.

Concerning proposals for risk analysis of software systems
based on a quantitative estimation, it is worth mentioning the
works [26], [27]. Both, like our proposal, can be applied early
in the life-cycle and use UML for software specification. In [26]
a methodology is proposed to assess software risks introduced
by the environment and it is aimed at identifying potentially
unreliable software components. The risk is computed as the
combination of two parameters: the probability and the conse-
quence of malfunctioning. UML state charts and sequence dia-
grams are used to identify the risky components and connectors,
respectively, in the software architecture. From the risk associ-
ated with components and connectors, scenario risk factors are
calculated by creating and solving a Markov model. The work
[27] proposes a methodology for the estimation of the perfor-
mance based risk factor, which originates from violations of
performance properties. Annotated sequence and deployment
UML diagrams are elaborated to estimate the scenario failure
probability using the classical analysis in [1]. The approach sup-
ports the identification of risky scenarios and risky software
components when the timing specification is expressed by mean
values. Our approach, instead, is suited to soft real-time sys-
tems where timing specifications are given as min/max values.
Moreover, in [27] only standalone analysis is supported (i.e.,
no model of concurrency is introduced), while our method can
manage the concurrency and the resource contention. TPNs also
promote the advantage for our method to identify critical hard-
ware resources. Finally, another important difference is that,
being built on a standard risk process, our proposal benefits from
the well-established knowledge in this area.

The risk analysis involves decisions about which translation
method, from UML to Petri Nets, we should use. Our work
concerns the translation of UML sequence and deployment dia-
grams. A lot of efforts have been spent by the researchers during

92 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

the last ten years to derive formal models for the quantitative
analysis of UML-based specifications, as surveyed in [28]–[30],
respectively, for performance, timing and dependability assess-
ment. We will discuss the proposals that use Petri Nets as formal
model [31]–[38] as in our approach. Some of them [31]–[34] are
mainly oriented to performance analysis.

For our purposes, the choice should be driven by the fol-
lowing requirements: the translation should be simple enough
to be automatically supported; the resulting Petri net has to sat-
isfy some “good properties” (e.g., liveness and boundedness)
since the goodness of the bound techniques is sensitive to the
net structure.

The work [31] proposes a systematic approach to transform
UML’s Collaboration and Statecharts to Generalized Stochastic
Petri Nets (GSPNs), while the work [32] derives a GSPN model
from UML’s Sequence Diagrams (SDs) and StateCharts, using
a compositional approach. Both the approaches need the Stat-
eChart specification to get a GSPN model, that we do not use
in this paper. The PUMA [33] approach translates the UML di-
agrams into an intermediate model, the Core Scenario Model
[39] (CSM), that separates the functional from the nonfunctional
information. The CSM can be translated into different perfor-
mance formalisms, i.e., Petri nets or queuing networks. We dis-
carded this choice since the CSM would introduce a significant
complexity to our proposal, which is comprehensive enough.

The proposals in [34] and [38] translate all the richness of the
UML 2 SD into Stochastic Well-formed Nets and Colored Petri
Nets, respectively. However, we discarded such approaches
since in [34] the UML specification has to be enriched, as in
[32], with one UML state machine per lifeline in the SD. On
the other hand, in [38] the lifelines in the SD, and then their
execution specifications, are not explicitly modeled. The works
[35]–[37] propose a similar translation approach from either
Message Sequence Charts (precursor of SD) or SD to untimed
Petri Nets. Indeed, each object participating in an interaction is
represented by a net that captures the sequence of events and
these nets are connected through places representing mailboxes,
then preserving the weak sequencing semantics introduced in
UML 2 for SDs. Such works are mainly aimed at assessing
qualitative properties of the system design. In particular, the
work [35] provides a formal semantics of the ordering actions
in a SD through untimed Petri nets. Kluge [36] and Eichner
et al. [37] obtain untimed high-level Petri nets from Message
Sequence Charts and SD, respectively, by adopting a compo-
sitional approach. Actually, the translation proposed in [37]
is similar to the Kluge’s proposal but it considers most of the
UML-2 SD constructs. We have chosen, then, the approach
[37] to get the Petri net structure from the SD.

TPNs have been extensively used for the validation of real-
time systems and their analysis is mainly based on enumer-
ative techniques [4], [40], [41], which suffer the well-known
state-space explosion problem. In [42], a stochastic extension
of TPNs is proposed to support the performance evaluation of
real-time systems, that consists in associating a probability den-
sity-function to the static firing interval of each nondetermin-
istic transition. The main drawback of the approach is the com-
putational complexity that is by far beyond the limit that our
approach aims to address. Our uniform assumption, for the es-

Fig. 1. Risk management process AS/NZS 4360:1999.

timation of the risk likelihood, corresponds to the computation
of a simple ratio and allows us to avoid both the introduction of
non-Markovian stochastic Petri net models and the use of anal-
ysis techniques which are much more complex than the TPN
bound techniques.

III. OVERVIEW OF THE METHOD AND BACKGROUND

The standard for Risk Management Process (RMP) [7] pro-
vides a waterfall model easy to apply for risk assessment and
to customize in the software domain. As shown in Fig. 1, the
RMP consists of sequential steps (gray ones) and transversal
steps (white ones) that involve the whole process. The objective
of our proposal is to tailor the main activities of the RMP carried
out in the sequential steps to the tasks for the assessment of the
timing-failure software risk, as detailed in the following.

1) Establish the Context: The activities performed in this
step establish the boundaries within which the risk process will
apply, i.e., the internal and external contexts, and the “risk cri-
teria” (e.g., safety, media exposure, timing or financial impact).
When it comes to tailor these activities to our method, they
mainly consist in the specification of the software system. The
internal context will be modeled by UML use case and sequence
diagrams to define the system scenarios at a high level and de-
tailed level, respectively. The UML notation is rich enough to
express the functional system properties. However, to express all
the necessary parameters to carry out risk assessment, it has to
be enriched with non functional properties which will be speci-
fied using the MARTE profile [9]. The external context will be
represented by a UML deployment of the software system envi-
ronment or hardware platform, where the software components
involved in a given scenario will be deployed and operate. Fi-
nally, our method is concerned with the adoption of only one risk
criterion: the risk associated with the timing failure of system
scenarios.

2) Identify the Risks: The purpose of this activity is the iden-
tification of the current risks, according to the risk criterion,
affecting the project objectives. In our context, this task con-
sists in the definition of the timing constraints associated with
the system scenarios. In particular, for each high-level scenario,

BERNARDI et al.: TIMING-FAILURE RISK ASSESSMENT OF UML DESIGN USING TIME PETRI NET BOUND TECHNIQUES 93

TABLE I
RISK MATRIX

the software engineer should specify the maximum (or the min-
imum) threshold for the response time as well as the type of
timing failure (i.e., early or late). Such specifications will be ex-
pressed, using the MARTE profile, in the use case diagrams cre-
ated in the previous step.

3) Analyze the Risks: This step assists the analyst in pro-
viding an estimation of the risks, previously identified, in order
to make a decision about committing resources to control them.
The RMP provides a simple formula for the estimation of the
risk, that is the product of the possible consequence, or impact,
of an event with the likelihood of that event occurrence. One
of the main contributions of this work concerns the estimation
of the likelihood factor, that is the probability of the scenario
timing failure. Indeed, we provide a derivation method of a TPN
model from the UML-MARTE specification of the system and
a technique to compute such a probability that exploits efficient
TPN bound techniques.

4) Evaluate the Risks: The risk evaluation consists in de-
ciding whether the risk is either tolerable or not. In the latter
case, the risk treatment is required. The risk is evaluated with
the help of a risk matrix that combines the likelihood and the
consequence factors estimated in the analysis step. Such type of
matrices are often used in safety analysis and risk assessment
[14] since they can express the nonlinearity of the risk metric
with respect to the likelihood and consequence categorization.
Their definition (i.e., the consequence and likelihood categories
and their mapping to quantitative values) depends on the appli-
cation domain. In the example presented in this work, we have
used the matrix in Table I, which is inspired by [43]. Observe
that this choice does not affect the applicability of our approach,
since the matrix can be changed according to the application
domain.

5) Treat the Risks: This step is carried out when the risk
is not tolerable. The treatment activities identify and evaluate
strategies to treat or control the risk, in order to either reduce
the likelihood or to reduce/eliminate the negative consequences
associated with the risk. In our approach, the root causes of a
scenario timing failure concern with the software and hardware
resources and their configuration. We will exploit the results
from the TPN bound analysis to pinpoint such causes. Then,
we will propose general guidelines about how to modify and
improve the design to reduce the probability of scenario timing
failure.

A. Background on UML and MARTE Profile

UML [8] is a general purpose visual modeling language that
provides several types of diagrams to capture different aspects

of the system. Structural diagrams (i.e., class, object, compo-
nent, collaboration and deployment) represent the system from
a static point-of-view. In particular, we will use deployment di-
agrams that describe the execution architecture of the system
specifying the assignment of software components to nodes. Be-
havioral diagrams (i.e., use case, interaction, state machine, ac-
tivity) are used instead to model the dynamic of the system. We
will consider use case and sequence diagrams in our approach.
Use case diagrams are typically used to capture the functional
requirements of a system (that is, what a system is supposed
to do) by means of use cases and actors. Sequence diagrams
are, instead, a kind of interaction diagrams that can be used to
model the use case realization. They show the temporal interac-
tion of the system components through message exchange. Se-
quence diagrams may contain combined fragments (e.g., alter-
native, parallel) to represent complex control flows. UML pro-
vides a lightweight mechanism, the profiling, to extend its meta-
model for different purposes. The profiling is a metamodeling
technique where the profiles are kinds of packages that extends
a reference metamodel with the purpose of tailoring it to a spe-
cific platform or domain. A profile contains a set of stereotypes
that define how specific metaclasses are extended. Like classes,
stereotypes may have properties (tags) and constraints. When a
stereotype is applied to a model element, the values of the prop-
erties are called tagged-values.

MARTE [9] is a UML profile that supports the modeling
and analysis of systems that need to verify timing constraints.
In particular, MARTE allows one to specify nonfunctional
properties (NFPs) according to a well-defined Value Specifi-
cation Language (VSL) syntax. The “Dependability Analysis
and Modeling” profile [30] is a MARTE specialization, then
a MARTE-DAM annotation stereotypes the design model
element it affects in the way UML proposes, i.e., by extending
its semantics.

Fig. 2 depicts an excerpt of the MARTE (a) and DAM
stereotypes (b) and tagged values used in this work. According
to UML, each stereotype is made of a set of tags which define
its properties. For example, GaScenario stereotype has respT
and hostDemand as tags which are used to specify the scenario
response time and the CPU demand on the processing host,
respectively. The types of the tags are basic UML types (e.g.,
integer, enumeration) or MARTE NFP types (e.g., NFP_Dura-
tion). Moreover, DAM enriches the MARTE types library with
basic and complex dependability types (c). The latter (e.g.,
DaFailure) are composed of attributes that can be MARTE
NFP types (e.g., NFP_Real), basic dependability types (e.g.,
DaCriticalLevel) or simple types (e.g., CriticalLevel and Do-
main). MARTE NFP types are data-types of special importance

94 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

Fig. 2. MARTE-DAM extensions.

since they enable the description of relevant NFP aspects using
properties such as: value, a value or parameter name (prefixed
by the dollar symbol); expr, a VSL expression; source, the
origin of the NFP—such as required (req), or estimated (est)
parameter; and statQ, the type of statistical measure (e.g.,
maximum, minimum, and mean).

IV. ESTABLISH THE CONTEXT AND IDENTIFY THE RISKS

The first two steps of RMP provide the necessary UML spec-
ification where to identify the property to be fulfilled, the input
parameters and the metrics to be estimated. Such system de-
scription consists of a use case, a sequence and a deployment
diagram. In the use case diagram, each use case (UC) represents
a high-level scenario of the system, where the risk associated
with a timing failure will be identified and annotated. When a
use case diagram contains more than one UC, i.e., high-level
scenarios, each UC is considered independently of each other
assuming that each one involves different timing failure risks
for the system. Each use case is refined with a sequence dia-
gram, which represents the sequence of actions that the software
performs, as well as the messages exchanged in the scenario.
A sequence diagram can contain alternative, optional and par-
allel combined fragments. The other types of combined frag-
ments (such as loop fragments) are instead not supported by our
method. The deployment diagram is used to specify the execu-
tion platform.

Observe that, in the current conventional software develop-
ment methodologies as well as in more agile ones (e.g., Agile
Unified Process), the output of the design consists of a set of arti-
facts that normally includes the UML diagrams our method uses
as input specification. Therefore, our proposal could be easily
integrated within such methodologies.

The properties, input parameters and metrics will be defined
using the MARTE profile. Concretely, we use the Generic Quan-
titative Analysis Modeling (GQAM) and Performance Analysis
(PA) extensions of MARTE (stereotypes prefixed as Ga and Pa,
respectively) and the Value Specification Language (VSL) to
specify the input parameters. The properties and the metrics

to be estimated are specified instead using the extensions of
the Dependability Modeling and Analysis (DAM) profile [30]
(stereotype prefixed as Da).

Fig. 3 shows the running case with the complete and nec-
essary subset of MARTE-DAM annotations for our method to
work. In each UC, stereotyped as DaService, the software en-
gineer identifies the risk of a timing failure by specifying the
timing constraint (respT) and the corresponding type of failure
(failure.domain). In particular, the former expresses the max-
imum or the minimum time allowed for the scenario to be exe-
cuted. Accordingly, the latter can be either a late or early timing
failure. In Fig. 3(a), the maximum scenario response time is of
30 s, then the risk associated is a late timing failure. Moreover,
the two risk factors are annotated as parameters to be estimated
during the risk analysis, that is the probability (failure.occurren-
ceProb) and the consequence (failure.consequence) of a timing
failure. In Fig. 3(a), such parameters are expressed with the two
variables Prob and Cons.

The input parameters are defined in the sequence and in the
deployment diagrams, as exemplified in Fig. 3(b) and (c). They
are system assumed values, variables or expressions that will
define or parameterize the formal model, i.e., the places and
the transitions of the resulting TPN (described in Section V-A).
When the input parameters are given as variables, then the soft-
ware engineer can assign them with different values, so enabling
the method to carry out the system sensitivity analysis. Expres-
sions are functions of the input variables. The sequence diagram
accommodates the annotations to define: 1) the CPU demand
(hostDemand), in unit of time, necessary to execute a system
activity, specified in the GaStep execution occurrences of ob-
ject lifelines and 2) the size of the GaCommStep messages (ms-
gSize), that expresses the amount of information exchanged be-
tween two objects during an interaction.

Using the VSL syntax, both kinds of annotations are specified
with a pair of tuples which express a minimum
and a maximum value. The CPU demands are
scaled by the CPU speed factor, properly annotated in the exe-
cution node. The msgSize tagged-value is annotated to a mes-
sage only when a GaCommHost is used in the communica-
tion. For example, in Fig. 3(c), this is the case of messages
m2 and m3, that are exchanged by the components and
which run on different CPUs and use the LAN to communicate
(Fig. 3(b)). Finally, the population of software components ex-
ecuting the sequence diagram is specified by stereotyping each
object lifeline as PaRunTimeInstance and by setting the pool-
Size tag to either a value or a parameter. We assume that there
is a single lifeline that starts the interaction. However, since a
different pool size can be associated to each lifeline, the execu-
tion of software components can be performed sequentially or
in parallel, depending of the population configuration (and, ob-
viously, on the hardware resource restrictions). In the example,
there are , , and objects of class , and , re-
spectively. If we assume , then the two
object triplets and execute concurrently
the interactions. On the other hand, if we assume and

, like in a client-server model, then the two object
triplets and execute the scenario almost
sequentially.

BERNARDI et al.: TIMING-FAILURE RISK ASSESSMENT OF UML DESIGN USING TIME PETRI NET BOUND TECHNIQUES 95

Fig. 3. Example of system specification.

The deployment diagram contains the input parameters re-
lated with the resource platform characteristics. We use the res-
Mult and the speedFactor tags. The former specifies the multi-
plicity of nodes, while the latter defines the processing speed of
the node as a ratio to the speed of a reference processor for the
system under consideration. The network capacity (capacity)
tag is annotated to GaCommHost nodes and it is expressed as
an interval of values (i.e., min/max values). It will be used, in
the derivation of the TPN model, to assign a time duration to the
transitions representing message transmission, together with the
message size tagged-values specified in the sequence diagram.

V. DETERMINE THE RISKS LIKELIHOOD

The goal of the risk analysis is to estimate the risk associated
with a scenario timing failure. The risk depends on two factors,
i.e., the probability and the consequence of the scenario timing-
failure. In this section, we will define the former as a function
of the required scenario response time, specified in the UC, and
of the scenario response time upper and lower bounds, that are
computed using the TPN bound techniques.

The construction of a TPN model of the system is a prereq-
uisite for the estimation of the probability of timing failure. In
the following, we will illustrate how to get the TPN model from
the UML system specification. Sequence diagrams with alter-
native, optional and parallel combined fragments are also sup-
ported by our method, since the approach [37] we build on pro-
vides a translation of such constructs. However, for space rea-
sons, we will consider only simple constructs (i.e., no combined
fragments). Then, we will describe how to compute the scenario
response time bounds by applying the TPN bound techniques
[11], [44]. Finally, the estimation of the risk likelihood is de-
scribed.

Fig. 4. TPN subnets.

A. Derivation of the TPN Model

As discussed in Section II, we rely on the approach in [37]
to get the Petri net model from the UML specification. Never-
theless, we have to customize it for different reasons. First, to
include the timing specification that lead to a TPN model. Then,
to represent resource contention in the system. Concerning the
latter issue, we exploit the compositional properties of Petri nets
to translate the sequence and the deployment diagrams in two
separate TPNs, that will be then composed over common label
transitions to get the final analyzable TPN model.

In the approach [37] each event (e.g., send and receive) and
local activity, in the SD, is converted into a PN subnet. We con-
sider also an additional PN subnet to model message transmis-
sion, when the communication causes delays. We have then four
types of labeled TPN subnets, as shown in Fig. 4: the execu-
tion occurrence of the local activity , the send/receive events
and the transmission related to the message . The local ac-
tivity subnet is characterized by three transitions representing,
respectively, the starting (A_S_A2), the execution (A_A2), and
the termination (A_E_A2) of the activity performed by the

96 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

Fig. 5. Left: (a) scenario-TPN model and (b) resource-TPN model. Right: final TPN model.

component . The send/receive event subnets are character-
ized, instead, by a place representing the send/receive mailbox
of message (labeled and). The trans-
mission of is modeled by a transition with the send/receive
mailbox places as input/output places, respectively. The tran-
sitions labeled as acq_res or as rel_res represent the acquisi-
tion or the release of a resource res, respectively, and they have
no firing delay. Also, the transitions modeling the send/receive
events have no firing delay associated (e.g., B_m2,C_R_m2).
The timing specification of a transition L_act, representing the
execution of an activity act performed by component , is given
by the hostDemand tagged values associated with the activity.
For example, the transition (Fig. 4) is characterized by
the following min/max firing times:

(1)

(2)

where and
are the min/max tagged-values of associated
with activity , in Fig. 3(c), and is the speed factor
parameter of the processing node CPU1.

The time associated to a transition msg, representing the
transmission of a message (msg) through a communication
resource (res) is given by the ratio of the msgSize and capacity
associated with the message (in the SD) and to the commu-
nication resource (in the deployment diagram), respectively.
Since both the message size and the net capacity parameters
are expressed as min/max tagged values, the division operator
of interval arithmetic for non-negative intervals is used [45].

For example, the transition (Fig. 4) is characterized by the
following min/max firing times:

(3)

(4)

where and
are the min/max tagged-values of associated with
message , in Fig. 3(c), and and

are the min/max tagged-values of
. In the formulas, we assume tagged values with

homogeneous metric units.
The TPN subnets are then connected via source/sink places,

according to the partial order sequencing of the corresponding
events, as proposed by [37], then obtaining a TPN model (sce-
nario-TPN model) that captures the weak sequencing of events
[8] as well as the timing delays due to the execution of local
activities and to the message transmission. The scenario-TPN
model for the SD, in Fig. 3(c), is shown in Fig. 5(a). The initial
marking of the scenario-TPN model is defined according to the
population specification annotated to each object lifeline. Then,
the places A0,B0,C0 are characterized by an initial marking
equal to the poolSize tagged values of lifelines , and , re-
spectively (i.e., the parameters , , and). A transition
respS (with zero firing delay) is also added, that brings back
the model to its initial marking after a scenario execution.

The deployment diagram provides indications on the system
hardware resources, then a resource-TPN model will be de-
rived. Fig. 5(b) shows the resource-TPN model of the deploy-

BERNARDI et al.: TIMING-FAILURE RISK ASSESSMENT OF UML DESIGN USING TIME PETRI NET BOUND TECHNIQUES 97

ment diagram in Fig. 3(b). A resource-TPN model consists of
a set of disjoint TPN subnets, one for each GaExecHost node.
A TPN subnet models the behavior of a hardware resource res.
It consists of two places, idle_res and busy_res, and two
causally connected transitions, labeled as acq_res and rel_res,
that represent the resource acquisition and release (with zero
firing delay). The place idle_res is initially marked, and its
marking is set to the multiplicity tagged-value associated with
the node.

The final analyzable TPN model is obtained by composing
the scenario-TPN model and the resource-TPN model over tran-
sitions with equal label. The transition composition operator
[46] is the usual one that generates the Cartesian product of the
transitions with common labels of the two composing nets. The
synchronized transitions may represent either resource acquisi-
tion (transitions labeled as acq_res) or resource release (transi-
tions labeled as rel_res). The final analyzable TPN model of the
example in Fig. 3(b) and (c) is depicted in Fig. 5 (right side): it
has been obtained by composing the TPNs in Fig. 5(a) and (b)
over transitions with common labels (acq_CPU1, res_CPU1,
acq_CPU2, res_CPU2).

B. Computation of Scenario Response Time Bounds

The TPN model, derived from the sequence and deployment
diagrams, is characterized by good properties such as bound-
edness and liveness, and it is used to compute the bounds of
the scenario response time. When the scenario is characterized
by a single tuple of interacting components (that is one object
per lifeline), the scenario response time corresponds to the time
duration between two consecutive firings of the synchroniza-
tion transition (namely, the inter-firing time),
whose firing models the termination of the scenario execution
by the tuple. When, instead, several tuples of interacting compo-
nents execute concurrently, we consider the number of objects
associated to the lifeline of reference, which corresponds to the
one that starts the interaction. In the example of Fig. 3, the life-
line of reference is and it is populated with objects. The
scenario execution is completed when all the tuples have
terminated, that is after consecutive firings of .

The lower bound of is computed by applying tech-
niques based on the Little’s law. In particular, when the TPN
has the unique minimal T-semiflow1 (1-consistency), all
the transitions are characterized by the same visit ratio and we
can state and solve the following linear programming problem
(LPP):

(5)

where is a vector of variables, and are the pre- and
incidence matrices, respectively, is the transition static earliest
firing time vector, and is the initial marking vector. The

1T-semiflows (P-semiflows) are right (left) integer natural annullers of the
TPN incidence matrix.

LPP (5) is a straightforward extension of the one stated for TPN
marked graphs in [44] to one-consistent TPNs.

The upper bound of is computed, instead, consid-
ering a complete sequentialization of all the timed transition fir-
ings

(6)

where is the transition static latest firing time vector.
The lower bound represents the inter-firing time

of under best case behavior assumption, that is consid-
ering the real concurrency among the component activities and
the transition minimum firing delays and, in particular, depends
on the initial marking. The upper bound represents,
instead, the inter-firing time of under worst case behavior
assumption, and it does not depend on the initial marking. The
scenario response time lower and upper bounds are then given
by

(7)

(8)

where is the number of objects associated to the lifeline of
reference.

When the sequence diagram contains alternative/optional
fragments, we resort to general LPP techniques to compute
the bounds [11]. It is worth noting that the time required to
compute the scenario response time bounds does not depend
on either the number of tuples of interacting objects or the
number of hardware resources (i.e., the TPN initial marking).
Indeed, the LPP techniques used to compute the bounds have
polynomial time complexity on the net size, i.e., number of
places and transitions.

C. Risk Likelihood Estimation

The risk likelihood is estimated as the probability that the sce-
nario response time is not greater (less) than the maximum (min-
imum) timing constraint annotated in the UC. Similarly to [27],
we define such a probability as a function of the required re-
sponse time and the scenario response time bounds, previously
computed. In particular, when a maximum is specified, such as
in the UC in Fig. 3(a), we use the following formula:

if
if
otherwise

(9)

The probability value in the extreme cases is reasonable by def-
inition of bounds. Indeed, if the maximum value is greater than
the upper bound, the (unknown) response time will be always
lower than the maximum specified, hence the probability of
timing failure is zero. On the other hand, if the maximum value
is lower than the lower bound, the (unknown) response time will
be always greater than the maximum specified, so the proba-
bility of timing failure is set to 1. When, instead, the maximum
requirement falls in the interval , we estimate
the probability of timing failure as the ratio between the dis-
tance of the upper bound from the maximum value (i.e., failure
range) and the distance between the bounds (i.e., whole range of

98 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

values). This ratio corresponds to consider each response time
value, within the bound interval, with the same probability: this
is a reasonable assumption when there is absence of information
on the time duration distribution of the system activities, as in
our case. Indeed, for each activity only min/max durations are
given as input to the specification. Formula (9), and correspond-
ingly when the specification indicates a minimum
threshold, corresponds to assume that the response time is uni-
formly distributed between the lower and upper bounds. The
main reasons of this choice has been to provide an efficient and
not trivial risk estimation technique for the early stages of the
software life-cycle. In fact, concerning the efficiency, we resort
to the TPN bound techniques and formula (9) that are charac-
terized by low computational costs and, in particular, scale very
well with respect to the number of software and hardware re-
sources in the system. Unlike the exact stochastic analysis tech-
niques, such as [42], that require the knowledge of probability
distributions of the single activity durations, the proposed ap-
proach can be used early in the life-cycle, which is often charac-
terized by uncertainties due to the lack of complete knowledge
of the whole system and of the external factors. From the useful-
ness point-of-view, the uniform assumption permits to provide
not trivial estimations with respect to the deterministic one. In-
deed, if we assume a deterministic distribution, then
can be either set to 1 or 0 depending whether the maximum value
specified is less than the upper bound or not. This as-
sumption leads to consider only the boundary categories of the
risk likelihood classification, e.g., in Table I either frequent or
impossible.

As system measures become available, later in the life-cycle,
other assumptions on the type of distribution over the interval

could be more appropriate. In order to analyze the
sensitivity of the risk likelihood, with respect to the distribution
assumption, we have compared the of the running ex-
ample under the uniform and normal hypothesis. In particular,
according to the and -rules [47], the following normal dis-
tributions are considered:

1) , where and
(i.e., -rule);

2) , where (i.e., -rule).
Default values are set to the CPU speed factors, (i.e.,

), the lifeline is populated with
objects and one object is assigned to each lifeline and .
First, we have observed that the difference between the
values under the uniform and the normal cases is not affected by
the bound interval; in particular, the maximum error is 9.15%
for the -rule (18.66% for the -rule) independently of the
pool size value . Fig. 6 plots the three curves of ,
when . Second, the uniform assumption can either un-
derestimate or overestimate , with respect to the normal
assumption, depending whether the maximum value specified
is less or (respectively) greater than the mean value . While
the probability value is the same when . In Fig. 3(a),

, and the probability of the scenario timing-failure
is under the uniform assumption. It is an
underestimate with respect to the normal assumption with a dif-
ference of 1.71% (-rule) and 3.99% (-rule). Finally, the

Fig. 6. Sensitivity of � ��� under different uniform and normal distribu-
tions (�� � ����, �� � ��).

difference in the risk likelihood evaluation depends not only on
the maximum value specified but also on the mapping of the
probability value onto the qualitative property according to the
defined likelihood classification. Indeed, considering the one
defined in Table I, under both the uniform and the normal as-
sumptions the risk likelihood of the running example is finally
evaluated as frequent.

VI. EVALUATE AND TREAT THE RISKS

Beside the risk likelihood, the consequence associated with a
system failure should be determined also. The consequence is a
characterization of the impact of the failure on the system users
and environment. Many standard techniques exist that support
the consequence analysis [12]–[14]. We resort to those tech-
niques that can be applied early in the software life-cycle (such
as Preliminary Hazard Analysis [13] or Functional Hazard As-
sessment [48] or Functional Failure Analysis [49]). Actually, the
only condition we impose to the selected technique concerns
with the consequence classification that should correspond to
the ones in the adopted risk matrix: e.g., in Table I, the fol-
lowing categories are considered: negligible, marginal, critical,
and catastrophic [13], [14].

Once the two risk factors have been estimated, the risk eval-
uation activity consists in verifying whether the estimated risk
associated with the scenario timing-failure is tolerable, with the
help of the risk matrix in Table I. In case of positive result, then
the risk assessment for the current scenario can be considered
terminated and we can repeat the risk assessment process for
other system scenarios. On the other hand, when the estimated
risk is not tolerable, the UML design needs to be further ana-
lyzed to identify the potential causes of the risk and, in case,
undertake corrective actions.

The first step of the risk treatment consists in identifying the
critical elements, in the UML design, that contribute to the risk
estimated during the analysis.

For this purpose, we exploit the TPN bound technique used
for the computation of the scenario response time lower bound.
In particular, the optimal solution of the LPP (5), stated for

BERNARDI et al.: TIMING-FAILURE RISK ASSESSMENT OF UML DESIGN USING TIME PETRI NET BOUND TECHNIQUES 99

the TPN system, is a minimal P-semiflow2 and the TPN subnet
generated by its support is the slowest subnet of the TPN
system. In fact, it has the highest cycle time (i.e., the sum of the
minimum firing delays of its transitions) that corresponds to the
computed bound.

Considering the backward mapping of the TPN model onto
the UML design, we define the demands associated to a lifeline

of the SD, to message transmission, and to a resource of the
DD, respectively, as follows:

if
otherwise

where transitions model local activities
of , transitions model the transmission of messages

, , and are the sets of transitions/places of the slowest
subnet . Then, it is possible to identify the software compo-
nents (i.e., object lifelines) and resources with the highest de-
mand. Moreover, may correspond to one of the following
critical elements in the UML design.

• Software components. The set of timed transitions
represent the local activities executed

by a single lifeline . Then, the critical elements are the
software components represented by the lifeline , since
they are the components with the highest demand.

• Hardware resource. The set of timed transitions
represent the lifeline local activities

in the sequence diagram which require a hardware re-
source to be executed. Then, the critical element of the
UML design is the node in the deployment diagram,
since it is the most demanded resource within the consid-
ered scenario.

• Interaction path. The set of timed transitions
represent local activities exe-

cuted by different lifelines and messages transmission.
Then, the critical element is the most time consuming path
in the scenario.

It is worth noting that the slowest TPN subnets are sensitive
not only to the change of the timing parameters but also to the
population of software components executing the sequence di-
agram. In the running example, assuming the default values for
the two CPU speed factors and a single object per lifeline, the
slowest TPN subnet (Fig. 5, on the right, in light gray) cor-
responds to the scenario longest path emphasized in light in
Fig. 3(c). The component with highest demand in the scenario
longest path is since its demand

, while and . On the
other hand, if the lifelines and are populated with two ob-
jects, the slowest TPN subnet (Fig. 5, on the right, in dark gray)
identifies the CPU1 in Fig. 3(b) as the critical resource, with

. The high-risky components that use CPU1 are

2A semiflow is minimal when its support, i.e., the set of the nonzero compo-
nents of the incidence matrix annuller, is not a proper superset of the support of
any other, and the greatest common divisor of its elements is one.

Fig. 7. CAB system context.

the objects with , while
and .

The second step in the risk treatment offers some
simple guidelines to reduce the probability of the scenario
timing-failure. These guidelines, that have to be applied in
the UML design, give advice on how to remove or alleviate
the identified critical elements. When the critical element is
a hardware resource, the simplest actions concern either with
the replacement with a faster one or with the increment in its
multiplicity, i.e., with its replication. The activities carried out
by the software components with the highest demands should
be studied in the sequence diagram trying to reduce their delays
and demands and/or trying to execute them in parallel whenever
possible.

In the case of a path in the scenario that goes beyond the
timing constraint, then the previous advice can be applied to
each software component participating in the path. Moreover,
an alternative network configuration could be studied in the de-
ployment diagram for the hardware nodes hosting the involved
software components and/or incrementing the capacity of the
networks, these actions will tend to reduce the demands of the
messages exchanged in the longest path. After some of these
changes have been introduced in the UML design, the method
has to be applied again to check the success.

VII. A CASE STUDY FROM THE REAL-TIME AND

EMBEDDED SYSTEM DOMAIN

Even if the proposed method is more fitted into soft real-time
domain, we will apply it to a hard real-time one, a Computer-As-
sisted Braking (CAB) system for vehicles introduced in [50].
The intention is not on obtaining so accurate results, but on pro-
ducing a blueprint for a complex and realistic case study. CAB
provides three functionalities in addition to traditional vehicle
brakes: 1) Anti-lock braking (ABS), that detects the onset of
wheel lock up and releases the brakes to allow the wheel to turn
and regain grip. 2) Emergency stop detection and enhancement,
that detects the rapid pedal movement associated with an emer-
gency stop and maximizes the braking used. 3) Load-compen-
sated braking that measures the weight on the vehicle’s suspen-
sion to ensure that a given pressure on the brake pedal provides
the same degree of braking, regardless of how heavily the ve-
hicle is loaded, or how the load is distributed.

Fig. 7 shows the context of the CAB system. Each hydraulic
line is fitted on to each wheel, with a feedback pressure sensor
for closed-loop control. The brake pedal has two sensors,
each returning a value indicating how hard the pedal has been
pressed. Axles of the vehicle have two pressure transducers to

100 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

Fig. 8. CAB use (a) case diagram and (b) deployment diagram.

measure the load on the vehicle. Finally, each wheel has a rota-
tion sensor to be used for lookup detection for anti-lock braking
function. Two output controllers drive the hydraulic actuators.
Each one controls the actuators for a diagonal pair of wheels,
takes required commands over a duplicated Controller Area
Network (CAN) bus link, and converts them to the required
electrical outputs to the actuators. Each controller works on a
cyclic basis, and will only alter its outputs once per period of
the cycle. Mauri [50] presents a detailed safety assessment of
the CAB by applying several standard techniques (e.g., PHA
and FMEA). Moreover, he points out the importance of timing
assessment and clearly establish the requirements for the CAB
at this regard, however, he prefers not to report results since his
aim just targets safety concerns.

A. Establish the Context and Identify the Risk

CAB has to meet timing requirements derived from vehicle
dynamics. In particular, the latency from the pedal movement
to brake effect should be at most 20 ms. So, we will assess the
risk due to a late response time from demand to brake effect.
Thereby, we consider the CAB specification in [50], from which
we modeled the architecture and behavior using UML. Consider
that we left out, only and intentionally, the specification of the
safety requirements also reported in [50].

In Fig. 8(a), use case annotation captures the timing require-
ment: the risk (i.e., late timing failure) as well as the two risk
factor parameters (i.e., probability and consequence of a sce-
nario timing failure). Deployment diagram in Fig. 8(b) repre-
sents the CAB redundant architecture: there are three identical
processor nodes, (, 2, 3), that communicate via a du-
plicated CAN bus. The buses are also used for sending output
values to the output modules.

Fig. 9 shows the braking scenario of the CAB system. The
scenario represents the concurrent execution of the components

running on processor , namely, channel , as well as
interactions between the modifier selector with the bus
watchers running on the three processors (, 2, 3).
It starts with component which reads all sensor values and
uses data from both pedal sensors to form a single pedal value
(R_E). Then, sends the outputs to the , the modifier
selector and the components. calculates
a basic braking pressure for each wheel based only on the
pedal sensor value (BBP) and sends a record containing the
four values to . The latter uses all the sensor information
to determine which modifiers are required (CAS), calculates
modifier values and creates a record containing basic and
modifier values in pool (MV) to be used by the modifier adder

. broadcasts then the votes to all the bus watcher
components, running on the three processors, in order to
identify which modifiers are required. Observe that a msgSize
tagged-value has been assigned to the Vote messages sent by
the to the bus watchers , since the CAN
buses are used in the communication. No annotation has been
assigned, instead, to the Vote message sent to the , since
the latter runs on the same processor of the sender. The
builds up a record of votes (BRV) and sends all the votes to
the . The latter determines which modifiers to add to the
basic braking value from the record of all votes assembled by
the (Vot) and sends the final braking pressure values to
the . Finally, calculates the braking pressure (BR),
adjusted according to sensor feedback, and sends the braking
actuator drive values to the two output controllers.

B. Determine the Risk Likelihood

During risk analysis, the risk factor parameters (probability
and consequence) will be estimated. The first step consists in
deriving a TPN model (Fig. 10) from the UML specification
(Figs. 8 and 9) according to our method. To improve readability,
broken arcs are used in Fig. 10, where the name associated with
a broken arc is the name of the transition/place from which the
arc is originated or to which the arc is addressed (e.g., idle_Proc
is an input place of transition IN_S_R_E). Immediate transitions
are drawn as thin black bars, while timed transitions as thick
white bars. The CAB resource is represented by a pair of places
(idle_Proc, busy_Proc), which are either input or output for a set
of transitions like IN_S_R_E, IN_E_R_E and so on. It is worth
noting that place idle_Proc allows parallel execution of the three
processors. Finally, the slowest subnet of the TPN is emphasized
in gray and it will be discussed in the next subsection.

Considering the interval-based annotations in the UML
models (Figs. 8 and 9), the interval firing times of timed tran-
sitions were calculated according to the mapping described in
Section V-A. In particular, the min/max firing times assigned to
transitions that represent message transmission were calculated
considering formulas (3) and (4).

We have used the TPN-PerfBound tool [51] to compute the
upper and lower bound inter-firing times for transition respS. In
particular for the lower bound computation, the generated LPP
is characterized by 64 variables and 46 equality constraints. The
automatic generation and solution of the LPP took few seconds
on a Pentium 4 PC with 1.60 GHz CPU. The lower and upper
bound response times of the braking scenario were calculated

BERNARDI et al.: TIMING-FAILURE RISK ASSESSMENT OF UML DESIGN USING TIME PETRI NET BOUND TECHNIQUES 101

Fig. 9. CAB braking scenario.

Fig. 10. TPN model of the CAB system.

by applying formulas (7) and (8) in Section V-B, respectively,
then obtaining and .

The timing requirement states that the response time of the
braking scenario should be at most 20 ms. We can then esti-

mate the probability of timing failure by using formula (9) in
Section V-C: .
According to Table I, this value falls in the frequent likelihood
category.

102 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

The preliminary hazard analysis of the CAB system, carried
out in [50], led to the classification of the timing-failure mode
of the braking scenario as critical.

C. Evaluate and Treat the Risk

The estimate of the timing-failure risk corresponds to an in-
tolerable risk considering Table I, so it needs treatment. We then
proceed with the identification of the critical elements in the
UML design to treat the risk. In particular, from the solution
of the LPP (5) stated for the computation of the lower bound,
it is possible to identify the slowest subnet of the TPN model.
Observe that the slowest subnet (in gray in Fig. 10) contains
the timed transitions representing the local activities in the CAB
braking scenario (in gray in Fig. 9) which are executed by the
components running on the same processor. Then, the proces-
sors modeled by the node Proc in the deployment diagram in
Fig. 8(b) are the critical elements in the UML design since they
have the highest demand.

By applying guidelines in Section VI, a trivial solution for
risk reduction is to use processors with higher speed. For ex-
ample, if we double the processor speed and apply the risk
analysis method again, we obtain a risk estimation of 0.13. Ac-
cording to Table I, that risk would still be intolerable. Applying
the method once more, it can be computed that a speed factor
of 2.3 is needed in order to reduce the likelihood under the
threshold of , thus leading to a negligible risk.

VIII. CONCLUSION

In this paper, we have applied best practises in software engi-
neering (i.e., UML, profiling and model driven transformation)
and well-known formal techniques in the literature (i.e., Time
Petri Nets and bound techniques) to propose a comprehensive
method for assessing the risk of timing failure by evaluating the
software design. The main contribution of this work is the cus-
tomization of the activities proposed by the standard risk man-
agement process [7] for the assessment of timing-failure risks,
in early stages of the software life-cycle.

Our system context is the UML-based software specification,
enriched with MARTE [9] profile annotations to capture the
nonfunctional system properties. During the risk analysis, we
exploit the TPN and bound techniques to estimate the proba-
bility of scenario timing-failure. First, a TPN model is derived
from a UML-based design, according to a transformation ap-
proach which is an adaptation of the Eichner’s one [37]. Later,
the TPN bound techniques are applied to compute the scenario
response time bounds, which are used then to estimate the prob-
ability of timing-failure. Within the risk evaluation and treat-
ment steps, our method provides a support in the identification
of the critical elements in the design which contribute to the
timing-failure risk of the system scenario, i.e., resource bottle-
necks, most time consuming paths in the scenario and software
components with the highest demand.

We have developed a TPN tool [51] for the bound computa-
tion and the identification of the slowest subnet of a TPN model,
that has been used in the running example and in the case study.
Currently, we are implementing the most time-consuming step,
namely, the derivation of the TPN model from the UML system
specification.

With respect to the accuracy of the computed bounds, a gen-
eral theoretical result has not been obtained [11]. Nevertheless,
as in the case of qualitative structural theory of net systems,
the derived performance-oriented results are specially powerful
for some well-known subclasses of nets, like the ones obtained
by applying the UML2TPN translation of UML sequence and
deployment diagrams proposed in this work. For more general
classes, the quality of the bounds could be poor, specially for
throughput lower bounds.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees and
the associate editor for their helpful comments to improve the
paper.

REFERENCES

[1] E. Lazowska, J. Zahorjan, G. Scott Graham, and C. Sevcik, Quantita-
tive System Performance: Computer System Analysis Using Queueing
Network Models. New York: Prentice-Hall, 1984.

[2] R. Alur and D. Dill, “A theory of timed automata,” Theor. Comput.
Sci., no. 126, pp. 183–235, 1994.

[3] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Frances-
chinis, Modelling With Generalized Stochastic Petri Nets, ser. John
Wiley Series in Parallel Computing. Chichester, U.K.: Wiley, 1995.

[4] B. Berthomieu and M. Diaz, “Modeling and verification of time depen-
dent systems using time petri nets,” IEEE Trans. Soft. Eng., vol. 12, no.
3, pp. 259–273, Mar. 1991.

[5] P. Merlin and D. Faber, “Recoverability of communication protocols,”
IEEE Trans. Commun., vol. COM-24, no. 9, pp. 1036–1043, Sep. 1976.

[6] Object Management Group, [Online]. Available: http://www.omg.org
[7] Australian Standard AZ/NZS4360: Risk Management, AZ/NZS4360:,

1999.
[8] Unified Modeling Language: Superstructure OMG, May 2010, ver. 2.3,

formal/10-05-05.
[9] A UML Profile for Modeling and Analysis of Real Time Embedded Sys-

tems (MARTE), OMG, 2009, document ptc/09-11-02.
[10] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic concepts

and taxonomy of dependable and secure computing,” IEEE Trans. De-
pendable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan.–Mar.
2004.

[11] S. Bernardi and J. Campos, “Computation of performance bounds for
real-time systems using time petri nets,” Trans. Ind. Informat., vol. 5,
no. 2, May 2009.

[12] “IEC-60300-3-1: Dependability Management,” 2001, International
Electrotechnical Commission, 3 rue de Varembé CH 1211. Geneva,
Switzerland.

[13] “MIL-STD-882: System Safety Program Requirements,” 1999, Dept.
Defense Military Standard, USA.

[14] N. Leveson, SAFEWARE: System Safety and Computers. Reading,
MA: Addison-Wesley, 1995.

[15] M. Stamatelatos and H. Dezfuli, “Probabilistic Risk Assessment Pro-
cedures Guide for NASA Managers and Practitioners,” Aug., 2002, ver.
1.1, Prepared for Office of Safety and Mission Assurance, NASA Head-
quarters. Washington, DC.

[16] C. Rodger and J. Petch, “Uncertainty & Risk Analysis,” Apr. 1999,
Business Dynamics, PriceWaterHouseCoopers.

[17] UML Profile for Modeling Quality of Service and Fault Tolerant
Characteristics and Mechanisms, OMG, Apr. 2008, ver. 1.1,
formal/08-04-05.

[18] Information Technology. Security Techniques: Information Security
Risk Management, iSO/IEC 27005:2008, International Electrotech-
nical Commission, 2008.

[19] NIST National Vulnerability Database, , National Institute of Standards
and Technology. [Online]. Available: http://nvd.nist.gov/

[20] BSI Standard 100-1: Information Security Management Systems
(ISMS), Standard 100-1, Federal Office for Information Security.
[Online]. Available: http://www.bsi.de/english/gshb/

[21] E. Zambon, S. Etalle, R. J. Wieringa, and P. Hartel, “Model-based
qualitative risk assessment for availability of IT infrastructures,” Softw.
Syst. Modeling, 10.1007/s10270-010-0166-8, to appear.

[22] F. den Braber, I. Hogganvik, M. Lund, K. Stolen, and F. Vraalsen,
“Model-based security analysis in seven steps. A guided tour to the
CORAS method,” BT Technol. J., vol. 1, no. 25, pp. 101–117, 2007.

BERNARDI et al.: TIMING-FAILURE RISK ASSESSMENT OF UML DESIGN USING TIME PETRI NET BOUND TECHNIQUES 103

[23] C. Alberts and A. Dorofee, “OCTAVE Criteria,” Carnegie Mellon-Soft-
ware Engineering Institute, Pittsburgh, PA, Tech. Rep. ESC-TR-2001-
016, Dec. 2001.

[24] “EBIOS: Expression des Besoins et Identification des Objectifs de
Sécurité,” Agence Nationale de la Sécurité des Systèmes d’informa-
tion. [Online]. Available: http://www.ssi.gouv.fr/en/

[25] “CRAMM v5.1 Information Security Toolkit,” Siemens [Online].
Available: http://www.cramm.com

[26] K. Goseva-Popstojanova, A. E. Hassan, A. Guedem, W. Abdelmoez,
D. E. M. Nassar, H. H. Ammar, and A. Mili, “Architectural-level risk
analysis using UML,” IEEE Trans. Softw. Eng., vol. 29, no. 10, pp.
946–960, 2003.

[27] V. Cortellessa, K. Goseva-Popstojanova, K. Appukkutty, A. Guedem,
A. Hassan, R. Elnaggar, W. Abdelmoez, and H. Ammar, “Model-based
performance risk analysis,” IEEE Trans. Softw. Eng., vol. 31, no. 1, pp.
3–20, Jan. 2005.

[28] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-based
performance prediction in software development: A survey,” IEEE
Trans. Softw. Eng., vol. 30, no. 5, pp. 295–310, May 2004.

[29] I. Ober, S. Graf, and I. Ober, “Validating timed UML models by sim-
ulation and verification,” Int. J. Softw. Tools for Technol., vol. 8, no. 2,
pp. 128–145, 2006.

[30] S. Bernardi, J. Merseguer, and D. Petriu, “A dependability profile
within MARTE,” J. Softw. Syst. Modeling, 10.1007/s10270-009-
0128-1, to appear.

[31] P. King and R. Pooley, “Derivation of Petri Net performance models
from UML specifications of communications software,” in Proc. 15th
U.K. Performance Engineering Workshop, Specifications of Communi-
cation Software, , 2000, pp. 262–276, Springer.

[32] S. Bernardi, S. Donatelli, and J. Merseguer, “From UML sequence di-
agrams and statecharts to analyzable Petri Net models,” in Proc. 3rd
Workshop on Software and Performance (WOSP’02), Roma, Italy, July
2002, pp. 35–45, ACM.

[33] M. Woodside, D. Petriu, D. Petriu, H. Shen, T. Israr, and J. Merseguer,
“Performance by Unified Model Analysis (PUMA),” in Proc. 5th Int.
Workshop on Software and Performance (WOSP’05), Palma de Mal-
lorca, Spain, Jul. 2005, pp. 1–12.

[34] S. Bernardi and J. Merseguer, “Performance evaluation of UML design
with stochastic well-formed nets,” J. Syst. Softw., vol. 80, no. 11, pp.
1843–1865, Nov. 2007.

[35] J. Cardoso and C. Sibertin-Blanc, “Ordering actions in sequence dia-
grams of UML,” in Proc. 23th Int. Conf. Inform. Technol. Interfaces,
Pula, Croatia, 2001, pp. 3–14.

[36] O. Kluge, “Petri Nets as a semantic model for message sequence charts
specification,” in Proc. 2nd Int. Workshop on Integration of Specifica-
tion Techniques for Applications in Engineering (INT02), Grenoble,
France, Apr. 2002, pp. 138–147.

[37] C. Eichner, H. Fleischhack, R. Meyer, U. Schrimpf, and C. Stehno,
“Compositional semantics for UML 2.0 sequence diagrams using Petri
Nets,” in Proc. 12th Int. SDL Forum, SDL 2005: Model Driven, A.
Prinz, R. Reed, and J. Reed, Eds., Grimstad, Norway, Jun. 20–23, 2005,
vol. 3530, Lecture Notes in Computer Science, pp. 133–148.

[38] J. Fernandes, S. Tjell, J. Jørgensen, and O. Ribeiro, “Designing tool
support for translating use cases and UML2.0 sequence diagrams into a
Coloured Petri Net,” in Proc. 6th International Workshop on Scenarios
and State Machines (SCESM07), Minneapolis, MN, 2007, p. 2.

[39] D. Petriu and M. Woodside, “An intermediate metamodel with sce-
narios and resources for generating performance models from UML de-
signs,” Softw. Syst. Modeling, vol. 6, no. 2, pp. 163–184, 2007, 10.1007/
s10270-006-0026-8.

[40] E. Vicario, “Static analysis and dynamic steering of time-dependent
systems,” IEEE Trans. Softw. Eng., vol. 27, no. 8, pp. 728–748, Aug.
2001.

[41] D. Xu, X. He, and Y. Deng, “Compositional schedulability analysis of
real-time systems using Time Petri Nets,” IEEE Trans. Softw. Eng., vol.
28, no. 10, pp. 984–996, Oct. 2002.

[42] E. Vicario, L. Sassoli, and L. Carnevali, “Using stochastic state
classes in quantitative evaluation of dense-time reactive-time reactive
systems,” IEEE Trans. Softw. Eng., vol. 35, no. 5, pp. 703–719, Nov.
2009.

[43] D. Cancila, F. Terrier, F. Belmonte, H. Dubois, H. Espinoza, S. Girard,
and A. Cucurru, “Sophia: A modeling language for model-based safety
engineering,” in Proc. 2nd Int. Workshop on Model Based Architecting
and Construction of Embedded Systems, Denver, CO, Oct. 6, 2009, pp.
11–26.

[44] S. Bernardi and J. Campos, “On performance bounds for interval Time
Petri Nets,” in Proc. 1st Int. Conf. Quantitative Evaluation of Systems
(QEST’04), Enschede, The Netherlands, Sep. 2004, pp. 50–59.

[45] R. Kearfott, “Interval computations: Introduction, uses, and resources,”
Euromath Bulletin, vol. 2, no. 1, pp. 95–112, 1996.

[46] S. Donatelli and G. Franceschinis, “The PSR methodology: Integrating
hardware and software models,” in Proc. 17th Int. Conf. Application
and Theory of Petri Nets (ICATPN96), Osaka, Japan, Jun. 1996, vol.
1091, LNCS.

[47] G. Upton and I. Cook, The Oxford Dictionary of Statistics. Oxford,
U.K.: Oxford Univ. Press, 2002.

[48] ARP4761: Aerospace Recommended Practise: Guidelines and
Methods for Conducting the Safety Assessment Process on Civil
Airbone Systems and Equipment, 12 ed. Warrendale, PA: Society of
Automotive Engineers, 1996.

[49] Y. Papadopolous and J. McDermid, “Hierarchically performed hazard
origin and propagation studies,” in Proc. SAFECOMP’99, 1999, vol.
1698, LNCS, pp. 139–152.

[50] G. Mauri, “Integrating safety analysis techniques, supporting identifi-
cation of common cause failures,” Ph.D. dissertation, Dept. Comput.
Sci., Univ. York, York, 2000.

[51] E. Pacini, S. Bernardi, and M. Gribaudo, “ITPN-PerfBound: A per-
formance bound tool for Interval Time Petri Nets,” in Proc. 15th Int.
Conf. Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2009), S. Kowalewski and A. Philippou, Eds., York, U.K.,
Mar. 2009, pp. 50–53.

Simona Bernardi received the M.S. degree in mathe-
matics and the Ph.D. degree in computer science from
the University of Torino, Torino, Italy, in 1997 and
2003, respectively.

She is Professor at the Centro Universitario de
la Defensa, General Militar Academy of Zaragoza,
Zaragoza, Spain. From 2005 to 2010, she held a
researcher position at the University of Torino. She
has been a Visiting Researcher at the Department of
Computer Science and System Engineering, Univer-
sity of Zaragoza, and at the Department of System

and Computer Engineering, Carleton University, Canada. She has been serving
as a referee for international journals and as a program committee member
for several international conferences and workshops. Her research interests
include software performance, dependability and security engineering, UML
and object-oriented software development methodologies, formal methods for
the modeling and analysis of software systems.

Javier Campos was born in Jaca, Spain, in 1963. He
received the M.Sc. degree in applied mathematics and
the Ph.D. degree in systems engineering and com-
puter science (with Extraordinary Doctorate Award)
from the University of Zaragoza, Zaragoza, Spain, in
1986 and 1990, respectively.

In 1986, he joined the Department of Computer
Science and Systems Engineering, University of
Zaragoza, where he was the Director from 2001 to
2003. In 2005, he was named Full Professor of Lan-
guages and Computing Systems at the Department of

Computer Science and Systems Engineering, after winning one of the first two
national competitive habilitation positions announced. His research interests
include modeling and performance evaluation of distributed and concurrent
systems, Petri nets, software performance engineering, and discrete-event
systems in automation. He has supervised the completion of 100 M.S. thesis
students and two Ph.D. students. Since 1989, he coauthored about 80 papers
published in refereed journals and conferences. He has been plenary session
invited speaker and tutorial invited speaker in several important meetings
and has served o the Program Committee, sometimes as a Chair, of several
international conferences. He is a Founding Member of the Aragón Institute for
Engineering Research and a member of the Aragonese Informatics Engineering
Association.

Dr. Campos has been a member of the IEEE IES Technical Committee on
Factory Automation, Co-Chair of the IEEE IES Technical Sub-Committee
on Industrial Automated Systems and Controls, Associate Editor of the IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, and Guest Editor of the Special
Section on Formal Methods in Manufacturing in the same Journal.

104 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

José Merseguer received the B.S. and M.S. degrees
in computer science and software engineering from
the Technical University of Valencia, Valencia,
Spain, and the Ph.D. degree in computer science
from the University of Zaragoza, Zaragoza, Spain.

He is currently the Director of the Master in
Computer Science and Systems Engineering at the
University of Zaragoza, Zaragoza, Spain. He is
also an Assistant Professor in the Department of
Computer Science and Systems Engineering, Uni-
versity of Zaragoza. He teaches software engineering

courses at graduate and undergraduate levels. He has developed postdoctoral
research with Prof. M. Woodside at Carleton University, Ottawa, Canada,

and with Prof. R. Lutz at Iowa State University. He has also been a Visiting
Researcher at the Universities of Torino and Cagliari, Italy. He cooperates with
different software companies, among them Akhela S.R.L. through a European
research project. His main research interests include performance and depend-
ability analysis of software systems, UML semantics, and service-oriented
software engineering.

Dr. Merseguer is a member of the Aragón Institute for Engineering Research
(I3A). He has been serving as a referee for international journals and as a pro-
gram committee member for several international conferences and workshops.
Among them the International Conference on Performance Engineering (ICPE).
He is now serving as Publication Chair for ICPE’11.

