
On the integration of UML and Petri nets in
software development?

Javier Campos and José Merseguer

Departamento de Informática e Ingenieŕıa de Sistemas
Universidad de Zaragoza

C/Maŕıa de Luna, 1, 50018 Zaragoza, Spain
{jcampos,jmerse}@unizar.es

Abstract. Software performance engineering deals with the considera-
tion of quantitative analysis of the behaviour of software systems from
the early development phases in the life cycle. This paper summarizes
in a semiformal and illustrative way our proposal for a suitable software
performance engineering process. We try to integrate in a very pragmatic
approach the usual object oriented methodology —supported with UML
language and widespread CASE tools— with a performance modelling
formalism, namely stochastic Petri nets. A simple case study is used to
describe the whole process. More technical details should be looked up
in the cited bibliography.

1 Introduction

The design and implementation of complex systems is a difficult engineering
task. In the last years the modelling, validation, performance evaluation and
implementation of such systems has been usually tackled with the help of formal
models.

Petri nets (PNs) [1] is an adequate formal paradigm to support the whole life-
cycle engineering of a complex discrete event system. They have been used for the
modelling and evaluation of flexible manufacturing systems [2], multiprocessor
architectures [3], communication systems [4], and also for the writing of reliable
and efficient concurrent programs [5].

Software systems are complex systems, probably the most complex construc-
tion tasks that humans undertake. Functional requirements of software applica-
tions are obviously important, but they are not the only concern. Performance
objectives are also important: the degree to which a software system meets its
objectives for timeliness is important in many cases and it is critical in some
real-time applications.

Being software engineering a relatively young discipline, the importance of
the use of well established methodologies, even formal methods, languages and
? This work has been developed within the projects TIC2003-05226 of the Span-

ish Ministry of Science and Technology and IBE2005-TEC-10 of the University of
Zaragoza.

tools has already been detected and assumed. Unfortunately, performance ob-
jectives are still not usually included in first stages of the software life cycle.
Being performance requirements critical to the success of today’s software sys-
tems, many final software products fail to meet those requirements. The usual
practice, as nicely summarized in [6], consists on make it run, then make it run
right, and finally make it run fast. But this practice is in many cases too ex-
pensive, because fixing performance problems can oblige to modify the initial
design.

Just to illustrate the previous statement with a single famous crisis, we recall
the Denver airport baggage system story. It was planned for the United Airlines
terminal, but during the development it was enlarged to support all the airport
terminals but without considering the new system’s workload. As a result of the
inadequate performance characteristics of the system, the airport was opened 16
months later with a loss of hundreds of million dollars [7].

Therefore, many researchers defend the principle that performance should
be included in the software design process from the very beginning. This prin-
ciple is one of the main goals of the International Workshop on Software and
Performance, a forum for researchers interested in the intersection of software en-
gineering and performance evaluation that started in 1998 and has already held
five editions. The research field that deals with the goal of building software
with predictable performance by specifying and analysing quantitative behav-
iour from the early development phases of a system throughout its entire life
cycle has been coined with the term Software Performance Engineering (SPE)
[8].

The Unified Modelling Language (UML) [9] combined with an object ori-
ented methodology, such as [10], is nowadays the most widely used approach in
the software engineering community. Thus, most of Computer Aided Software
Engineering (CASE) tools support OO methodology and use UML as the design
language.

Since performance goals are not included in the usual practice of software
engineers, we think that there exists a need of integrating performance modelling
with the existing software development methodologies and tools. Markov models,
queueing networks, stochastic process algebras and stochastic PNs are probably
the best studied performance modelling paradigms. Among all of them, we bet
on PNs due to its special adequacy to model parallel and distributed systems,
its mathematical simplicity, its modelling generality, its adequacy for expressing
all basic semantics of concurrency, its locality both of states and actions, its
graphical representation, its well-developed qualitative and quantitative analysis
techniques, and the existence of analysis tools.

This paper tries to present in a semiformal and illustrative way, some of our
experience in the process of integration of performance modelling within software
development process. In section 2 we summarize the main phases of a suitable
software performance engineering process based on UML and stochastic PNs.
Section 3 is devoted to a more detailed presentation of the process by means of
a simple case study. A basic client for checking mail from a server using POP3

protocol is described. The system is modelled using UML language. In particular,
use case diagram, statecharts diagrams, sequence diagram, activity diagram and
the deployment diagram are considered. Each diagram is annotated with timing
information according to the UML Profile for Schedulability, Performance and
Time [11] of the Object Management Group (OMG). For each of the annotated
UML diagram, the highlights of the translation into a corresponding stochastic
PN is presented. Also some examples of performance figures that can be derived
from the analysable model are presented. The paper ends with some concluding
remarks in section 4.

2 Software performance process

Several works have been proposed to combine UML and a performance modelling
formalism to analyze quantitative aspects of software systems. All of them share
some basic principles. Then it could be argumented that there exists a widely
accepted process among the SPE community:

– The behaviour and architecture of the system is described by a (set of) UML
diagram(s), that make up the system design.

– This UML design is annotated according to a standard OMG profile. Then
gaining the annotated design.

– The annotated design is converted into a performance modelling formalism.
– A qualitative analysis will be carried out, if the formal model allows it.
– The formal model is analyzed using quantitative analysis techniques already

developed for the target formalism.

Now, we reveal some key aspects of the process.
Use cases (UCs) use to be the starting point to describe the system behaviour.

They are used to specify the requirements of a system, subsystem or class and for
the specification of their functionality. Sequence diagrams (SDs) or activity dia-
grams (ADs) are the common choice to detail UCs. SDs specify a set of partially
ordered messages, each one defining a communication mechanism as well as the
roles to be played by the sender and the receiver. Thus SDs represent patterns
of interaction between objects. ADs represent internal control flow of processes.
SDs and ADs are useful to conduct performance-based scenario analysis. Few
approaches introduce the statecharts (SCs) to complement them. SCs, as ADs,
are used to describe the behaviour of a model element. The software architecture
completes the system design by means of the deployment diagram (DD), then
modeling the distribution of the software components in the hardware platform.

Workloads, utilizations, response times or throughput characterize the per-
formance view of the system design, then gaining an annotated design. The UML
profile for schedulability, performance and time specification (UML-SPT) [11] is
the widely used OMG standard to annotate them. The OMG QoS profile [12]
is also used for these purposes. Actually, the convergence of both profiles is
expected.

Three paradigms have been mainly used as performance modeling formalisms
in the SPE process: Stochastic Petri nets (SPNs), stochastics process algebras
(SPA) and (layered) queuing networks (LQN). Several methods have been pro-
posed to translate the UML syntax into the syntax of the target formalism.
Among the translations using SPNs as target are [13–15], using SPA [16], us-
ing QN [17, 18] and LQN [19, 20]. Such methods use different approches and
technologies: Customization Rules [21], XSL transformations [19], algebra-based
transformations [22], direct formalization [23] or Graph Grammars [20]. For a
survey of such translations see [24].

Tools are essential for SPE. The preferred approach is to integrate perfor-
mance aspects into existing CASE tools. Figure 1 depicts the OMG framework
to develop performance evaluation tools following the SPE process.

During the last decades researchers developed techniques to analyze perfor-
mance models. They were implemented in analysis tools [25–27] that the engineer
uses to analyze the resulting models. Moreover these analysis tools are used as
the core of the CASE tools [28–32] that follow the proposal in Figure 1.

Fig. 1. OMG architectural framework for SPE tools.

The authors have developed some work in the SPE field following the process
so far outlined. Now, we recall how each process step is considered in the proposal
here recalled:

– Concerning the UML diagrams, we consider: Use cases, sequence diagrams,
state machines, activity diagrams and the deployment diagram [33].

– They are annotated according to the UML-SPT. Table 1 summarizes the
subset of annotations currently supported.

– SPNs are the target of the translation methods proposed in [34] for SMs,
in [35] for SDs and in [36] for ADs.

– ArgoSPE [37] provides tool support for the proposal.

This proposal is illustrated, in section 3, through the development of a case
study. It is worth to notice that today a big SPE challenge is about how to inte-
grate the bunch of UML diagramatic notations and the performance formalisms.

Stereotype Tag Diagram Kind*; Type Comment

PAcontext - SD,SC,AD -;- Performance model
PAclosedLoad PArespTime SD pred.;time-value Execution time

SC Object lifetime
AD Execution time

PApopulation SC -; nat-number Number of instances
PAstep PAdemand SD,SC,AD assm.; time-value Msg. transm. delay

SC,AD Activity duration
PArespTime SC pred.;time-value State exec. time

AD Trans. exec. time
PAprob SD -; real Condit. msg; Branch

SC,AD Guarded transition
PArep SD -; nat-number Iterated msg
PAsize SD,SC,AD assm.; nat-numb. Msg size
PAthroughput SC pred.; - Transition throughput

PAcommun. PAspeed DD assm.; Kbytes Network speed
PAinitialCond. PAinitialState SC bool Initial state
GRMcode - DD - Resident classes

(*)predicted or assumed

Table 1. Performance annotations

So, our approach has evolved and now fits in the PUMA framework [32]. It de-
fines an intermediate performance model, the core scenario model (CSM) [38],
to encompass this challenge. Other works complement the PUMA approach [39].

3 Case study

The process outlined in section 2 has been applied in different software domains.
For example in [40] to test the design of a mobile agents system or in [41] to
study the QoS of fault tolerant systems distributed over Internet. In this paper,
we recall a case study [42] that was useful to show the feasibility of the proposal.
Now, we come back to that work to illustrate some aspects of the SPE process.

The case study models a basic mail client. Here we will focus in the first Use
Case (UC) showed in Figure 2: checking mail from a server using the POP3 [43]
protocol.

User

Mail

Check

Mail
Send

Fig. 2. Use Case view of the ‘mail client’ model

The behavior of the referred client is rather intuitive for this UC. The SC in
Figure 3 depicts the behaviour of a mail client, it can be useful to get a first view
of the general system behaviour. The client tries to establish a TCP connection
with the server via port 110. If it succeeds (reception of a greeting message),
both (client and server) begin the authentication (authorization) phase. The
client sends the username and his/her password through a USER and PASS
command combination. For the sake of simplicity, usage of the APOP command
has not been contemplated here.

e_ok

send_−
 password

quit
send_−

send_retr

e_ok

e_err

e_text_message send_dele

e_dele

send_−

ini_delete−
message

ini_retrieve−
message

e_attach_message

W(t) = 1−P’

ini_authen−
tication

username

_connection
send_open_tcp−

W(t) = P’

e_ok e_ok W(t) = P’

ini_check−
messages

e_ok

e_ok

(...........)

ini_checkpassword

W(t) = 1−P’

send_list

e_list

e_ok

quitting

e_quit

e_ok

e_err

e_err

ini_−

mail
ack_check−

ini_greeting

MClient
ini_fs−

ini_psMClient

e_retr

e_exit_exec

e_password

e_greetinge_open_tcp_connection

e_check_mail

e_username

ini_waiting4entry

fsMClient

psMClient

ok

username = m_username.ocurrence

m_username = send_username.signal

send_username SendAction

send_username = Authentication.entry

ok[not new]

Greeting

exit_exec

attach_message

text_message

send_dele

ok[messages_left]

ok[new]
send_list

CheckMessages ok

ok[not messages_left]

DeleteMessage

m_open_tcp_connection = send_open_tcp_connection.signal

send_open_tcp_connection SendAction

send_open_tcp_connection = Greeting.entry

open_tcp_connection = m_open_tc_connection.ocurrence

ok

greeting

send_password

CheckPassword

send_username

err
errsend_quit

Quitting

send_retr

RetrieveMessage

Authentication

send_open_tcp_connection
check_mail

Waiting4Entry

{P’}

{1−P’}

{P’}

{1−P’}

Fig. 3. Statechart and resulting LGSPN for the dynamics of the class ClientHost

If the server has answered with a positive status indicator (”+OK”) to both
messages, then the POP3 session enters the transaction state (phase). Otherwise

(e.g., the password doesn’t match the one specified for the username), it returns
to the beginning of the authorization phase.

In the transaction phase, the client checks for new mail using the LIST com-
mand. If there is any, the client obtains every e-mail by means of the RETR and
DELE commands. It must be noted that, for simplicity, potential errors have not
been considered here; thus, no negative status messages (”-ERR”) are modelled.

Once every e-mail has been downloaded, the mail client issues a QUIT com-
mand to end the interaction. This provokes the POP3 server to enter the update
state and release any resource acquired during the transaction phase. The pro-
tocol is ended with a goodbye (”+OK”) message.

3.1 Statechart modeling

The mail client behavior (MailClient class) has been modeled using an SC, see
Figure 3. Similarly, Figure 4 illustrates the server host and user behaviors via
two SCs describing the POP3Server class and User actor dynamics.

UML statecharts are used in this context to describe the behavior of a model
element, concretely classes. Specifically, it describes possible sequences of states
and actions through which the element can proceed during its lifetime as a result
of reacting to discrete events. A statechart maps into a UML state machine that
differs from classical Harel state machines in a number of points that can be
found in [44]. Studies about their semantics can be found in [34, 45].

psPOP3Server

/ send_greeting
open_tcp_connection

_message
/ send_attach−

retr

_message

Transaction

(...........)

quit

dele
/ send_ok

list / send_ok

/ send_text−

UserMainState

fsClient

psClient

/ send_exit_exec

/ send_check_mail

DO: Thinking

/ send_ok
unlock_maildrop

Listening on
TCP port 110

DO: Authorization

Update

send_greeting = tr1.effect.name

send_greeting SendAction

m_greeting = send_greeting.signal

greeting = m_greeting.ocurrence

Sending

Authorization

read_message

{1−P’’} {P’’}

{1}

{0}

Fig. 4. Statecharts for the dynamics of the classes ServerHost and User (actor)

A state in a statechart diagram is a condition during the life of an object or
an interaction during which it satisfies some condition, performs some action,
or waits for some event. See state Waiting4Entry in Figure 3, where the mail
client is waiting either for the event check mail or the event exit exec. An event

is a noteworthy occurrence that may trigger a state transition [44]. A simple
transition is a relationship between two states indicating that an object in the
first state will enter the second state.

The approach taken to translate a statechart into an Labelled Generalized
Stochastic Petri Net [46] (LGSPN) consists in the translation of each element in
the metamodel of the state machines into an LGSPN subsystem. Just to take
the flavor of the translation, Figure 5 depicts the LGSPNs subsystems obtained
by the translation of a simple state.

π = 2

|compl_Np3

π = 2
|ini_N1p

|compl_Np3

(a) (b)

(c) (d)

π = 2
|ini_N1p

2|end_entry_Np

|compl_Np3

|activity2t

π = 2

|compl_Np3

|loop_N0t|send3t

|end_int
8

t

|int6t

|out9t

|out10t

|int7t

|def4t

|out12t ce

|send3t |loop_N0t

|out10t

5 |deft 5 |deft

|int7t

|end_int
11

t

1|entryt 1|entryt

|ini_N1p

2|end_entry_Np

|loop_N0t

1|entryt

|activity2t
|out9t

|end_int
8

t

|int

|def4t

|send3t

|out12t ce

|ini_N1p

|loop_N0t

1|entryt

|send3t

Fig. 5. Different labelled “basic” systems for a simple state N: (a) with activity and no
immediate outgoing transition; (b) no activity and no immediate outgoing transition;
(c) with activity and immediate outgoing transition; (d) no activity and with immediate
outgoing transition.

An important aspect of the translation concerns with the activities. Since
they consum processing time, then they will be translated as timed transitions.
The delay of such transitions, i.e. the mean of a exponentially distributed ram-
dom variable, is calculated as the inverse of such processing time. The translation
of the actions is given in Figure 6. The translation of the other elements in the
metamodel can be found in [23, 34].

Not-event-driven decisions are modelled using guards with its success prob-
ability. Concretely, a combination of guards and events has been used in some

actx 2 CallAction [SendActionand actx:isAsynchronous = true
actx 62 CallAction [SendAction

actx 2 CallActionand actx:isAsynchronous = false
t1’|E_actx

p1|e_evx

t1|S_actx

p1’|ack_evx

p1|e_evx

t1|actx

t1|actx

p2

Fig. 6. Translation of the different types of actions.

SC transitions. That probability will be represented in the Petri net using an
immediate transition.

In order to obtain an LGSPN (LSsc) for a given statechart sc, the subsys-
tems that represent its metamodel elements are composed using a composition
operator defined in [46]. Basically, this operator composes two LGSPNs into a
third one by fusing the places and transitions with equal labels. The details of
the composition method can be found also in [23, 34].

Figure 3 shows the LGSPN for the MailClient SC. It has been obtained
applying the transformation method for SCs given in [23] and briefly recalled
here. The LGSPNs for the ServerHost and the User are not given to avoid a
cumbersome presentation.

3.2 Activity diagram

An in-depth study of our mail client showed that the activity Authenticate, as-
sociated to the state Authorization in the SC for ServerHost (Figure 4), was
relevant to the system performance. Moreover, it would be necessary a more
accurate modelling of its behaviour to complete the system description. To fill
this gap, the SPE process proposes to model the actions performed within the
states of the SC, concretely by using the activity diagram (AD).

Thus, we used an AD (see Figure 7) to model the behaviour of the Authen-
ticate activity. Although it may be more useful in cases where there is not such
a strong external event dependence (e.g., ‘internal’ operations). The activity
could have been described extending the SC but, in general, ADs provide some
additional expresiveness for certain tasks.

Activity diagrams (ADs) represent UML activity graphs and are just a vari-
ant of UML state machines (see [44]), in fact, a UML activity graph is a special-
ization of a UML state machine. The main goal of ADs is to stress the internal
control flow of a process in contrast to statecharts, which are often driven by
external events.

Considering the fact that ADs are suitable for internal flow process model-
ing, they are relevant to describe activities performed by the system, usually

ClientHostUsername

Wait4User

W(t) = 0.8 W(t) = 1

W(t) = 0.2

W(t) = 1/3

ini_password

ini_err1 ini_ok1

ini_wait4password

check_password

e_password

ini_lock−

end_AG

e_err e_ok

W(t) = 0.1 W(t) = 0.9

e_ok

maildrop

e_err

e_ok

e_err

e_err

ini_look4user
[user not found]

[matches][doesn’t match]

LockMaildrop

OK

ERR

ERR OK

[user found]

Wait4Password

Password

ERR

W(t) = 0.2

W(t) = 1/5

ini_wait4user

ini_username

e_username

W(t) = 1/2

[already locked] [not locked]

Look4User

CheckPassword

W(t) = 0.8

{P(0.9)}

{2 sg.; P(0.8)}{5 sg.; P(0.2)}

{1 sg.; P(0.8)}{3 sg.; P(0.2)}

{P(0.1)}

Fig. 7. Activity Diagram for POP3ServerHost::Authenticate and resulting LGSPN

expressed in the statechart as doActivities in the states. The AD will be anno-
tated with the information to model routing rates and the duration of the basic
actions. See the annotations PAprob and PArespTime in Table 1.

Moreover, the AD will be annotated with the size of the messages, PAsize tag,
when it models event-driven behaviour. The closed load will be modelled attach-
ing to the initial state the PApopulation tag. Table 1 summarizes the annotations
proposed for the AD.

According to the UML specification, most of the states in an AD should be
an action or subactivity state, so most of the transitions should be triggered by
the ending of the execution of the entry action or activity associated to the state.
Since UML is not strict at this point, then the elements from the SMs package
could occasionally be used with the interpretation given in [34].

As far as this issue is concerned, our decision is not to allow other states
than action, subactivity or call states, and thus to process external events just
by means of call states and control icons involving signals, i.e. signal sendings
and signal receipts. As a result of this, events are always deferred (as any event
is always deferred in an action state), so an activity will not ever be interrupted
when it is described by an AD.

The performance model obtained from an AD in terms of LGSPNs as pro-
posed in [36] can be used with performance evaluation purposes with two goals:
A) just to obtain some performance measures of the model element they describe

or B) to compose this performance model with the performance models of the
statecharts that use the activity modeled in order to obtain a final performance
model of the system described by the referred statecharts. The full translation
process can be found in [36], Figure 8 offers its flavour by depicting the action
states translation.

λt2|out_

p1|ini_AS

p2|execute

p3|ini_nextx

t1|cond_ev

λt2|out_

p1|ini_AS

p2|execute

t1|cond_ev

p1|ini_AS

p3|waiting

t3|do_nextx

t2|cond_ev

p1|ini_AS

p3|ini_nextx

t2|cond_ev

λt2|out_

p1|ini_AS

p2|execute

t3|do_nextx

p3|waiting

t1|cond_ev

A
ct

io
n

St
at

e

p1|ini_AS

t2|cond_ev

timed transition not−timed trans.

not−timed trans.

(to join) (to join)timed transition
not−timed trans.timed transition(1.a) Outgoing

(1.b) Outgoing

(1.c) Self−loop (1.d) Self−loop
(1.e) Outgoing (1.f) Outgoing

Fig. 8. Translation of the Action States in ADs.

Other interpretations for the AD propose it as a high level modeling tool,
that of the workflow systems, but the SPE approach presented here does not
consider this role.

3.3 Sequence and deployment diagrams

A sequence diagram (SD) describes a communication pattern performed by in-
stances playing the roles to accomplish a specific purpose, i.e. an interaction.
The semantics of the sequence diagram is provided by the collaboration pack-
age [44]. The deployment diagram (DD) models the distribution of the software
components in the hardware platform and the operative system resources.

In this SPE process a sequence diagram should detail the functionality ex-
pressed by a use case in the use case diagram, by focusing in the interactions
among its participants. While the DD will be useful to deploy each class (that
has been modeled with a SC) in a hardware node.

From the performance point of view the SD and the DD have relevant ele-
ments and constructions. They will be annotated, according to Table 1. In the
following these elements and constructs are explained.

Objects can be executed in the same hardware or in different ones in the case
of distributed systems. In the first case, it can be assumed that the time spent
to send the message is not significant in the scope of the modeled system. Of
course the actions taken as a response of the message can spend computation
time, but it will be modeled in the statechart diagram. For the second case, those
messages travelling through the net, it is considered that they spend time, then

representing a load for the system that should be annotated in this diagram. In
the second case, it is also possible to annotate in the SD the size of the message
and in the DD the bit rate at which the network operates. Then, the load for
each message can be easily obtained from the SD and the DD annotations. See
Figure 9 for the size annotation. Figure 10 annotates the bit rate with a variable
$TR. This transfer rate will take different values in the analysis step.

A condition can be attached to each message in the diagram, representing the
possibility that the message could be dispatched. Even multiple messages can
leave a single point each one labeled by a condition. From the performance point
of view it can be considered that routing rates are attached to the messages.

A set of messages can be dispatched multiple times if they are enclosed and
marked as an iteration. This construction also has its implications from the
performance point of view.

In [35], the translation process of a given sequence diagram sd into its corre-
sponding LGSPN LSsd can be found.

Finally, we use SDs to obtain performance analytical measures in a certain
context of execution. Figure 9 shows an example of interaction between both
server and client. Some results for this particular scenario will be obtained in
the next subsection.

3.4 Analysis

Once the final LGSPN models are obtained (following the composition rules
detailed in [34, 35]) performance estimates can be computed. These figures can
be related to either the whole system behavior (somehow unrestricted) or the
system behavior in a concrete scenario (thus adjusted to certain restrictions).

Therefore, two different kind of performance models can be obtained using
the translations surveyed in the previous subsections.

A. Supose a system described by a set of UML statecharts {sc1, . . . , sck} and a
set of activity diagrams refining some of their doActivities, {ad1, . . . , adl}.
Then {LSsc1 , . . . ,LSsck

} and {LSad1 , . . . ,LSadl
} represent the LGSPNs of

the corresponding diagrams.
LSsci−adj will represent an LGSPN for the statechart sci and the activity
diagram adj .
Then a performance model representing the whole system can be obtained
by the following expression:

LS =
i=1,...,kj=1,...,l

| |
Labels

LSsci−adj

The works in [34, 36, 23] detail the composition method.
B. If a concrete execution of the system LS in [A] is described by a sequence

diagram sd, LSsd represents its corresponding LGSPN.
Then a performance model representing this concrete execution of the system
can be obtained by the following expression:

LSexecution = LS | |
Labels

LSsd

e_ok

m9_m10

send_list

e_list

m10_m11

send_ok

e_ok

send_ok

m6_m7

send_ok

e_ok

m7_m8

m8_m9

e_password

password
send_−

m11_m12

send_dele

e_dele

m14_m15

send_ok

send_retr

...

m15_m16

e_ok

m13_m14

send_retr

e_retr

m12_m13

send_−

e_attach−
_message

attach−
_message

name

m1_m2

send_open_−
tcp_connec−
tion

_mail

_mail
E_check−

startSD

S_check−

username

e_open_tcp−

connection

m5_m6

e_user−

send_−

send_−

username

e_greeting

m2_m3

send_−
greeting

m3_m4

e_username

e_err

send_err

m4_m5

m_ok

{0.1K}

{0.1K}

{0.1K} m_quit

: ClientHost : POP3ServerHost

{0.1K}
m_open_tcp_connection

m_check_mail

m_greeting

m_ok

m_dele{0.1K}

{300K}
m_attach_message

m_retr{0.1K}

{0.1K}

m_ok

{0.1K} m_dele

m_text_message {3K}

m_retr{0.1K}

m_ok

{0.1K} m_username

m_err{0.1K}

{0.1K} m_username

{0.1K}

{0.1K}

{0.1K}

m_list{0.1K}

m_password

{0.1K}

{0.1K}

m_ok

m_ok

Fig. 9. Sequence Diagram describing scenario, and corresponding LGSPN.

The works in [35, 47] detail the composition method.

Figure 11 shows the effect of the number of mails and different proportion
of them with attached files on the downloading time for different connection
speeds. Bars labelled with “a attach - b text” correspond with the case where
the average number of downloaded mails is a + b and an average of a of them
have attached files.

The graph in Figure 12 represents the effective transfer rate of the client when
checking mail (maximum transfer rate: 56 Kbps). Note that higher amounts of
data minimize the relative amount of time spent by protocol messages. The
analysis has been taken considering the whole system behavior (that is, using
the net obtained by composition of the ones corresponding to the SCs and the
AD).

m:mailClient

PAspeed =
 (’assm’,($RT,’KBps’):clientHost

s:ServerHost

:Internet
<<PAresource>>

:serverHost

Fig. 10. Deployment Diagram.

0

100

200

300

400

500

600

700

800

t (sc.)

1 attach,

3 text

3 attach,

4 text

5 attach,

6 text

5 attach,

14 text

9 attach,

10 text

avg. mean of e-mails28,8 Kbps

56 Kbps

ADSL 256 Kbps

Fig. 11. Effect of number of mails and attached file proportion on the downloading
time for different connection speed

Meanwhile, the graph in Figure 13 represents the time cost of executing
the interaction illustrated in figure 9 in function of different attach file sizes
and maximum network speeds. The analysis has been taken using the SD to
construct the net for the constrained case [35]. In general, SDs can be extremely
useful to check the behaviour of the system for a particular use case. Moreover,
analysts may use them to model test conditions in an easy way.

In another paper included in this volume [37], ArgoSPE tool is presented. It
implements the features explained here for the software performance modelling
process. So, the system is modeled as a set of UML diagrams, annotated accord-
ing to the UML-SPT, which are translated into LGSPN. The UML diagrams
used to obtain a performance model by means of ArgoSPE are those consid-
ered in our process: statecharts, activity diagrams and sequence diagrams. The
class and the implementation diagrams (components and deployment) are used
to collect some system parameters (system population or network speed).

ArgoSPE has been implemented as a set of Java modules, that are plugged
into the open source ArgoUML CASE tool [48]. It follows the software architec-

0,25
0,5

0,75
1

4

7

10

13

44

46

48

50

52

54

56

Effective

transfer rate

(Kbps)

P'' (% attachs)

avg. mean of

e-mails

(from P')

54-56

52-54

50-52

48-50

46-48

44-46

Fig. 12. Effective transfer rate of the client when checking mail

ture proposed in the UML-SPT, see Figure 1. ArgoSPE has been used to model
and analyze software fault tolerant systems [41] and mobile agents software [40].

4 Conclusions

This paper has presented the application of a SPE process through a case study.
Such SPE process has as relevant features the use of some UML diagrams and
stochastic Petri nets. The UML behavioral diagrams (statecharts, activity and
sequence) togheter with the deployment diagram allow to model system func-
tionality and describe system performance characteristics. While the stochastic
Petri nets are used as a performance modelling formalism to analyze quantitative
aspects of the system.

The SPE process proposes a translation of the UML models into the perfor-
mance model. These final models represent either the whole system (composition
of the LGSPN representing each SC in the system) or a concrete execution of
the system (composition of the LGSPN representing a SD togheter with the
LGSPNs of the involved SCs). The SPE process has support through a CASE
tool.

References

1. Murata, T.: Petri nets: Properties, analysis, and applications. Proceedings of the
IEEE 77(4) (1989) 541–580

2. DiCesare, F., Harhalakis, G., Proth, J.M., Silva, M., Vernadat, F.: Practice of
Petri Nets in Manufacturing. Chapman & Hall, London (1993)

3. Ajmone Marsan, M., Balbo, G., Conte, G.: Performance Models of Multiprocessor
Systems. MIT Press, Cambridge, Massachussetts (1986)

4. Billington, J., Diaz, M., Rozenberg, G., eds.: Application of Petri Nets to Commu-
nication Networks. Number 1605 in Lecture Notes in Computer Science, Advances
in Petri Nets. Springer-Verlag (1999)

0

50

100

150

200

250

300

350

100 300 500 700 1000

Attach size

t
(s

c
.)

Modem 28,8 Kbps

Modem 56 Kbps

ADSL 256 Kbps

Fig. 13. Some analytical results for the presented case study

5. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. John Wiley Series in Parallel Com-
puting - Chichester (1995)

6. Smith, C., Williams, L.: Software Performance Engineering. In: UML for Real:
Design of Embedded Real-Time Systems. Kluwer (2003)

7. Gibbs, W.: Trends in computing: Software’s chronic crisis. Scientific American
271(3) (1994) 72–81

8. Smith, C.U.: Performance Engineering of Software Systems. The Sei Series in
Software Engineering. Addison–Wesley (1990)

9. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language. Addison
Wesley (1999)

10. Jacobson, I., Christenson, M., Jhonsson, P., Overgaard, G.: Object-Oriented Soft-
ware Engineering: A Use Case Driven Approach. Addison-Wesley (1992)

11. Object Management Group http:/www.omg.org: UML Profile for Schedulabibity,
Performance and Time Specification. (2005)

12. Object Management Group http:/www.omg.org: UML Profile for Modeling Qual-
ity of Service and Fault Tolerant Characteristics and Mechanisms. (2004)

13. Bondavalli, A., Dal Cin, M., Latella, D., Majzik, I., Pataricza, A., Savoia, G.: De-
pendability analysis in the early phases of UML-based system design. International
Journal of Computer Systems Science & Engineering 16(5) (2001) 265–275

14. Pettit IV, R., Gomaa, H.: Modeling Behavioral Patterns of Concurrent Software
Architectures Using Petri Nets. In: 4th Working IEEE / IFIP Conference on
Software Architecture (WICSA), Oslo, Norway, IEEE Computer Society (2004)
57–68

15. Saldhana, J., Shatz, S.: UML Diagrams to Object Petri Net Models: An Approach
for Modeling and Analysis . In: Twelfth International Conference on Software
Engineering and Knowledge Engineering, Chicago, IL, USA, Knowledge Systems
Institute (2000) 103–110

16. Canevet, C., Gilmore, S., Hillston, J., Kloul, L., Stevens, P.: Analysing UML 2.0
activity diagrams in the software performance engineering process. In: Proceedings
of the 4th International Workshop on Software Performance (WOSP’04), Redwood
Shores, California, USA, ACM (2004) 74–78

17. Cortellessa, V., Mirandola, R.: Deriving a queueing network based performance
model from UML diagrams. In: Proceedings of the Second International Workshop
on Software and Performance (WOSP2000), Ottawa, Canada, ACM (2000) 58–70

18. Smith, C.U., Williams, L.: Performance Solutions. Addison–Wesley (2002)
19. Gu, G., Petriu, D.: XSLT transformation from UML models to LQN performance

models. In: Proceedings of the Third International Workshop on Software and
Performance (WOSP2002), Rome, Italy, ACM (2002) 25–34

20. Petriu, D., Shen, H.: Applying the UML performance profile: Graph grammar-
based derivation of LQN models from UML specifications. In Field, T., Harrison,
P.G., Bradley, J., Harder, U., eds.: Computer Performance Evaluation, Modelling
Techniques and Tools 12th International Conference, TOOLS 2002. Volume 2324
of Lecture Notes in Computer Science., London, UK, Springer (2002) 159–177

21. Baresi, L., Pezzè, M.: On formalizing UML with high-level Petri nets. In Agha,
G., De Cindio, F., Rozenberg, G., eds.: Concurrent Object-Oriented Programming
and Petri Nets. State of the Art. Volume 2001 of Advances in Petri Nets. Lecture
Notes in Computer Science, (LNCS). Springer-Verlag, Heidelberg (2001) 276–304

22. Gu, G., Petriu, D.: From UML to LQN by XML algebra-based model transfor-
mations. In: Proceedings of the Fifth International Workshop on Software and
Performance (WOSP2005), Palma, Spain, ACM (2005) 99–110

23. Merseguer, J.: Software Performance Engineering based on UML and Petri nets.
PhD thesis, University of Zaragoza, Spain (2003)

24. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: a survey. IEEE Transactions on Software
Engineering 30(5) (2004) 295–310

25. The GreatSPN tool (http://www.di.unito.it/~greatspn)
26. The TimeNET tool (http://pdv.cs.tu-berlin.de/~timenet/)
27. The Möbius Tool (http://www.mobius.uiuc.edu/)
28. ArgoSPE: (http://argospe.tigris.org)
29. Argo Performance: (http://argoperformance.tigris.org)
30. Cortellessa, V., Gentile, M., Pizzuti, M.: Xprit: An xml-based tool to translate

uml diagrams into execution graphs and queueing networks. In: 1st International
Conference on Quantitative Evaluation of Systems (QEST 2004). (2004) 342–343

31. Marzolla, M., Balsamo, S.: UML-PSI: the UML Performance SImulator. (In: 1st
International Conference on Quantitative Evaluation of Systems (QEST 2004))
340–341

32. Woodside, M., Petriu, D., Petriu, D., Shen, H., Israr, T., Merseguer, J.: Perfor-
mance by unified model analysis (PUMA). In: Fifth International Workshop on
Software and Performance (WOSP’05), Palma, Spain, ACM (2005) 1–12

33. Merseguer, J., Campos, J.: Exploring roles for the UML diagrams in software
performance engineering. In: Proceedings of the 2003 International Conference on
Software Engineering Research and Practice (SERP’03), Las Vegas, Nevada, USA,
CSREA Press (2003) 43–47

34. Merseguer, J., Bernardi, S., Campos, J., Donatelli, S.: A compositional semantics
for UML state machines aimed at performance evaluation. In Giua, A., Silva, M.,
eds.: Proceedings of the 6th International Workshop on Discrete Event Systems,
Zaragoza, Spain, IEEE Computer Society Press (2002) 295–302

35. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and stat-
echarts to analysable Petri net models. In: Proceedings of the Third International
Workshop on Software and Performance (WOSP2002), Rome, Italy, ACM (2002)
35–45

36. López-Grao, J., Merseguer, J., Campos, J.: From UML activity diagrams to sto-
chastic Petri nets: Application to software performance engineering. In: Pro-
ceedings of the Fourth International Workshop on Software and Performance
(WOSP’04), Redwood City, California, USA, ACM (2004) 25–36

37. Gómez Mart́ınez, E., Merseguer, J.: ArgoSPE: Model-based software performance
engineering. In: 27th International Conference on Application and Theory of Petri
Nets and Other Models Of Councurrency, LNCS (2006) In this volume.

38. Petriu, D., Woodside, M.: A metamodel for generating performance models from
uml designs. In: Proc. UML 2004. Volume 3273 of LNCS., Lisbon, Portugal,
Springer-Verlag (2004) 41–53

39. Grassi, V., Mirandola, R., Sabetta, A.: From design to analysis models: a kernel
language for performance and reliability analysis of component-based systems. In:
Proceedings of the Fifth International Workshop on Software and Performance
(WOSP’05). (2005) 25–36

40. Merseguer, J., Campos, J., Mena, E.: Analysing internet software retrieval systems:
Modeling and performance comparison. Wireless Networks: The Journal of Mobile
Communication, Computation and Information 9(3) (2003) 223–238

41. Bernardi, S., Merseguer, J.: QoS assesment of fault tolerant applications via sto-
chastics analysis. IEEE Internet Computing (2006) To appear.

42. López-Grao, J., Merseguer, J., Campos, J.: Performance engineering based on
UML and SPNs: A software performance tool. In: Proceedings of the Seventeenth
International Symposium On Computer and Information Sciences (ISCIS XVII),
Orlando, Florida, USA, CRC Press (2002) 405–409

43. Myers, J., Rose, M.: RFC 1725: Post Office Protocol - version 3 (1994)
44. Object Management Group http:/www.omg.org: OMG Unified Modeling Lan-

guage Specification. (2003) version 1.5.
45. Domı́nguez, E., Rubio, A., Zapata, M.: Dynamic semantics of UML state machines:

A metamodelling perspective. Journal of Database Management 13 (2002) 20–38
46. Donatelli, S., Franceschinis, G.: PSR Methodology: integrating hardware and soft-

ware models. In Billington, J., Reisig, W., eds.: Proceedings of the 17th Interna-
tional Conference on Application and Theory of Petri Nets. Volume 1091 of Lecture
Notes in Computer Science., Osaka, Japan, Springer (1996) 133–152

47. Bernardi, S.: Building Stochastic Petri Net models for the verification of complex
software systems. PhD thesis, Dipartimento di Informatica, Università di Torino
(2003)

48. ArgoUML project: (http://argouml.tigris.org)

