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Abstract—Time Petri Nets (TPNs) have been widely used
for the verification and validation of real-time systems during
the software development process. Their quantitative analysis
consists in applying enumerative techniques that suffer the well
known state space explosion problem. To overcome this problem
several methods have been proposed in the literature, that either
provide rules to obtain equivalent nets with a reduced state
space or avoid the construction of the whole state space. In
this paper, we propose a method that consists in computing
performance bounds to predict the average operational behavior
of TPNs by exploiting their structural properties and by applying
operational laws. Performance bound computation was first
proposed for Timed (Timed PNs) and Stochastic Petri nets
(SPNs). We generalize the results obtained for Timed PNs and
SPNs to make the technique applicable to TPNs and their
extended stochastic versions: TPN with firing frequency intervals
(TPNFs) and Extended TPNs (XTPNs). Finally, we apply the
proposed bounding techniques on the case study of a robot-
control application taken from the literature.

Index Terms—D.2.8.b. Performance Measures, D.4.8.b. Model-
ing and Prediction, D.4.8.d. Operational Analysis, G.1.6.g. Linear
Programming, I.6.4. Model Validation and Analysis, J.7.g. Real
time.

I. INTRODUCTION

In the verification and validation activities of real-time
systems, task completion time is the basic metric of reference
and the main goal is to give guarantees about the worst and
best case completion time, before such systems are put into
use [1]. Guarantees are related to the computation of upper
and lower bounds of the task completion time. Bounds can
be calculated, despite of exact values, also at the early stages
of the software development process, often characterized by
uncertainties due to the lack of complete knowledge of the
whole system and of the external factors.

Place/Transition (P/T) Petri nets [2] have been extended
in the literature with suitable time interpretations for the
modelling and timing prediction of real-time systems. A time
interpretation consists in specifying the behaviour in time in
such a way that [3]: (1) the new model is compatible with the
original P/T model, (2) part of the non-determinism present in
the P/T model is reduced in order to take the timing constraints
into account, and (3) the behaviour of the system is specified
precisely enough to be able to check or compute the temporal
properties under study. Time Petri Nets (TPNs), as defined
in [4], reduce the non-determinism in the duration of activities
of P/T Petri nets by associating a time interval with each

transition. Interval limits define the earliest and the latest firing
time of the transition, relative to the instant at which it was
last enabled.

The same kind of reduction could be applied to the non-
determinism involved in the choice among several conflicting
transitions. Let us consider the case of a free-choice between
two immediate transitions t1 and t2. One might specify, as
an additional interpretation of the net system, that the firing
ratio between t1 and t2 either is constant (as in Generalized
Stochastic Petri Nets [5]) or falls into a given interval. This
latter interpretation was introduced in [3] to illustrate the
basic timing concepts of P/T Petri net models and it has
not been elaborated later in the literature. We return to that
interpretation in this paper, and we give to it the name “TPN
with firing frequency intervals” (TPNF), as a particular case
where new analytical techniques can be derived to compute
temporal properties. One more step in the reduction of the
non-determinism in the duration of activities, in addition to
the time interval approach proposed by [4], is to introduce a
stochastic measure for the duration within the given interval.
In this sense, Extended TPNs (XTPNs) [6], [7], reduce the
non-determinism by associating a probability density function
to each transition firing time that takes a non-null value only
within a given firing interval.

The quantitative analysis of such kind of nets consists
basically in applying enumerative techniques, i.e., techniques
based on the construction of the state classes graph [8], [9] and
the discrete reachability graph [10] for TPNs, and techniques
based on the generation of the randomized state graph [7] for
XTPNs. Such techniques suffer the well known state space
explosion problem even in case of bounded nets. To tackle
this problem, alternative methods have been proposed in the
literature, such as reduction methods [11], that provide rules
to obtain nets with a reduced state space in which the timing
and concurrency properties are preserved, and parametric
descriptions of transition firing sequences [12], that avoid the
construction of the whole state space.

In this paper, we consider TPNs as well as the extended
formalisms of TPNFs and XTPNs. We propose an efficient
method to compute performance bounds for the throughput
of transitions and for the mean marking of places. Bounds
are computed through the solution of linear programming
(LP) problems derived from the structure of the net, the
initial marking, and the time interpretation. The proposed tech-
nique can be applied under the average operational behavior
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assumption, that is the usual job flow balance assumption
of operational analysis of queueing models [13]. Basically,
this balance assumes that, during the observation period, the
number of arrivals to each station (or place, with Petri Net
terminology) is equal to the number of completions. It holds
only in some observation periods, in particular, in arbitrary
large observation periods. Nevertheless, it is an easily testable
assumption. It is the operational counterpart of the steady-
state hypothesis in stochastic models. An important advantage
of the operational approach with respect to the stochastic one
is that a steady-state stochastic theorem is a statement about a
collection of possible infinite behaviour sequences, but it is not
guaranteed to apply to a particular finite behaviour sequence.
On the other hand, an operational theorem is guaranteed to
apply to every behaviour sequence in the collection [13], given
that in the considered observation period the job-flow balance
assumption is fulfilled.

The method extends the applicability of the existing well
established performance bound computation techniques for
Timed Petri nets [14] (Timed PNs) and Stochastic Petri
nets [15] (SPNs). Indeed, from one hand, the Timed PN/SPN
bounding techniques are not applicable to TPNs or TPNFs
anymore, while they can still be used for XTPNs. In the latter
case, they provide better performance bounds (i.e., closer to
the min/max values) w.r.t. the bounds computed with the TPN
bounding technique. On the other hand, if the TPN bounding
technique is applied to Timed PNs or SPNs, the performance
bounds obtained are equal to the ones computed with the
Timed PN/SPN bounding techniques.

This work builds on the previous proposal [16] and im-
proves it from both theoretical and application perspectives.
From the theoretical point of view, the relationship between
the proposed TPN bounding technique and the existing Timed
PN/SPN bounding techniques is given. From the application
point of view, a performance bound solver for TPNs [17] has
been implemented and used for the flexible manufacturing
system running example and the robot-control application case
study.

The paper is organized as follows. In Section II basic defini-
tions and notations are given, illustrating the concepts through
an example of flexible manufacturing system. Section III
includes the technique for the computation of bounds for
TPNs. Firstly, basic observational quantities and the average
operational behavior assumption for a TPN are given. Then,
we present a set of linear equations and inequalities that are
used as constraints of LP problems stated to compute the
performance bounds. Finally, we apply the bounding technique
to the running example. In Section IV, the relationship be-
tween the TPN bounding technique and the Timed PN/SPN
bounding techniques are explained. In Section V we apply
the bounding techniques to the robot-control application case
study. Concluding remarks are given in Section VI.

Related work

TPNs have been extensively used for the validation of
real-time systems, e.g., industrial robotic arm controller sys-
tems [18], assembly systems [19], control and command

systems [20], avionic mission computing applications [21] and
virtual reality systems [22], both from the correctness and the
quantitative point of view.

The works [18], [19] and [20] propose enumerative tech-
niques, alternative to the original proposal [8], to support
schedulability analysis. In particular, the enumerative tech-
nique presented in [18] computes tight bounds on the max-
imum and minimum execution time of feasible traces. Wang
et al. [19] introduce the concept of clock-stamped class (CS-
class) and verify timing requirements on the reachability
tree of CS-classes using on-the-fly techniques to avoid the
complete generation of the state space of the TPN model. Xu
et al. [20] integrate the concept of absolute firing domain,
beside to the relative one, in the generation of the state class
graph of a TPN and propose a compositional technique to
manage the complexity of schedulability analysis.

In [23] and [24] extensions of TPN formalism are proposed
in order to support the modelling of preemptive real-time
systems. Bucci et al. [23] introduce Preemptive Time Petri
Nets (PTPNs) and a state space-based technique for their
analysis. The schedulability analysis of PTPNs is carried out
in two stages: first an approximate representation of the state
space of a PTPN model is derived, that is used to check
necessary condition for feasibility of traces and to compute
upper and lower bounds on their durations. Then, in the second
stage, maximum execution times are computed for the critical
traces by regenerating the actual set of state classes visited by
the traces. Lime and Roux [24] define Scheduling Extended
Time Petri Nets (SETPN) and propose an approximation
method for computing the state space of a SETPN model as a
stopwatch automaton. Stochastic TPN (sTPN) [25] is a suitable
formalism for performance assessment of real-time system.
The sTPN solution technique proposed in [26] is based on the
construction of the stochastic class graph. Unlike the XTPNs,
the firing times of concurrently enabled transitions of a sTPN
are not independent.

In [27] a bounding technique is proposed for the com-
putation of the time elapsed between two given events in
uniprocessor concurrent systems. The modelling formalism
considered in [27] is timed finite state automata and the
approach consists in the formulation of integer LP problems,
where the constraints represent necessary conditions that must
be satisfied by all the execution timed paths of the model.
Although the integer linear programming is NP-complete,
authors argue that the obtained integer LP problems can be
reduced to LP problems. The set of limitations introduced
in [27], on the type of real-time systems that can be considered,
are quite restrictive. In particular, the concurrent processes
have to be aperiodic and sequential and the events representing
time-out cannot be modeled.

Several works in the literature propose interval-based anal-
ysis for handling the uncertainties associated with parameter
values and output metrics of performance models. Majum-
dar [28] surveys those existing techniques that exploit interval-
based analysis for the performance evaluation of computing
systems, modelled with queueing network formalisms. Such
techniques basically consists in solving a set of linear as
well as non-linear equalities/inequalities which express the
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relationships among the input parameters of the performance
model and the performance measures. The main drawback of
using interval arithmetic is the so-called dependency problem
that may lead to the computation of loose performance bounds.
In [29] a brute force interval splitting approach is presented
to overcome the dependency problem, that unfortunately is
characterized by exponential time complexity. Nevertheless,
efficient interval splitting solutions have been proposed, such
as in [30].

II. BASIC DEFINITIONS AND NOTATION

A. Time Petri Net

A Time Petri Net (TPN) is a tuple T =
(P, T, B, F, I,M0, I0), where P is the set of places, T
is the set of transitions, B : T × P → IN is the backward
incidence function and F : T × P → IN is the forward
incidence function (in matrix form, denoted as B and
F, respectively). The input sets of p ∈ P and t ∈ T
will be denoted as •p = {t ∈ T : F (t, p) ≥ 1} and
•t = {p ∈ P : B(t, p) ≥ 1}, respectively; the output set of
p ∈ P will be denoted as p• = {t ∈ T : B(t, p) ≥ 1}. The
function I : T → IQ+

0 × (IQ+
0 ∪{∞}) assigns to each transition

t ∈ T , a time interval I(t) = (a[t], b[t]), a[t] ≤ b[t], where
a[t] is the static earliest firing time and b[t] is the static latest
firing time. The initial state of the TPN is specified by the pair
(M0, I0), where M0 : P → IN is the initial marking function
(M0 in vector form) and I0 is the function that assigns, to
each transition enabled in marking M0, the corresponding
initial dynamic firing interval:

I0(t) =
{

I(t) if M0(p) ≥ B(t, p), ∀p ∈ P
(−,−) otherwise

A state of a TPN is defined as a pair S = (M, Id), where
M is the marking function and Id is a firing interval function
that associates to each transition the time (dynamic) interval
ad[t], bd[t] in which the transition is allowed to fire. Times
ad[t] and bd[t] are relative to the instant at which the transition
t was last enabled. So that, if t has been last enabled at time τ
then it may not fire before τ +ad[t] and it must fire at most at
τ + bd[t], unless it is disabled by the firing of a conflicting
transition (that is a transition having some input places in
common with t).

A transition t is enabled in marking M at time τ if the
following inequality (in vector form) holds: M ≥ BT[·, t],
where BT[·, t] is the row of B corresponding to t. The
transition is firable in marking M at time τ + θ, if: 1) it
is enabled in M at time τ and 2) θ ∈ [ad[t], aLFT ], where
aLFT = mink{bd[tk]} is the actual latest firing time, that
is the smallest of the latest firing times of all the transitions
enabled in marking M .

The firing of t at time τ + θ from a state S = (M, Id)
leads to a state S′ = (M ′, I ′d). Firing itself does not consume
time and the new marking M ′, in vector form, is equal to
M′ = M+FT[·, t]−BT[·, t], where FT[·, t] is the row of F
corresponding to t.

The function I ′d assigns the new firing intervals to the
transitions. Each transition t′ concurrent with t, i.e., transition

that was enabled in M and is still enabled in M ′ after the
firing of t, is characterized by the remaining firing time interval
(max(0, ad[t′]− θ), bd[t′]− θ). Each newly enabled transition
t′, i.e., transition that was disabled in M and becomes enabled
in M ′, is characterized by the static firing time interval
(a[t′], b[t′]). Each disabled transition is characterized by a null
firing time interval.

A transition t is multiple enabled in a marking M , if the
greater integer K such that M ≥ K BT[·, t] is greater than
one: K is called enabling degree of t in M . In absence
of multiple enabledness, the memory policy associated to
transitions of a TPN corresponds to the enabling policy defined
for SPNs [31], since only transitions concurrent with t take
into account of their enabling time from their last enabling
instant. In presence of multiple enabledness, we will assume
the extended firing rule with non-deterministic strategy [32].
According to this rule, the multiple enabled transitions of a
TPN are characterized by more than one time interval. That
is, a transition t enabled in a marking M with enabling degree
K, has K time intervals associated I1

d , . . . , IK
d . Each Ii

d,
i = 1, . . . , K represents the time interval of the i-th enabled
instance of t, and the different instances of t are independent
and run concurrently.

Figure 1 depicts a TPN modelling the behavior of a flexible
manufacturing system [33], where the manufacturing process
of three different types of products, 1,2 and 3, is modelled.
Flexibility in the production process can be seen, for instance,
for the product type 3, where two different operating sequences
are allowed (from use3 M4 to work3 M4 and from use3 M6
to work3 M6). Six different shared resources are modelled in
the system (Mi, i = 1, . . . , 6): they represent the machines.
For instance, a token in place M1 models the availability of
the machine M1 that can be used both for the operation on
product type 1 and the operation on product type 2. Constraints
on the transport resources for a particular production process
are represented using places whose initial marking represents
the capacity of the transport resource. An example of this
type of constraint is place palletsA, marked with MA tokens
representing the number of pallets. Global transport capac-
ity constraints for several production processes can also be
modelled (like place palletsB, marked with MB tokens). The
initial marking N, assigned to place start, represents instead
the system workload. Firing time intervals [a, b], associated to
transitions, are shown in the Figure 1. Min/max firing delays
are assigned to transitions workX MY, representing the timed
activity of machine MY within the manufacturing process of
product X. The other transitions of the TPN may represent
either logical choices (e.g., typeX) or resource acquisition (e.g.,
acquireX MY) and they have zero firing delays, i.e., [0, 0].

B. Time Petri Net with firing frequency intervals

Let us consider the equal conflict relation [34]:

ti EQ tj iff BT[·, ti] = BT[·, tj ] 6= 0.

EQ is an equivalence relation that partitions the set of transi-
tions of the net into equivalence classes ECSj , called equal
conflict sets. Transitions belonging to a given equal conflict
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Fig. 1. The TPN model of the flexible manufacturing system.

set are in extended free-choice conflict. A TPN with firing
frequency intervals (TPNF) is a TPN in which transitions in
extended free choice conflict behave according with frequency
interval constraints.

Examples of TPN models that behave as TPNF are those
for which extended free choice conflicts are solved in a prob-
abilistic manner, verifying the frequency interval constraints,
or those with deterministic schedulers modelled as weighted
regulation circuits, that solve the extended free choice conflicts
preserving the frequency interval constraints. In this work, we
define TPNFs as an extended stochastic version of TPNs. In
particular, for each enabled extended free choice conflict, the
ratio between the firing probability associated to a transition
t ∈ ECS and to a reference transition t0 ∈ ECS falls in a
fixed interval. The enabling and firing rules of a TPNF are the
ones of its underlying TPN.

Formally, a TPNF is a pair T F = (T , R), where T
is the underlying TPN model and R : T → IR+

0 × IR+
0

is the frequency interval function that assigns an interval
(ri[t], rs[t]), ri[t] ≤ rs[t], to each transition. Without loss
of generality, we assume that the transitions belonging to an
equal conflict set ECS, where | ECS |> 1, are immediate (i.e.,
a[t] = b[t] = 0). Then, for each equal conflict set ECS ⊆ T ,
the function R has to satisfy the following constraint: there
exists a transition t0 ∈ ECS, where R(t0) = (1, 1).

When the ECS is enabled (i.e., all the | ECS |= n

transitions t ∈ ECS are enabled in a given marking M ),
the conflict among t ∈ ECS is resolved in a probabilistic
manner by a discrete random variable (d.r.v.) from the family
F = {Xp}p∈R, where each d.r.v. Xp specifies which transi-
tion tj ∈ ECS will fire once enabled, as follows:

Pr{Xp = tj | ECS enabled} =
{

p0 > 0 if tj = t0
pj otherwise

since Xp is a d.r.v.
∑n

j=0 pj = 1, and

R = {p = (p0, . . . , pn) ∈ [0, 1]n ⊆ IRn :

ri[tj ] ≤ pj

p0
≤ rs[tj ], tj ∈ ECS}.

Observe that the selection of the d.r.v. from the family F
is carried out when the ECS becomes enabled and it is not
deterministic. Moreover, the transition firing probabilities are
marking and time independent.

Considering the TPN model in Figure 1, we can make
several assumptions in order to reduce the non-determinism
of the immediate free-choice conflicts, then transforming it
into a TPNF. Firstly, we can assume that the production ratios
for types 2 and 3, w.r.t. type 1, are constant and equal to
two. Then, we can assign the firing frequency intervals (2, 2),
(1, 1), and (2, 2) to the immediate transitions type1, type2 and
type3, respectively1. Observe that the non-determinism of the

1Firing frequency intervals are not shown in Figure 1.
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free-choice conflict has been eliminated in this case, by fixing
the firing probability ratios between the conflicting transitions.
On the other hand, within a manufacturing process of a type
of product, assumptions on the execution ratio between two
conflicting process steps can be made. For example, within the
process of product 2, the process step which uses the machine
M3 can be carried out, w.r.t. the one which uses the machine
M5, with a minimum execution ratio of 3

4 and a maximum
execution ratio 9

7 . This model assumption is specified by
assigning the firing frequency intervals (1, 1) and ( 3

4 , 9
7 ) to

the immediate transitions use2 M5 and use2 M3, respectively.
In this second case, the non-determinism of the free-choice
conflict is not eliminated, however it has been reduced by
bounding the firing probability ratios of the conflicting transi-
tions to min/max values.

It is worth to note that the TPNF definition does not change
when timed free-choice conflicts are considered, provided that
the conflict is well-behaved, that is all the conflicting transi-
tions t ∈ ECS are eventually firable once the ECS is enabled
(e.g., ∀t ∈ ECS : a[t] ≤ mint∈ECS{b[t]}). Indeed, a well-
behaved timed free-choice conflict of a TPN can be always
transformed into a TPN subnet characterized by an immediate
free-choice conflict by preserving the timing behavior [16],
as shown in Figure 2 without considering the specification of
the R function. The two TPNF subnets of Figure 2 are also
stochastically equivalent since the frequency intervals, R(tk),
associated to the conflicting timed transitions tk(k = 1, . . . , n)
are equal to the frequency intervals R(t0k), associated to the
corresponding conflicting immediate transitions t0k.

(a)

(b)

b* = min (bk), k=1,...,n
ak <= b*, k=1,...,n

I(t1’)=[a1,b*] I(tn’)=[an,b*]

I(t01)=[0,0]
R(t01)=(1,1)

I(t0n)=[0,0]
ir n sr n),R(t0n)=(

t1’ tL’

p

p1 pL

t01 t0n

R(t1’)=(1,1) R(tn’)=(1,1)

I(t1)=[a1,b1] I(t2)=[a2,b2] I(tn)=[an,bn]
R(t1)=(1,1) ir n sr n),R(tn)=(ir 2 sr 2),R(t2)=(

t1 t2

p

tn

Fig. 2. Preselection policy in free-choice TPNFs.

C. Extended Time Petri Net

Extended Time Petri Net (XTPN) [6], [7] is a stochastic
extension of TPN. Formally, a XTPN is defined as a pair
XT = (T , F0), where T is the underlying TPN model and F0

is a functional that assigns to each transition t ∈ T an initial
firing probability density function (pdf) defined over its static
firing time interval ft(x), x ∈ I(t). The pdfs can be either
continuous, discrete or mixed; in case of several discrete (or
mixed) pdfs, it is assumed that concurrently enabled transitions
have null probability of firing simultaneously [7].

The state of a XTPN is a triplet S = (M, Id, Fd), where
(M, Id) is the state of the associated TPN model T and Fd is

a functional that defines the firing probability density function
to each transition with non-empty firing interval. A transition
t is firable in state S at time θ at the latest, iff 1) it firable in
the underlying TPN, and 2) the probability of firing transition
t before or at time θ is not zero. The new state reached by
the firing of t is a state S′ = (M ′, I ′d, F

′
d), where (M ′, I ′d)

is the state reached in the underlying TPN. The functional F ′d
defines the new pdfs of the transitions enabled in marking M ′,
as follows:

F ′d(tk) =

{
ftk

(x), x ∈ I(tk) if tk is newly enabled
ftk

(x+θ)

1−Γtk
(θ) , x ∈ I ′d(tk) tk is concurrent with t

where, Γtk
(θ) is the cumulated probability of ftk

(x) in the
interval [0, θ]. Concretely, the newly enabled transitions are
characterized by their initial pdfs, and the transitions concur-
rent with t are characterized by the pdfs of their remaining
times to fire. When all the enabled transitions are newly
enabled (or their firing time is exponentially distributed over
[0,∞]) their times to fire are independent. Then, considering
continuous distributions, the probability of firing t in a state
S = (M, Id, Fd) is defined as:

PS [t] =
∫ aLFT

0

ft(y)
[ ∏

t 6=t′

∫ ∞

y

ft′(x)dx
]
dy (1)

where, aLTF is the actual latest firing time, Fd(t) = ft(y)
and Fd(t′) = ft′(x) are the pdfs of the transitions t′ enabled
with t in marking M . We will not consider, in this paper,
the general case in which a non-exponentially distributed
transition is continuously enabled despite the firing of another
non-exponentially distributed transition.

III. PERFORMANCE BOUND TECHNIQUE FOR TPNS

The technique presented in this section can be used to
compute upper and lower bounds for performance metrics of
a TPN model, such as transition throughput and place average
marking. As in [15], bounds are computed from the solution
of proper LP problems (max-LP problem for the upper bound
and min-LP problem for the lower bound), therefore they can
be obtained in polynomial time on the size of the net model.
We remark that the solution of the LP problem is significant
only if the TPN is live.

The idea is to compute vectors x and M̄ that maximize
(or minimize) the throughput of a transition, or the average
marking of a place, among those verifying a set of linear
operational laws that are imposed as constraints. The latter
can be derived from the net structure, the initial marking, the
static timing specification and, in case of the TPN stochastic
extensions considered in this paper (i.e., TPNF or XTPN), the
stochastic information associated to transitions in free-choice
conflict.

We will introduce, first, the operational quantities that are
used in the formulation of the LP constraints and the average
operational behavior assumption for a TPN model. Then, we
will present the sets of linear equations and inequalities that are
used as constraints of LP problems stated for the performance
bound computation. Finally, we apply the proposed bounding
technique to the flexible manufacturing system example.
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A. Basic observational quantities

Let us consider the following quantities that can be
collected during the period (0, Γ), Γ ∈ IR+, by observing the
behavior of a TPN model:

M̄ [p] =
1
Γ

∫ Γ

0

M [p](τ)dτ (2)

the average marking of p ∈ P , where M [p](τ) is the number
of tokens in p at time τ ∈ (0, Γ);

ē[t] =
1
Γ

∫ Γ

0

e[t](τ)dτ (3)

the average enabling degree of t ∈ T , where
e[t](τ) = minp∈•t{M [p](τ)

B(t,p) } is the number of instances
of t enabled at time τ ∈ (0, Γ);

θj [t] =
∫ Γ

0

ej [t](τ)dτ (4)

the enabling time for the j-th instance of transition t, where
ej [t](τ) is the characteristic function that evaluates to 1 iff the
j-th instance is enabled at time τ ∈ (0, Γ) (i.e., e[t](τ) ≥ j);

S̄[t] =

∑∞
j=1 θj [t]∑∞
j=1 Φj [t]

(5)

the mean service time of t ∈ T , where Φj [t] is the number of
firings of the j-th instance of t;

x[t] =
Φ[t]
Γ

(6)

the throughput of t ∈ T , where Φ[t] =
∑∞

j=1 Φj [t] is the
number of firings of t.

B. The average operational behavior assumption

Average operational behavior assumption in TPNs corre-
sponds to the job flow balance assumption in the operational
analysis of a single-server queueing system. According to [13],
a system satisfies the job flow balance during an observation
period (0, Γ), when the number of job arrivals is equal to
the number of job completions. When considering a TPN, the
number of jobs in a queue at a given instant τ , corresponds
to the number of tokens in a place p. Tokens are produced
(consumed) by the transitions in the input (output) sets of
p, through their firings. In particular, when a transition in
the input-set of p fires produces F (t, p) tokens and when
a transition in the output-set of p fires consumes B(t, p)
tokens. Then, a place p ∈ P satisfies the average operational
behavior assumption during (0, Γ), when the number of tokens
produced in p is equal to the number of tokens consumed from
p:

Φi =
∑
t∈•p

Φ[t]F (t, p) =
∑
t∈p•

Φ[t]B(t, p) = Φo. (7)

As for the job flow balance, such assumption holds only in
some periods. In particular, when 1) the number of tokens
at the beginning of the observation period is equal to the

number of tokens at the end of the observation period, or
2) the observation period is long enough that the difference
between the produced tokens and the consumed ones is small
w.r.t. to the consumed tokens:

lim
Γ→∞

| Φi − Φo |
Φo

= 0. (8)

When the average operational behavior assumption is not
satisfied (e.g., due to the choice of Γ), it is always possible
to calculate the error made assuming it holds. Indeed in [35],
a necessary and sufficient condition for job flow imbalance is
given (Prop.6). In the following, we reformulate such condition
in TPN terms: it will be used to get an error approximation
formula when the average operational behavior assumption
does not hold.

Proposition 3.1: The condition | Φi − Φo |= (Mmax −
Mmin) is true iff M [p](0) = Mmax and M [p](Γ) = Mmin,
or vice-versa M [p](Γ) = Mmax and M [p](0) = Mmin.

C. Constraints for the LP problem

The set of linear equations and inequalities, that will be
introduced in the following, defines the solution domain of the
LP problem for the bound computation of performance metrics
associated to a TPN model. First, we will present a set of linear
equations (i.e., structural constraints) that can be derived from
the net structure and, at most, on the initial marking. Then,
we will give a set of linear inequalities, namely the enabling
operational law constraints, that stem from the application of
the utilization law for queueing systems [13] on Petri Nets.
Such inequalities consider the static timing information of the
TPN model. Finally, we will provide additional constraints
(i.e., routing constraints) that hold for the TPN stochastic
extensions considered in this paper, and take into account
the stochastic information associated to transitions in extended
free-choice conflict.

1) Structural constraints: A first set of constraints is de-
rived by considering that for all markings reachable at instant
τ ∈ (0, Γ), denoted in vectorial form as Mr(τ), we have that
Mr(τ) = M0 + (F−B)T σr(τ), where σr(τ) is a feasible
firing count vector until instant τ , M0 is the initial marking
vector and (F−B)T is the incidence matrix. A second set of
constraints is derived from the average operational behavior
assumption.

Proposition 3.2: (Reachability) The average marking
vector M̄ satisfies the linear equality:

M̄ = M0 + (F−B)Tσ (9)

where σ = 1
Γ

∫ Γ

0
σr(τ)dτ is the average firing count vector.

Proof: From definition (2), written in vectorial form, and
from the reachability equation:
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M̄ =
1
Γ

∫ Γ

0

Mr(τ)dτ =

1
Γ

∫ Γ

0

M0 + (F−B)T σr(τ)dτ =

M0 + (F−B)T
1
Γ

∫ Γ

0

σr(τ)dτ =

M0 + (F−B)Tσ.

Proposition 3.3: (Token flow) Let us consider a place p ∈
P that satisfies the average operational behavior assumption,
then:

∑
t∈•p

x[t]F (t, p) =
∑
t∈p•

x[t]B(t, p). (10)

Proof: The equalities are immediate considering the
equalities (7) and the throughput definition (6).

It is worth to note that, when the average operational
assumption is not satisfied for a place, the corresponding
token flow equation is not finally included in the set of
LP constraints. As an alternative, we can state a token flow
constraint characterized by a correction term, which is derived
from Proposition 3.1, as follows:
∑
t∈•p

x[t]F (t, p) −
∑
t∈p•

x[t]B(t, p) =

{
M [p](Γ)−M [p](0)

Γ if M [p](Γ) > M [p](0)
M [p](0)−M [p](Γ)

Γ otherwise

Finally, the average marking vector, the average firing count
vector and the transition throughputs are, by definition, always
non negative values.

Proposition 3.4: (Non negativity)

M̄, σ ≥ 0, x[t] ≥ 0 ∀t ∈ T. (11)

2) Enabling operational law constraints: This set of con-
straints consider the static interval function I of a TPN model.
Concretely, the static earliest firing times are used to define
the first set of linear inequalities, while the second set of linear
inequalities exploits the static latest firing times. The first set
of constraints can be applied to all transitions of a TPN model
and for every observation period. The second set of constraints
holds only for persistent transitions, i.e., once enabled they
eventually fire, and for particular observation periods.

Proposition 3.5: (Throughput upper bound inequality)

∀t ∈ T and ∀p ∈ •t : x[t] ≤ M̄ [p]
a[t]B(t, p)

. (12)

Proof: Let us consider a transition t ∈ T with a[t] its
earliest static firing time. If the j-th instance of t becomes
enabled at τ ∈ (0, Γ), it cannot fire before a[t] + τ : that is its
minimum firing waiting time is a[t]. Then, the maximum num-
ber of firings of the j-th instance of t during the observation
period is given by

⌊
θj [t]
a[t]

⌋
, so that:

Φj [t] ≤ Φmax
j [t] =

⌊θj [t]
a[t]

⌋
≤ θj [t]

a[t]
.

Summing over all the instances of t and dividing by Γ the first
and the last member of the above inequalities, we obtain:

x[t] ≤
∑∞

j=1 θj [t]
Γ

1
a[t]

.

Replacing θj [t] with its definition and exchanging the integral
and the sum we get:

x[t] ≤
∫ Γ

0

∑∞
j=0 ej [t](τ)dτ

Γ
1

a[t]
.

The equalities e[t](τ) =
∑∞

j=0 ej [t](τ) and e[t](τ) =
minp∈•t{M [p](τ)

B(t,p) } hold for all τ , then we obtain:

x[t] ≤
∫ Γ

0
M [p](τ)dτ

a[t]B(t, p)Γ
=

M̄ [p]
a[t]B(t, p)

,∀p ∈ •t.

Proposition 3.6: (Throughput lower bound inequalities) Let
us consider a persistent transition t ∈ T and an observation
period (0, Γ) that satisfies one of the following properties: 1)
Γ >> 0 (sufficiently large), or 2) there exists p ∈ •t such that
M [p](Γ) = 0.
• Let t ∈ T : •t = {p}. Then:

x[t]b[t] ≥ M̄ [p]−B(t, p) + 1
B(t, p)

. (13)

If ∃N [p] ∀τ ∈ (0,Γ) : M [p](τ) ≤ N [p] we have the
further constraint:

x[t]b[t] ≥ k
M̄ [p]− kB(t, p) + 1
N [p]− kB(t, p) + 1

(14)

where k ∈ IN : kB(t, p) ≤ N [p] < (k + 1)B(t, p).

• Let t ∈ T : •t = {p1, p2} and ∃N [p1], N [p2] ∀τ ∈
(0,Γ) : M [p1](τ) ≤ N [p1], M [p2](τ) ≤ N [p2], and
N [p1] ≤ N [p2]. Then:

x[t]b[t]B(t, p1) ≥ M̄ [p1]−B(t, p1)+1−N [p1]f2 (15)

where f2 =
(
1− M̄ [p2]−B(t,p2)+1

N [p2]−B(t,p2)+1

)
.

Proof: The above constraints are derived from similar
constraints defined in [15] - see the inequalities (13’-15’)
in Table II - by proving that S̄[t] ≤ b[t]. Indeed, being t
persistent, for each j-th instance of t, once enabled at time
instant τji, eventually fires at a time instant always less than or
equal to τji +b[t]. So that its firing waiting time Sji ≤ b[t], ∀i.
Then, the enabling time for the j-th instance of t during the
observation interval (0, Γ) can be written as:

θj [t] =
Φj [t]∑

i=1

Sji + δj ≤ Φj [t]b[t] + δj ,

where Sji represents the firing waiting time of the j-th instance
enabled at τji : τji + b[t] < Γ, and δj ∈ [0, b[t]) represents
a possible not complete firing waiting time because of the
choice of Γ. Summing over all the instances of t and dividing
by number of firings of t both the members of the above
inequality, we get: S̄[t] ≤ b[t] +

∑∞
j=0 δj

Φ[t] , where
∑∞

j=0 δj

Φ[t]
represents the residual service time of t due to the choice of
Γ. If the observation period is sufficiently large (i.e., property
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1 holds), the residual service time of t approaches to zero.
On the other hand, if there exists an empty input place of t
at the end of the observation interval (i.e., property 2 holds)
then δj = 0,∀j.

Observe that it is always possible to apply a preselection
policy to timed transitions in extended free-choice conflict to
make them persistent [16], that preserves the timing behavior
of a TPN. The throughput lower bound inequalities (13-15)
can be stated then for such transitions and added to the set of
LP constraints.

3) Routing constraints for TPN stochastic extensions:
Additional constraints can be defined for transitions that are
in extended free-choice conflict, when a TPNF (XTPN) model
is considered. Indeed, such constraints exploit the stochastic
information of the net, that is the frequency interval function
(TPNF) or the firing probabilities (XTPN) associated to the
conflicting transitions.

Proposition 3.7: (TPNF routing inequalities) Let us con-
sider a TPNF T F = (T , R) and a well-behaved equal conflict
set ECS ⊆ T . Then, for each pair of transitions tj , tk ∈ ECS,
the following inequalities hold:

ri[tj ]x[tk] ≤ rs[tk]x[tj ], ri[tk]x[tj ] ≤ rs[tj ]x[tk]. (16)

Proof: Since the conflict is well-behaved, all the transi-
tions t ∈ ECS are eventually firable once the ECS is enabled.
From definition of TPNF, the following inequalities hold for
the ratio between the firing probability of t and t0 ∈ ECS,
where R(t0) = (1, 1): ri[t] ≤ p[t]

p[t0]
≤ rs[t]. On the other hand,

the firing probability of a transition t ∈ ECS can be expressed
as p[t] = Φ[t]∑

tk∈ECS Φ[tk] , so that Φ[t]
Φ[t0]

= p[t]
p[t0]

. By definition
(6), we obtain the same inequalities for the throughputs:

ri[t] ≤ x[t]
x[t0]

≤ rs[t] and
1

rs[t]
≤ x[t0]

x[t]
≤ 1

ri[t]
.

Considering that x[tj ]
x[tk] = x[tj ]

x[t0]
x[t0]
x[tk] , it is straightforward to

obtain inequalities (16).
Proposition 3.8: (XTPN routing equalities) Let us consider

a XTPN XT = (T , F0) and a well-behaved equal conflict set
ECS ⊆ T . If:
C1) ∀t′ ∈ T \ECS cannot become enabled concurrently with

t ∈ ECS, and
C2) ∃t ∈ ECS ∃p ∈ •t : B(t, p)-bounded
then ∀tj , tk ∈ ECS, the following equality holds:

x[ti]
P [ti]

=
x[tj ]
P [tj ]

(17)

where P [t] is the firing probability of t, defined as follows
(continuous case):

P [t] =
∫ bmin

a[t]

ft(y)
[ ∏

t′∈ECS,t′ 6=t

∫ ∞

y

ft′(z)dz
]
dy. (18)

being F0(t) = ft(·) the initial firing pdf of t ∈ ECS and
bmin = mint∈ECSb[t].

Proof: By definition of XTPN, concurrently enabled
transitions have null probability of firing simultaneously, then
the free-choice conflicts are always resolved in a probabilistic
manner. The routing constraints stated for Timed/SPNs - see

constraints (17’) in Table II - can be applied to XTPNs as
well, where the routing rates ri are replaced by the firing
probabilities P [ti], provided that the P [ti] are marking and
time independent.

Constraint C1 requires that transitions t′ 6∈ ECS and
transitions t ∈ ECS are never enabled in the same marking.
The firing probability for t ∈ ECS can be computed then by
considering the local behavior of the net. Constraint C2 guar-
antees that transitions belonging to the ECS have enabling
degree at most equal to one. We can then associate only a
single pdf for each t ∈ ECS, since there is always only one
instance of t enabled.

Then, the firing probability P [t] of a transition t ∈ ECS is
marking and time independent and can be computed without
generating the state space of the net. The firing pdf associated
to the conflicting transitions can be defined either in the
continuous or discrete domain, so to compute P [t] we should
use a different formula. In case of continuous pdf, P [t] can
be calculated using formula (18).

Observe that restrictions C1 and C2 can be verified by
applying sufficient structural conditions, e.g., structural mutual
exclusion condition based on P-invariants for C1 and structural
marking bound computation for C2. Actually, similar condi-
tions were formulated in [36] to identify a class of regenerative
Stochastic Petri Nets without the generation of the state space.

D. Application to the flexible manufacturing system example

We can apply the bounding technique on the flexible manu-
facturing system (FMS) example of Figure 1, where the TPN
model is converted into a TPNF by assigning firing frequency
intervals to transitions, according to the specification given
in [33]. Table I shows the firing frequency intervals of conflict-
ing transitions (non conflicting transitions have R(t) = (1, 1)).
The system workload is set to N = 50 and the number of
pallets A and B is set to MA = MB = 10.

Transitions Firing frequency intervals
type1, type2, type3 (2,2), (1,1), (2,2)
use2 M4, use2 M1 (1,1), ( 2

3
, 2
3

)
use2 M5, use2 M3 (1,1), ( 3

4
, 9
7

)
use3 M4, use3 M6 (1,1), (1,1)

TABLE I
FIRING FREQUENCY INTERVALS OF CONFLICTING TRANSITIONS

The metric of interest is the minimum cycle time of the
system in an arbitrary large observation interval, that can be
evaluated by taking the inverse of the throughput of transition
init. The value obtained in [33] is X(init) = 1/3.6. We
then state the max-LP problem to compute the upper bound
throughput of transition init. The max-LP problem generated
has as the objective function f(x) = x[init] and it is
characterized by 1223 variables and 1000 constraints. The set
of constraints includes structural, enabling operational law and
routing constraints. Solving the LP problem took 0.69 sec. of
CPU time and the upper bound of the throughput is equal to
0.27778 which is the same value obtained by Ohl.
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Observe that the joint use of sensitivity analysis and the
bounding technique is an efficient method to size the set of
resources of the FMS for a given performance goal. In the
example, we have carried out sensitivity analysis by varying
the MA,MB parameters in the range [1, 10], in order to
analyse the effect of the number of pallets on the minimum
cycle time of the system. The analysis took few seconds,
indeed the time to solve the LP problem does not depend on
the initial marking of the TPNF. The result is that the minimum
cycle time decreases as the number of pallets increases, until
it reaches the minimum value of 3.6 when MA = MB = 6.
A further increment of the number of pallets does not improve
the system performance.

IV. COMPARISON BETWEEN BOUNDING TECHNIQUES

The non-determinism present in the TPNs that we con-
sider in this paper, is eliminated in Timed PNs or SPNs
by introducing either constants or random variables. Timing
associated to each transition is either a constant duration
or a random variable with a given probability distribution
function (PDF). Conflicts resolution is done, instead, using
either race policy between stochastically timed conflicting
transitions or random routing based on the weights associated
with conflicting immediate transitions. In the general approach
for Timed PNs/SPNs [15], bounds are computed from the
solution of LP problems. Bounds depend on the mean values
of service time S[t], associated to the firing of transitions,
and on the routing rates ri, associated with transitions in free
conflict. They do not depend, instead, on the higher moments
of the PDFs of the random variables that describe the timing
of the system.

When TPNs are considered, the set of LP constraints stated
for Timed/SPNs is not valid anymore. In the previous section,
we presented a new formulation of those constraints (i.e.,
enabling operational law and routing constraints) that can be
still useful. Concretely, the new formulation takes into account
that, for each timed transition t, a time interval (a[t], b[t]) is
defined instead of deterministic or stochastic duration with
average S[t]. Moreover, routing constraints can be also given
in terms of either intervals (for TPNFs) or marking and time
independent firing probabilities (for XTPNs).

The resulting LP problems for TPNs and for Timed/SPNs
are shown in Table II, where the set of linear constraints in-
clude both the equation/inequalities defined for TPNs (in Sec-
tion III) and the ones stated and proved for Timed/SPNs [15].
In particular, the constraints applicable to each Petri Net class
are emphasized with a checkmark and, possibly, the restriction
on their applicability is given. The set of constraints is not
closed in the sense that can be extended for particular net
classes or using additional information (like higher moments
of the involved random variables [37] for SPNs). We remark
that the solution of a LP problem can be computed in
polynomial time [38]. Thus the theoretical time complexity
of the solution techniques (using constraints in Table II) is
polynomial on the net size, since the number of variables and
constraints of the derived LP problem is linear on the net size.

We also remark that even if the observational quantities,
introduced and used in the previous section to derive linear

constraints, are defined for a period (0,Γ), Γ ∈ IR+, the
complexity of the obtained solution does not depend on the
value of Γ, since this value is taken arbitrarily large and, then,
the objective function as well as the constraints do not depend
on Γ. In fact, it is just a trick commonly used in operational
analysis of queueing models to perform the proof of the results
using “simple” arithmetics. The results obtained using this
kind of operational analysis are the deterministic counterpart
of the classical average steady-state solutions computed for
stochastic models.

The bounding techniques for TPNs can be considered as
a generalization of existing performance bound computation
techniques for Timed/SPNs [15]. First, we can observe that
if we apply the “new” bounding techniques to Timed/SPNs
we obtain the “old” LP problems. Indeed, considering a
Timed/SPN, the solution domain of the LP problem (LPold),
stated with the constraints marked as X in the Timed/SPN
column of Table II, and the solution domain of the correspond-
ing LP problem (LPnew), stated using all the constraints of
Table II, are equal. This equality can be proved by observing
that:
• The structural constraints (9,10,11) are the same in the

two LP problems.
• The enabling operational law constraints (12,13,14,15)

of LPnew are weaker than the corresponding ones
(12’,13’,14’,15’), and, then, they do not contribute to the
definition of the solution domain. Indeed, the mean ser-
vice time falls in the interval [a, b], that is equal to [0,∞)
for exponential distributions, associated to transitions of
SPNs, and it is equal to a = b = S̄ for deterministic
ones, associated to transition of Timed PNs.

• The routing constraints (16) and (17) become constraints
17’ when applied on immediate conflicting transitions
(since weights are fixed in Timed/SPNs) and on stochas-
tically timed transitions, respectively.

Then, since the LP problems have the same objective func-
tions they are actually the same problem for Timed/SPNs.
Secondly when TPN/TPNF are considered, the LP problem
LPold cannot be applied. We can use the LP problem LPnew to
obtain bounds, then extending the application of the bounding
techniques to TPN/TPNF. Finally, concerning XTPNs, we can
state both the LP problems LPold and LPnew, where LPnew
includes enabling operational law constraints (12-15) that de-
pend only on the extremes of the firing intervals. The solution
domain of LPold is a subset of the solution domain LPnew,
while the two problems have the same objective function
f(M̄,x) to be either minimized or maximized. Since the
optimal solutions fall on the borders of the solution domains,
we obtain that: LBnew <= LBold <= UBold <= UBnew,
where LBi and UBi, i ∈ {old, new}, are the lower and upper
bounds - minimal and maximal optimal solutions of LPi.

V. CASE STUDY: A ROBOT-CONTROL APPLICATION

We have selected from the literature a mobile-robot naviga-
tion problem [39] in order to test our analysis technique and
to compare the results with those previously obtained by other
authors.
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maximize [or minimize] f(M̄,x) (with f a linear function of M̄,x)
subject to the following constraints TPN Timed/SPN Restrictions
Structural
reachability:
(9) M̄ = M0 + (F−B)Tσ X X
token flow:
(10)

∑
t∈•p x[t]F (t, p) =

∑
t∈p• x[t]B(t, p), ∀p ∈ P X X average operational behavior for p

non negativity:
(11) M̄, σ ≥ 0, ∀t ∈ T : x[t] ≥ 0 X X
Enabling operational law
throughput upper bound inequalities:
(12) ∀t ∈ T and ∀p ∈ •t : x[t] ≤ M̄ [p]

a[t]B(t,p)
X

(12’) ∀t ∈ T and ∀p ∈ •t : x[t] ≤ M̄ [p]

S̄[t]B(t,p)
X

throughput lower bound inequalities: t persistent
∀t ∈ T, •t = {p} :

(13) x[t]b[t] ≥ M̄ [p]−B(t,p)+1
B(t,p)

X cond. 1 or 2 in Prop.3.6

(13’) x[t]S̄[t] ≥ M̄ [p]−B(t,p)+1
B(t,p)

X
(14) x[t]b[t] ≥ k

M̄ [p]−kB(t,p)+1
N [p]−kB(t,p)+1

X cond. 1 or 2, N [p], k in Prop.3.6

(14’) x[t]S̄[t] ≥ k
M̄ [p]−kB(t,p)+1
N [p]−kB(t,p)+1

X N [p], k in Prop.3.6
∀t ∈ T, •t = {p1, p2} :
(15) x[t]b[t]B(t, p1) ≥ X cond. 1 or 2 in Prop.3.6,

M̄ [p1]−B(t, p1) + 1−N [p1]

(
1− M̄ [p2]−B(t,p2)+1

N [p2]−B(t,p2)+1

)
N [p1], N [p2] in Prop.3.6

(15’) x[t]S̄[t]B(t, p1) ≥ X N [p1], N [p2] in Prop.3.6

M̄ [p1]−B(t, p1) + 1−N [p1]

(
1− M̄ [p2]−B(t,p2)+1

N [p2]−B(t,p2)+1

)

Routing ∀tj , tk ∈ ECS
(16) ri[tj ]x[tk] ≤ rs[tk]x[tj ], ri[tk]x[tj ] ≤ rs[tj ]x[tk] (TPNF) well-behaved conflict
(17)

x[tj ]

P [tj ]
=

x[tk]
P [tk]

(XTPN) well-behaved conflict, C1 and C2 in Prop. 3.8

(17’)
x[tj ]

rj
=

x[tk]
rk

X

TABLE II
LP PROBLEMS FOR THE BOUND COMPUTATION OF TPN AND TIMED/SPNS

The robot is composed of a mobile platform and several
sensors that get information from the environment. More
precisely, a 3-D laser range-finder with two degrees of freedom
is used in navigation tasks with obstacle avoidance. The laser
information is used to modify the nominal trajectory while
the robot moves near an obstacle. Three main processes are
involved in the application:
• the robot-control process, that controls the robot motion

and is periodic;
• the laser process, that provides proximity information

used by the robot-control process to avoid the obstacles
and it is also a periodic process; and

• the supervisory process, that supervises the whole set of
robotic tasks to detect if a goal or subgoal in the trajectory
is reached, updates the current goal point and manages
the system alarms. It is a non periodic process.

In the laser process, the location of sensed points is cor-
rected considering the motion of the robot while the rotating
sensor gathers the points.

The system is characterized by the following real-time
constraints:
• the control loop has a sample period that is established at

the analysis phase. However, due to the time constraints
of the robot’s internal control system, this sample period
must be greater than 180 ms.

• The 3-D laser sends a new scan every 100 ms and the

controller must accept and process the sensor data at this
rate.

GENERATOR
MOTIONgoal (v,    )ω

ROBOT

ODOMETRY

(x,y,    )ψ

i
{(d  ,     )}θ

i

LASER
SENSOR

ENVIRONMENT

Fig. 3. General control scheme for the navigation

Figure 3 depicts the general control scheme. In each period,
the motion generator computes the velocity commands (linear
and angular, (v, ω)), taking into account the information
provided by odometry (vehicle location consisting of position
and orientation, (x, y, ψ)) and by the laser sensor (distance and
angle of each ray, (di, θi)). The laser information is processed
to compute the points belonging to the environment and to
obstacles, and thus modifying the motion computed in the
previous period.

We omit here more detailed robotic aspects of the problem,
like motion generation, real-time obstacle avoidance or cor-

jcampos
Lápiz

jcampos
Lápiz
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rection and integration techniques for the sensed points, that
can be found in [39].

Montano and Villarroel [39] proposed the use of the TPN
formalism for the whole life cycle, from specification to auto-
matic code generation. They built a TPN model of the system
that is showed in Figure 4, where the immediate transitions
are drawn as thin bars and the timed ones as white bars. To
improve readability, broken arcs are used: the name associated
to a broken arc is the name of the transition/place from which
the arc is originated or to which the arc is addressed.

The system consists of three main processes: 1) the control
process, modelled by the subnet in the middle; 2) the laser
process, represented by the subnet on the right; and 3) the
supervisory process, represented by the subnet on the left.

The three processes run on a multiprocessor without con-
tention on a common CPU. Both the control process and
the laser process are characterized by a periodic activation
mechanism. In particular, the firing time of transition Con-
trol Periodic Activation, modelling the sample period of the
control process, is parameterized (parameter T ), while the
firing time of transition LaserPeriod, modelling the sample
period of the laser process, is set to 0.1 sec.

The objective of the analysis is to find the lower bound
of the robot-control period, i.e., the minimum sample period
of the process controlling the robot motion that ensures the
deadlines are met. To achieve this objective, [39] adopted the
following analysis approach:

1) they transformed the original TPN model into a set
of timed Petri Net models (with constant deterministic
timing), since they did not have any tool to analyze TPN
models.

2) They set the value of the parameter T within a certain
interval (T ≥ 0.18 sec.).

3) For each timed Petri Net model, they checked the fulfill-
ment of the timing requirements through the inspection
of the state space. In particular, they verified on-the-
fly whether: (a) the model was one bounded and (b)
specified pair of places were not simultaneously marked.
Indeed, the presence of non binary places in the net of
Figure 4 means that there exists in the system an event
that cannot be processed at the required rate; thus, the
representative tokens are accumulated in a place (as in
place CT2).
On the other hand, the simultaneous marking of an
activity place (as CA) and the corresponding activation
place (as CT2) means that the periodical activity has
not finished before the next activation starts, that is the
deadline has not been met.

The last two steps were iterated by increasing the sample
period of the control process of 10 ms. and the minimum
value satisfying the timing requirements resulted to be 0.2
sec.

Now we come back to the TPN model suggested by [39]
for the analysis. To apply the bounding technique proposed in
Section III, we use an ergodic version of the TPN model of
Figure 4, which is obtained by eliminating the possibility of
reaching the final goal from the supervisory process and of

terminating the periodic processes. This modification guaran-
tees the liveness of the net and it does not affect the metric
of interest, that is the completion time of the control process.

We have evaluated the control process completion time in
the worst case (Tw

exec) by computing the throughput lower
bound of transition ControlEndPeriod and by taking its in-
verse (i.e., we applied the Little’s operational law [13]). The
experiment has been repeated by incrementing the sample
period T in the interval (0.18,∞) sec.. until the condition
Tw

exec ≤ T is not satisfied. The min-LP problem has been
generated automatically with our bound solver for TPNs
(its generation took 7.94 sec.). It has as objective function
f(x) = x[ControlEndPeriod] and it is characterized by
1247 variables and 1039 constraints, where 931 are equality
constraints.

In particular, the constraints generated are reachability,
token flow and enabling operational law constraints, i.e.,
constraints (9, 10, 11, 12, 13, 15) summarized in Table II.

Using first the incremental step of 10 ms., as the authors
in [39], we have obtained the same results, that is T = 0.2sec..
Then, the experiments have been carried out by using a smaller
incremental step (1 ms), then obtaining a better value for
T = 0.193sec.. The time required to solve the LP problems
is about 0.88 sec.. Both the generation and the solution of the
LP problems have been performed on a Pentium 4 PC with
1.60GHz CPU.

Observe that the state space of the TPN model of Figure 4
is not bounded when the sample period is lower or equal to
0.192sec. Then, the assessment of the timing requirements by
using enumerative techniques has to be carried out, necessarily,
by adopting on-the-fly verification methods, as made by [39],
that stop the state space generation when the unacceptable
conditions (a) and (b) are detected and avoid the complete
construction of the state space.

The time required to solve the LP problems does not depend
instead on the value assigned to the sample period and, in
general, the bounding technique can be applied also in case
of unbounded TPN models.

Nevertheless, the bounds obtained using the techniques
presented in this article guarantee the fulfillment of timing
requirements under the average operational behavior assump-
tion, while the ones computed by [39] ensure the fulfillment
of the timing requirements for all finite observation periods.

VI. CONCLUSION

TPNs are a suitable modelling formalism for quantitative
analysis of real time systems. They capture timing constraints,
through the specification of minimum and maximum time de-
lays of system activities, still maintaining the non determinism
that is intrinsic in the system specification at the early stages.

In this paper, we have presented a structural performance
analysis technique for TPNs and their stochastic extensions
(i.e., TPNF and XTPN). We have shown that it is possible
to compute bounds, under the average operational behavior
assumption, by solving proper LP problems. The set of con-
straints, characterizing such LP problems, are derived from
the net structure, the initial marking, and the parameters that
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Fig. 4. The TPN model of the robot-control application.

define the time interpretation. Theoretically, the LP problems
have a complexity linear in the complexity of the net, that is
the number of LP variables and constraints increases linearly
with the size (no. of places and transitions) of the net.

The technique presented here is an extension of a previous
LP-based bound computation technique developed for Timed
PNs/SPNs. The time interpretation considered in this paper
is that the firing of transitions is restricted within an interval
that defines, per each transition, the earliest and the latest firing
time relative to the instant at which it was enabled. A similar
interval based definition is possible for the conflict resolution
policy at free choice conflicts, that leads to the introduction of
the TPNFs. TPNFs have a practical interest, for example, in
the modelling of real-time systems like flexible manufacturing
systems (FMS). Usually, to model a production plan with Petri
Nets it is necessary to establish the proportion of parts that
must be produced for each class of parts during a period of

time and, in many cases, this is carried out by fixing firing
frequencies of transitions that represent the starting of the
production of each class of parts. The possibility of modelling
the production plan with an interval frequency increases the
expression power of the model, making the FMS even more
flexible (i.e., it is possible to define the production plan with
a “fairness constraint” rather than with fixed ratios). When
XTPN are considered, the non determinism of TPN is reduced
in a probabilistic manner by adding a stochastic measure for
the duration of activities. We can then compute bounds for all
the possible model executions, under the average operational
behavior assumption, using the TPN approach, and bounds for
the average stochastic behavior of the model, using the Timed
PN/SPN approach.

We have implemented a performance bound solver for
TPNs [17], that has been used for the computation of bounds
in the FMS example and in the case study. The solver has
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been integrated in the DrawNET [40] modeling and analysis
framework.

With respect to tightness of the computed bounds, a general
theoretical result has not been obtained. This was also the
case for the computation of bounds for Timed PNs or SPNs
already present in the literature. As in the case of (qualitative)
structural theory of net systems, the derived performance-
oriented results are specially powerful for some well-known
subclasses of nets, like strongly connected marked graphs,
live and bounded free choice nets, or nets with freely related
T-semiflows (like the running example of FMS). For more
general classes, the quality of the bounds could be poor, spe-
cially for throughput lower bounds. Nevertheless, comments
on the usefulness of the bounding techniques given in [27] still
remain valid in our context: that is the accumulated experience
in applying them to a wide range of systems can provide some
guidelines to establish when the techniques give useful bounds.

On the other hand, efficient splitting of the intervals of input
parameters, proposed in [30] for interval-based performance
analysis, is a promising technique that could be exploited
in our context to overcome bound looseness and deserves
further investigation. Thus, we think that a first step in the
performance oriented structural analysis of TPN models has
been achieved in this paper.
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