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Abstract. Software systems are today one of the most complex arti-
facts, they are simultaneously used by hundred-thousand of people some-
times in risk real time operations, such as auctions or electronic com-
merce. Nevertheless, it is a common practice to deploy them without the
expected performance. Software Performance Engineering has emerged
as a discipline to complement Software Engineering research in order
to address this kind of problems. In this work, we survey some recent
contributions in the field of Software Performance Engineering. The ap-
proach surveyed has as main features that it uses the UML diagrams to
specify the functional and performance requeriments of the system and
the stochastic Petri nets formalism to analyse it.

1 Introduction

The measurement of any system or device developed in the framework of any
engineering field should be cleary identified as a stage in the life cycle of the
product. Traditionally, three methods have been proposed, sometimes in com-
plementary ways, to reveal how a system performs: direct measurement, sim-
ulation and analythical techniques. Several reasons have pointed the last two
methods as the most significant, among others, for engineers because they allow
to test the device before its development and for researchers since mathematical
tools can be applied to model and experiment such devices at a lower cost. Both
methods share the goal of creating a performance model of the system/device
that accurately describes its load, routing rates and activities duration. Perfor-
mance models are often described in some stochastic formalism that provides the
required analysis and simulation capabilities, e.g. queuing network models [20],
stochastic Petri nets [29] or stochastic process algebra [17]. On the other hand,
the success of these methods and performance models has been mostly attached
to the available tools to apply and assist them.

In contrast with these common engineering practices, software systems are
sometimes deployed without the performance expected by clients, being usual
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among developers to test the performance of their systems only when they have
been implemented, following the well-known “fix-it-later” approach. It has been
common to believe that powerful hardware at minor extra cost will solve per-
formance problems when the software is deployed. The inadequacy of these ac-
titudes has been justified by the youth of the software engineering discipline.

In the last years, software performance engineering [40] (SPE) has grown as
a field to propose methods and tools to effectively overcome these problems at-
tached to software development. The emergence of such a discipline becames a
necessity when thinking that today complex distributed systems, most of them
operating in the Internet, are avid of high quality requirements of security, de-
pendability, performance or responsiveness.

The state of the research proposals of the SPE field suggests that they cannot
be considered today to be applied in the industry. It is true that some of these
advances have been applied and a variety of examples can be found about their
effective application, but in our opinion they are not stablished as a systematic
approach. The software industry, being concerned about the problems involving
software quality, has actively participated throughout the OMG [30] consortium
in the development of a standard to channel research advances into its industrial
application. We refer to the UML Profile for Schedulability, Performance and
Time Specification [31], the Profile later on.

The election of the Unified Modeling Language [32] (UML) to build the
Profile on it, is not a coincidence, since the SPE community decided in its first
international workshop [44] to consider the UML as the reference notation to
describe software systems and their performance requirements. Among other
goals, the Profile tries to:

– Enable the construction of models that could be used to make quantitative
predictions regarding these characteristics.

– Facilitate communication of design intent between developers in a standard
way.

– Enable inter operability between various analysis and design tools.

This paper surveys some recent contributions in the field of SPE, also it
briefly describes the state of our current work and the lines that will be followed
in a near future. In these last years, we have been working in the development of
a SPE proposal, actually a method and a tool, to evaluate performance estimates
of software systems in the early stages of the software life cycle.

Despite the fact that we started the development of the approach surveyed
here previously to the definition of the Profile, it follows the most of the directions
stated by the Profile. Moreover in some of the directions that the approach
diverges from the Profile, we have tried to rechannel them to follow it.

Among the changes promoted in this approach to follow the Profile, it can
be noticed that the tagged valued language and the metamodel to describe per-
formance requirements is now followed instead of the previous pa-UML [27, 28].

In other aspects the proposal differs significantly from the Profile. In [25] a
SPE role for the use case and statechart diagrams is defined in the context of
object oriented approach to describe the life of system classes, that clearly differs
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from the Profile, that is based on an scenario-based approach using activity and
sequence diagrams.

In the following the big picture of the approach is given. The use case diagram
is proposed to calculate, among other estimates, the system usage by actors. The
statechart diagram is used to model the life of each class in the system and to de-
scribe its performance requirements. The actions in the statechart are described
at a lower level by means of the activity diagram. Statecharts and activity dia-
grams are translated into stochastic Petri nets to conform a performance model
representing the whole system. The sequence diagram, representing patterns of
interactions among objects, is translated togheter with the statechart of the cor-
responding objects into a stochastic Petri net representing a performance model
of a concrete execution of the system. Other diagrams such as the deployment
or classes are now being studied to be coupled with the others.

At the same time we have been working in the development of a tool, at a
prototype level, to support this proposal. Starting from the ArgoUML [36] CASE
tool, it can be enriched with the capabilities to describe performance requeri-
ments according to the Profile. Moreover, a module that translates the UML
diagrams into the corresponding Petri nets has been developed and attached to
the tool. The obtained Petri net files are sufficient to feed the GreatSPN [16]
tool that can simulate or analyze them in order to obtain the desired estimates.

As a new work, some steps are announced in this paper towards the inte-
gration of the results in SPE surveyed here with previous results in the efficient
performance analysis of stochastic Petri nets [7–9, 33]. We consider interesting to
merge both fields since it is expected to reach performance analysis techniques
for the models obtained from the translation that contribute to palliate the state
explosion problem inherent to the Petri net formalism.

The rest of the article is structured as follows. In section 2, an introduction
to the notations and formalisms related with the proposal is given, assuming
the reader is familiar with both UML and Petri nets terminologies and concepts.
Section 3 depicts our proposal of a method for SPE and travels around each UML
diagram in the proposal surveying its performance role under our interpretation
and in some cases its translation into the Petri net formalism. Section 4 is devoted
to envisage the future steps of our work in the field of the efficient analysis of
the obtained performance models. Related work is explored in section 5. Finally
conclusions of the work are obtained in section 6.

2 Context of the work

The work surveyed in this article relies on a number of fields and formalisms,
they are addressed in this section. We start by recalling the main proposals of
the SPE. After, the UML notation is introduced and then we study the part of
the Profile of interest for this work. Finally, the stochastic formulation of the
Petri net formalism used in the resulting performance models is described, as
well as some issues concerned with their analysis.
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2.1 Software Performance Engineering

The term software performance engineering (SPE) was first introduced by C.U.
Smith in 1981 [41]. Several complementary definitions have been given in the
literature to describe the aim of the SPE. Among them it can be remarked the
following:

– In [40], SPE is proposed as a method (a systematic and quantitative ap-
proach) for constructing software systems to meet performance objectives,
taking into account that SPE augments other software engineering method-
ologies but it does not replace them.

– SPE is defined in [38] as a collection of methods for the support of the
performance-oriented software development of application systems through-
out the entire software development process to assure an appropriate perfor-
mance related product quality.

– Finally, in [42] new perspectives for SPE are devised, then proposing that
SPE must provide principles, patterns [26, 15] and antipatterns [43] for cre-
ating responsive software, the data required for evaluation, procedures for
obtaining performance specifications and guidelines for the types of evalua-
tion to be conducted at each development stage.

It is important to remark that the previous definitions emphasize that SPE
cannot be placed outside the context of software engineering. This fact contrasts
with other engineering fields, such as telecommunication, where performance
practices have been applied successfully in “isolation”, i.e. not explicitly while
developing the engines. Moreover SPE, as pointed out in [38], reuses and en-
larges concepts and methods from many other disciplines such as: Performance
management, performance modeling, software engineering, capacity planning,
performance tunning and software quality assurance.

The SPE process proposed in [40] still remains as a reference for a very gen-
eral proposal to establish the basic steps that a SPE process should consider.
Firstly, the goals or quantitative values must be defined, obviously changing from
one stage of the software life cycle to other. Data gathering is accomplished by
defining the proper scenarios interpreting how the system will be typically used
and its possible deviations (defining upper and lower bounds when uncertain-
ties are present). The construction and evaluation of the performance model
associated with the system is one of the fundamentals in SPE. Validation and
verification of the performance model are on-going activities of the SPE process.

The common paradigms of stochastic models used in SPE are the queu-
ing network models [20], stochastic process algebras [17] and stochastic Petri
nets [29].

2.2 The Unified Modeling Language

The Unified Modeling Language [32] (UML) is a semi formal language developed
by the OMG to specify, visualize and document models of software systems and
non-software systems too. UML defines twelve types of diagrams, divided into
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three categories: static diagrams, behavioral diagrams and diagrams to organize
and manage application modules. Behavioral diagrams (sequence, collaboration,
use case, statechart and activity) constitute a major aim in this work since the
most performance issues of systems can be represented by means of them.

The semantics of the behavioral UML diagrams is specified in the Behavioral
Elements package, which is decomposed into the following subpackages: Common
behavior, collaborations, use cases, state machines and activity graphs. The last
four subpackages give semantics to each one of the UML behavioural diagrams.

In this work a translation of each UML behavioural diagram into a stochastic
Petri net is proposed. The translation is based on the UML metamodel defined
for each subpackage. Figure 1 shows the UML metamodel for the state machines
subpackage, the rest of the metamodels can be found in [32].

ModelElement

(from Core)

Event

(from Common Behavior)

Signal

(from Core)

Parameter
kind: PseudostateKind

expression : BooleanExpression

bound:UnlimitedInteger

referenceState:Name

StateMachine
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State Action
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+context 0..1
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1
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0..1 0..1
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*

*

1
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1 *

+target +incoming
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0..1

0..1
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0..1
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+ocurrence

+operation

*

1
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(from Common Behavior) (from Common Behavior)

CallAction
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**

1

11

TimeEvent
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0..1

*

ChangeEvent

+trigger

*{ordered}
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Fig. 1. UML state machines metamodel.
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2.3 UML Profile for Schedulability, Performance and Time
Specification

The adoption of this Profile [31] by the OMG in March 2002 was of major
importance for the SPE community. Its main purposes are:

– to encompass different real-time modeling techniques,
– to annotate UML real-time models to predict timeliness, performance and

schedulability characteristics based on the analysis of these software models.

Although the profile is oriented to real time systems, the annotations pro-
posed in the performance sub-profile remain valid for more general purposes,
such as the specification of distributed software systems in non real time envi-
ronments, which are the ones of interest in this work.

The sub-profile extends the UML metamodel with stereotypes, tagged values
and constraints to attach performance annotations to a UML model. It provides
facilities for:

1. capturing performance requirements within the design context,
2. associating performance-related QoS characteristics with selected elements

of a UML model,
3. specifying execution parameters which can be used by modeling tools to

compute predicted performance characteristics,
4. presenting performance results computed by modeling tools or found in test-

ing.

In order to meet these objectives the performance sub-profile extends the
UML metamodel with the following abstractions. The QoS requirements are
placed on scenarios, which are executed by workloads. The workload is open
when its requests arrive at a given rate and closed when there are a fixed number
of potential users executing the scenario with a “think time” outside the system.
The scenarios are composed by steps, i.e. elementary operations. Resources are
modeled as servers and have service time. Performance measures (utilizations,
response times, . . . ) can be defined as required, assumed, estimated or measured
values.

The SPE approach surveyed in this work proposes a method and a tool
following the objectives given by the sub-profile and the guidelines of the SPE
summarized in section 2.1. The main difference with the sub-profile is that it pro-
poses an scenario-based approach (using collaborations and activity diagrams),
while this approach tries to identify the role of each UML diagram (use cases, in-
teractions, statecharts and activity diagrams) in the performance process under
an object-oriented perspective. In both cases, the final objective is to obtain a set
of annotated UML diagrams that should be the input to create a performance
model in terms of some performance modeling paradigm.

2.4 Stochastic Petri nets

A Petri net [39] is a mathematical tool aimed to model a wide-range of concurrent
systems. Formally:
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Definition 1. A Petri net is a 5th-tuple N= 〈P, T,Pre,Post,m0〉 such that,
P is a set of places,
T is a set of transitions,
P ∩ T = ∅,
Pre : P × T → IN is the input function,
Post : T × P → IN is the output function,
m0 : P → IN is the initial marking.

Stochastic Petri nets (SPNs) were proposed [29] as a non deterministic model,
then associating with each transition a random firing time. In this work an
extension of the SPNs is considered, the class of Generalized Stochastic Petri
Nets (GSPNs) [1]:

Definition 2. A GSPN system is a 8th-tuple 〈P, T,Π,Pre,Post, H,W,m0〉
where,
P, T,Pre,Post,m0 is a PN as in Def. 1,
Π : T → IN is the priority function that maps transitions onto priority levels,
H : P × T → IN is the inhibition function,
W : T → IR is the weight function that assigns rates (of negative exponential
distribution) to timed transitions and weights to immediate transitions.

The GSPN have been extended to label places and transitions:

Definition 3. A labeled GSPN system (LGSPN) is a triplet LS = (S, ψ, λ)
where,
S is a GSPN system as in Def. 2,
ψ : P → LP ∪ τ is a labeling function for places,
λ : T → LT ∪ τ is a labeling function for transitions,
LT , LP and τ are sets of labels,
τ -labeled net objects are considered to be “internal”, not visible from the other
components.

The LGSPN formalism introduces an operator to compose ordinary GSPNs
models (i.e., Pre(p, t) ∈ {0, 1} and Post(t, p) ∈ {0, 1}), that is of great impor-
tance in this work:

Notation 1 (Place and transition superposition of two ordinary
LGSPNs).

Given two LGSPN ordinary systems LS1 = (S1, ψ1, λ1) and LS2 = (S2, ψ2, λ2),
the LGSPN ordinary system LS = (S, ψ, λ):

LS = LS1 | |
LT ,LP

LS2

is the composition over the sets of (no τ) labels LT ⊆ LT and LP ⊆ LP .

The definition of this operator can be found in [4]. Figure 2 depicts an infor-
mal representation of this operator. This operator is used in this work, among
others, to compose, using the labels of some places and transitions, LGSPNs
that represent system modules in order to obtain an LGSPN that represents the
whole system.
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t1 | label2

p2

LS1

p1 | label1 p5

t3 | label2

p6

t2 | label2

p3 | label1

p4

LS2 LS2LS1 | |
{label1,label2}

p2

p5

t12 | label2

p4 p6

t11 | label2

p1 | label1

Fig. 2. Superposition of places and transitions

2.5 Analysis of stochastic models

The performance models obtained by the application of the SPE method pro-
posed in this work can be used to estimate performance measures, therefore they
should be simulated or analyzed, but only the second approach has been applied
so far.

Traditionally, techniques for the analysis (computation of performance mea-
sures or validation of logical properties) of Petri nets are classified in three com-
plementary groups, enumeration, transformation, and structural analysis:

– Enumeration methods are based on the construction of the reachability
graph (coverability graph in case of unbounded models), but they are of-
ten difficult to apply due to their computational complexity, the well-know
state explosion problem.

– Transformation methods obtain a Petri net from the original one belonging
to a subclass easier to analyze but preserving the properties under study,
see [5].

– Structural analysis techniques are based on the net structure and its initial
marking, they can be divided into two subgroups: Linear programming tech-
niques, based on the state equation and graph based techniques, based on
“ad hoc” reasoning, frequently derived from the firing rule.

A complementary classification based on the quality of the obtained results
is: exact, approximation and bounding techniques.

– Exact techniques are mainly based on algorithms for the automatic con-
struction of the infinitesimal generator of the isomorphic Continuous Time
Markov Chain (CTMC). Refer to [1] for numerical solutions of GSPN sys-
tems.

– Approximation techniques do not obtain the exact solution but an approxi-
mation. Some of them substitute the computation of the isomorphic CTMC
by the solution of smaller components [33].

– Finally, bounds [7, 9] are techniques that offer the further results from the
reality. Nevertheless, they can be useful in the early phases of the software
life-cycle, in which many parameters are not known accurately.
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3 Towards a SPE method

“Large software systems are the most complex artifacts of human civilization” [6].
It is widely accepted that complex systems need formal models to be properly
modeled and analyzed, also when the kind of analysis to accomplish is with
performance evaluation purposes.

Today still remains the gap among the classical performance evaluation tech-
niques and the classical proposals for software development [37, 19]. Neither of
these proposals for software development deal with performance analysis, at most
they propose to describe some kind of performance requirements. So, it could be
argued that there does not exist an accepted process to model and study sys-
tem performance in the software development process. The Profile [31] should
be the starting point to bridge this gap, at least by providing the concepts and
notations for the vocabulary of performance requeriments and the guides in the
development of performance tools. Then a process should propose the steps to
follow to obtain a performance model and it should give trends to analyze this
model.

The process presented in this section follows the directions pointed by SPE
and the Profile, recalled in sections 2.1 and 2.3, respectively. It emphasizes the
previous matters: formal modeling and the need of connecting software and
performance well-know practices.

The process to evaluate software performance should be “more or less trans-
parent” for the software designer. By “transparent” is meant that the software
designer should be concerned as less as possible to learn new processes since the
tasks of analysis and design already imply the use of a process. Therefore, ide-
ally the process to evaluate performance of software systems should not exist, it
should be integrated in the common practices of the software engineer. It is our
intention that the proposal presented here can be used together with any software
life-cycle process, and that the performance model can be semi-automatically ob-
tained as a by-product of the software life-cycle. Another important issue for the
process is that the performance model should be obtained in the early stages of
the software life-cycle. In this way proper actions to solve performance problems
take less effort and less economical impact.

Figure 3 gives the big picture of the steps followed by this process, that are
the following ones:

1. From the problem domain the software requirements should be modeled us-
ing the desired software life cycle paradigm and the UML notation. The
meaning of the statecharts will be the description of the behavior of the ac-
tive classes of the system. The activity diagrams will specify the refinement
of the activities in the statecharts. The sequence diagrams will be used to
model concrete executions of interest in the context of the system. While
developing the models, performance requirements will be modeled by means
of the Profile. The role of each diagram in this step and the proposed anno-
tations are described later in this section.

2. In this step functions that translate each UML diagram into an LGSPN
should be applied. From these models and applying the composition rules
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W(t) = 0.8

W(t) = 1/2

W(t) = 0.2

W(t) = 1/5

ini_wait4user

ini_username
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ini_look4user

ini_err1 ini_ok1
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e_password
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e_err
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Wait4User

ERR OK

[user found]
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Password
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LockMaildrop
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Look4User

CheckPassword

{2 sg.; P(0.8)}{5 sg.; P(0.2)}

{1 sg.; P(0.8)}{3 sg.; P(0.2)}

{P(0.1)} {P(0.9)}

Fig. 3. SPE process.

given in section 3.5 two different performance models can be obtained in
terms of LGSPNs: a performance model representing the whole system or
representing a concrete execution of the system. Translation and composition
rules have been embedded in an augmented CASE tool [22].

3. Finally, the parameters to be computed and the experiments to test the sys-
tem should be defined. Also, analytical or simulation techniques to solve the
formal model should be applied. This phase can be made easier by integrat-
ing the augmented CASE tool with stochastic Petri net analysers.

The following sections (from 3.1 to 3.4) address the first and second steps
of the proposal. Therefore, they revise the role that each UML diagram should
play (under the prespective of the approach) in the SPE process, as well as the
kind of performance requirements it is able to gather. Concerning the functions
that translate the diagrams into LGSPN, due to space limitations, just the flavor
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for those of the statechart is given. The third step of the approach is partially
addressed in section 4 by revising efficient techniques to analyze the model.

3.1 Use case diagram

In UML a use case diagram shows actors and use cases together with their re-
lationships. The relationships are associations between the actors and the use
cases, generalizations between the actors, and generalizations, extends and in-
cludes among the use cases [32].

A use case represents a coherent unit of functionality provided by a system,
a subsystem or a class as manifested by sequences of messages exchanged among
the system (subsystem, class) and one or more actors together with actions
performed by the system (subsystem, class). The use cases may optionally be
enclosed by a rectangle that represents the boundary of the containing system
or classifier [32].

In the use case diagram in Figure 4 we can see: two actors, three use cases and
four associations relationships between actors and use cases, like that represented
by the link between the actor1 and the UseCase1.

Role of the use case diagram concerning performance The use case
diagram allows to model the usage of the system for each actor. We propose the
use case diagram with performance evaluation purposes to show the use cases
of interest to obtain performance figures. Among the use cases in the diagram
a subset of them will be of interest and therefore marked to be considered in a
performance evaluation process.

The role of the use case diagram is to show the use cases that represent
executions of interest in the system. Then, a performance model can be obtained
for each execution (use case) of interest, that should be detailed by means of the
sequence diagram [4].

The existence of a use case diagram is not mandatory to obtain a performance
model. In [24] it was shown how a performance model for the whole system can
be obtained from the statecharts that describe it.

It is important to recall the proposal in [11], that consists in the assignment
of a probability to every edge that links a type of actor to a use case, i.e. the
probability of the actor to execute the use case. The assignment induces the
same probability to the execution of the corresponding set of sequence diagrams
that describes it. Since we propose to describe the use case by means of only one
sequence diagram, we can express formally our case as follows.

Let us suppose to have a use case diagram with m users and n use cases.
Let pi(i = 1, . . . ,m) be the i-th user frequency of usage of the software system
and let Pij be the probability that the i-th user makes use of the use case
j(j = 1, . . . , n). Assuming that

∑m

i=1 pi = 1 and
∑n

j=1 Pij = 1, the probability
of a sequence diagram corresponding to the use case x to be executed is:

P (x) =

m
∑

i=1

pi · Pix (1)
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UseCase1

UseCase2

UseCase3

actor1 actor2

{p1}

{p2}

{p3}

1

*

{p4}

freq. of usage = 0.4 freq. of usage = 0.6

<<PAcontext>>

<<PAstep>>

<<PAstep>>

<<PAstep>>

{PAprob= 
  0,4*p2+0,6*p4}

<<PAopenLoad>>

{PArespTime=
PApriority=
PAoccurrence= }

Fig. 4. Use case diagram with performance annotations.

The previous formula, taken from [11], is important because it allows to
assign a “weight” to each particular execution of the system. As an example, see
in Figure 4 the annotations attached to UseCase3.

The relationships between the actors themselves, and between the use cases
themselves are not considered with performance evaluation purposes.

Performance annotations The use case diagram should represent a Perfor-
mance Context, since it specifies one or more scenarios that are used to explore
various dynamic situations involving a specific set of resources. Then, it is stereo-
typed as �PAcontext�. Since there is not a class or package that represents a
use case diagram (just the �useCaseModel� stereotype) the base classes for
�PAcontext� are not incremented.

Each use case used with performance evaluation purposes could represent a
step (no predecessor neither successor relationship is considered among them).
Then, they are stereotyped as �PAstep�, therefore the base classes for this
stereotype should be incremented with the class UseCase. A load ( � PAclos-
edLoad� or �PAopenLoad�) can be attached to them. Obviously each one of
these steps should be refined by other Performance Context, i.e. a Collaboration.

The probabilities attached to each association between an actor and a use
case, although not consistently specified, represent the frequencies of usage of
the system for each actor (see p1, p2, p3 and p4 in Figure 4). They are useful to
calculate the probability for each Step, i.e. use case, using equation (1).

3.2 Statechart diagram

A UML statechart diagram can be used to describe the behavior of a model
element such as an object or an interaction. Specifically, it describes possible
sequences of states and actions through which the element can proceed during
its lifetime as a result of reacting to discrete events. A statechart maps into a
UML state machine that differs from classical Harel state machines in a number
of points that can be found in [32]. Recent studies of their semantics can be
found in [24, 13].
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A state in a statechart diagram is a condition during the life of an object or
an interaction during which it satisfies some condition, performs some action,
or waits for some event. A simple transition is a relationship between two states
indicating that an object in the first state will enter the second state. An event
is a noteworthy occurrence that may trigger a state transition [32].

A composite state is decomposed into two or more concurrent substates (re-
gions) or into mutually exclusive disjoint substates [32].

Role of the statechart concerning performance The profile proposes de-
termining system’s performance characteristics using scenarios, described by col-
laborations or activity graphs. By contrast, we have explored an alternative that
consists in determining those characteristics from an object’s life viewpoint. In
order to take a complete view of the system behavior, it is necessary to un-
derstand the life of the objects involved in it, being the statechart diagram the
adequate tool to model these issues. Then, it is proposed to capture performance
requirements at this level of modeling: for each class with relevant dynamic be-
havior a statechart will specify its routing rates and system usage and load.

The performance requeriments gathered by modeling the statecharts for the
system are sufficient enough to obtain a performance model [24]. In this case, all
the statecharts togheter represent a Performance Context where to explore all
the dynamic situations in the system. A particular (and strange) situation arises
when only one statechart describes all the system behaviour, then it becomes a
Performance Context.

Moreover, the statecharts that describe the system (or a subset of them)
togheter with a sequence diagram constitute a Performance Context that can
be used to study parameters associated to concrete executions [4].

In a statechart diagram the useful model elements from the performance
evaluation viewpoint are the activities, the guards and the events.

Activities represent tasks performed by an object in a given state. Such activ-
ities consume computation time that must be measured and annotated. Activity
graphs are adecuate to refine this level of the statechart.

Guards show conditions in a transition that must hold in order to fire the
corresponding event. Then they can be considered as system’s routing rates.

Events labeling transitions correspond to events in a sequence diagram show-
ing the server or the client side of the object. Objects can reside in the same
machine or in different machines for the case of distributed systems. In the first
case, it can be assumed that the time spent to send the message is not significant
in the scope of the modeled system. Of course, the actions taken as a response of
the message can spend computation time, that should be modeled. For the sec-
ond case, for those messages that travel through the net, we consider that they
spend time, then they represent a load for the system that should be modeled.

Performance annotations As proposed in [31] for the activity-based ap-
proach, the open or closed workload (induced by the object in our case) is asso-
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<<PAstep>>
{PAdemand=
PAextDelay=

(’req’,mean,10,’ms’)
(’assm’,max,1,’ms’)}

(’assm’,mean,100,’kb/sc’)
<<PAstep>>
{PAdemand=
PAprob=0.7}

<<PAstep>>
{PAprob=0.3}

State1

State2

Do:activityA

State3

<<create>>

ev4

ev3

ev2

/class1.ev1

Do: activityB

Do: activityC

<<PAcloseLoad>>
{PArespTime=
(’req’,max,30,’ms’)}

[g1]ev1

[g2]ev1

Fig. 5. Statechart with performance annotations.

ciated with the first step in the diagram, in this case the transition stereotyped
�create�, see Figure 5.

In pa-UML [23] the annotations for the duration of the activities show
the time needed to perform them. If it is necessary, a minimum and a maxi-
mum values could be annotated. If different durations must be tested for a con-
crete activity then a variable can be used. Examples of these labels are {1sec},
{0.5sec..50sec} or {time1}. Using the profile, an activity in a state will be stereo-
typed �PAstep�, then the expressivity is enriched by allowing to model not
only response time but also its demand, repetition, intervals, operations or delay,
see Figure 5. The successor/predecessor relationship inherent to the �PAstep�
stereotype is not stablised in this case (causing that the probability atribute is
not used), firstly because in a state at most one activity can appear [32], but also
because it is not of interest to set order among all the activities in the diagram.

By stereotyping the transitions as �PAstep�, it is possible:

A To consider the guards as routing rates. The probability of event success rep-
resents routing rates in pa-UML by annotating such probability in the guard.
Using the profile, the attribute probability could be used also to avoid non-
determinism (i.e. transitions labeled with the same event and outgoing from
the same state), be aware that this attribute does not provoke a complete
order among the succesor steps (transitions).

As an example, see Figure 5. The succesor steps of the �create� transition
will be transitions ev4, [g1]ev1 and [g2]ev2, while the predecessor steps of
transition [g1]ev1 are transitions ev3, �create� and /class1.ev1. Therefore,
it is only necessary to assign probabilities to transitions [g1]ev1 and [g2]ev2.

B To model the network delays caused by the load of the events (messages)
that label them. The annotations for the load of the messages in pa-UML are
attached to the transitions (outgoing or internal) by giving the size of the
message (i.e. {1K..100K} or {1K}). Using the profile, the size of the message
can be specified as a step and the network delay as a demand, see transition
[g1]ev1 in Figure 5.
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Translation into LGSPN The approach taken to translate a statechart into an
LGSPN consists in the translation of each element in the metamodel of the state
machines (see Figure 1) into an LGSPN subsystem. Just to take the flavor of the
translation, Figure 6 depicts the LGSPNs subsystems obtained by the translation
of a simple state. The translation of the other elements in the metamodel can
be found in [23, 24].

π = 2

|compl_Np3

π = 2
|ini_N1p

|compl_Np3

(a) (b)

(c) (d)

π = 2
|ini_N1p

2|end_entry_Np

|compl_Np3

|activity2t

π = 2

|compl_Np3

|loop_N0t|send3t

|end_int
8

t

|int6t

|out9t

|out10t

|int7t

|def4t

|out12t ce

|send3t |loop_N0t

|out10t

5 |deft 5 |deft

|int7t

|end_int
11

t

1|entryt 1|entryt

|ini_N1p

2|end_entry_Np

|loop_N0t

1|entryt

|activity2t
|out9t

|end_int
8

t

|int

|def4t

|send3t

|out12t ce

|ini_N1p

|loop_N0t

1|entryt

|send3t

Fig. 6. Different labelled “basic” systems for a simple state N: (a) with activity and no
immediate outgoing transition; (b) no activity and no immediate outgoing transition;
(c) with activity and immediate outgoing transition; (d) no activity and with immediate
outgoing transition.

In order to obtain an LGSPN (LSsc) for a given statechart sc, the subsys-
tems that represent its metamodel elements are composed using the operator in
Notation 1. The details of the composition method can be found also in [23, 24].

3.3 Activity diagram

Activity diagrams (ADs) represent UML activity graphs and are just a variant of
UML state machines (see [32]), in fact, a UML activity graph is a specialization
of a UML state machine. The main goal of ADs is to stress the internal control
flow of a process in contrast to statecharts, which are often driven by external
events.
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Role of the activity diagram concerning performance Considering the
fact that ADs are suitable for internal flow process modeling, they are relevant to
describe activities performed by the system, usually expressed in the statechart
as doActivities in the states. The AD will be annotated with the information to
model routing rates and the duration of the basic actions.

Other interpretations for the AD propose it as a high level modeling tool,
that of the workflow systems, but at the moment we do not consider this role in
our SPE approach.

According to the UML specification most of the states in an AD should be an
action or subactivity state, so most of the transitions should be triggered by the
ending of the execution of the entry action or activity associated to the state.
Since UML is not strict at this point, then the elements from the SMs package
could occasionally be used with the interpretation given in [24].

As far as this issue is concerned, our decision is not to allow other states
than action, subactivity or call states, and thus to process external events just
by means of call states and control icons involving signals, i.e. signal sendings
and signal receipts. As a result of this, events are always deferred (as any event
is always deferred in an action state), so an activity will not ever be interrupted
when it is described by an AD.

Performance annotations To annotate routing rates and action durations,
we consider the stereotype �PAstep� together with its tag definitions PAprob
and PArespTime, respectively.

PArespTime = (<source-modifier>,’max’,(n,’s.’)), or PArespTime = (<source-
modifier>,’dist’,(n-m,’s.’)). Where <source-modifier>::= ’req’|’assm’|’pred’|’msr’;
’dist’ is assumed to be an exponential negative distribution and n-m expresses a
range of time.

Annotations will be attached to transitions in order to allow the assignment
of different action durations depending on the decision. It implies that the class
Transition should be included as a base class for the stereotype �PAstep�.

Translation into LGSPN The performance model obtained from an activity
diagram in terms of LGSPNs as proposed in [22] can be used with performance
evaluation purposes with two goals: A) just to obtain some performance measures
of the model element they describe or B) to compose this performance model
with the performance models of the statecharts that use the activity modeled
in order to obtain a final performance model of the system described by the
referred statecharts. The translation process can be found in [22].

3.4 Sequence diagram

A sequence diagram describes a communication pattern performed by instances
playing the roles to accomplish a specific purpose, i.e. an interaction. The se-
mantics of the sequence diagram is provided by the collaboration package [32].
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Role of the sequence diagram concerning performance For our purposes
a sequence diagram should detail the functionality expressed by a use case in
the use case diagram, by focusing in the interactions among its participants.

We consider the following relevant elements and constructions of the sequence
diagram from the performance point of view to model the load of the system.

Objects can reside in the same machine or in different machines in the case
of distributed systems. In the first case it can be assumed that the time spent
to send the message is not significant in the scope of the modeled system. Of
course the actions taken as a response of the message can spend computation
time, but it will be modeled in the statechart diagram. For the second case, those
messages that travel through the net, it is considered that they spend time, then
representing a load for the system that should be modeled in this diagram.

A condition can be attached to each message in the diagram, representing the
possibility that the message could be dispatched. Even multiple messages can
leave a single point each one labeled by a condition. From the performance point
of view it can be considered that routing rates are attached to the messages.

A set of messages can be dispatched multiple times if they are enclosed and
marked as an iteration. This construction also has its implications from the
performance point of view.

Performance annotations A deeper explanation of some of the annotations
given in the following can be found in [3].

The sequence diagram should be considered as a performance context since
it will be used to obtain a performance model in terms of LGSPN. Then it will
be stereotyped as �PAcontext�.

Each message will be considered as a �PAstep�, it allows that:

– as in the case of statecharts and ADs the conditions of the messages are
represented by probabilities, then with tagged value PAprob;

– iterations will be represented by the tagged value PArep;
– to represent the time spent by a message travelling through the net, its size

(e.g. 160 Kbytes) and the speed of the net (e.g. 8 Kbytes/sec) should be con-
sidered. For this example, the delay of the message is 20 sec., it will be repre-
sented by the tagged value PArespTime as follows (’assm’,’mean’,(20,’sec’)).

Translation into LGSPN In [4], the translation process of a given sequence
diagram sd into its corresponding LGSPN LSsd can be found.

The LGSPN LSsd will be composed (using the operator in Notation 1) with
the LGSPNs that represent the statecharts involved in the interaction. Therefore
obtaining a performance model that represents a concret execution of the system,
obviously that execution described by the sequence diagram.

3.5 LGSPN performance models

In this section we address the topic of how to obtain a performance model in
terms of LGSPNs from a system description in terms of a set of UML diagrams.



18 J. Merseguer and J. Campos

Two different kind of performance models can be obtained using the trans-
lations surveyed in the previous subsections.

A Supose a system described by a set of UML statecharts {sc1, . . . , sck} and a
set of activity diagrams refining some of their doActivities, {ad1, . . . , adl}.
Then {LSsc1

, . . . ,LSsck
} and {LSad1

, . . . ,LSadl
} represent the LGSPNs of

the corresponding diagrams.
LSsci−adj

will represent an LGSPN for the statechart sci and the activity
diagram adj .
Then a performance model representing the whole system can be obtained
by the following expression:

LS =
i=1,...,kj=1,...,l

| |
Labels

LSsci−adj

The works in [24, 22, 23] detail the composition method.
B If a concrete execution of the system LS in [A] is described by a sequence

diagram sd, LSsd represents its corresponding LGSPN.
Then a performance model representing this concrete execution of the system
can be obtained by the following expression:

LSexecution = LS | |
Labels

LSsd

The works in [4, 3] detail the composition method.

4 Analysis of the system

As stated in section 2.5, a fundamental question in the use of stochastic PN
models for performance evaluation, even under Markovian stochastic interpre-
tation, is the so called state explosion problem. A general approach to deal with
(computational) complexity is to use a divide and conquer (D&C) strategy, what
requires the definition of a decomposition method and the subsequent composi-
tion of partial results to get the full solution. On the other hand, the trade-off
between computational cost and accuracy of the solution leads to the use of ap-
proximation or bounding techniques instead of the computation of exact values.
In this context, a pragmatic compromise to be handled by the analyzer of a
system concerns the definition of faithful models, that may be very complex to
exactly analyse (what may lead to the use of approximation or just bounding
techniques), or simplified models, for which exact analysis can be, eventually, ac-
complished. D&C strategies can be used with exact, approximate, or bounding
techniques.

The D&C techniques for performance evaluation present in the literature
consider either implicit or explicit decomposition of PN models.

In [7], an implicit decomposition into P -semiflows is used for computing
throughput bounds in polynomial time on the net size for free choice PN’s with
arbitrary pdf of time durations. A generalization to arbitrary P/T models (and
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also to coloured models) is presented in [9]. These techniques that use an implicit
decomposition are directly applicable to the PN models obtained from UML
diagrams (section 3). The bounds are computed from the solution of proper
linear programming problems, therefore they can be obtained in polynomial
time on the size of the net model, and they depend only on the mean values of
service time associated to the firing of transitions and the routing rates associated
with transitions in conflict and not on the higher moments of the probability
distribution functions of the random variables that describe the timing of the
system. The idea is to compute vectors χ and µ that maximize or minimize
the throughput of a transition or the average marking of a place among those
verifying several operational laws and other linear constraints that can be easily
derived from the net structure. The detailed linear programming problem to
solve can be found in [9] and it has been implemented in the GreatSPN software
tool [16].

In [8], an explicit decomposition of a general P/T net into modules (connected
through buffers) is defined by the analyzer or provided by model construction.
The modules are complemented with an abstract view of their environment in the
full model. A computational technique is also presented in [8] that uses directly
the information provided by the modules to compute the exact global limit
probability distribution vector without storing the infinitesimal generator matrix
of the whole net system (by expressing it in terms of a tensor algebra formula
of smaller matrices). In [33], the same decomposition used in [8] is applied to
compute a throughput approximation of the model through an iterative technique
looking for a fixed point.

In both [8] and [33], the model decomposition and, eventually, the solution
composition process should be net-driven (i.e., derived at net level). Fortunately,
the process that is surveyed in section 3 leads to a global PN system that consists
on the composition of PN modules (those explained in section 3.5) through fusion
of places, thus both the tensor algebra based technique [8] and the approximation
technique [33] can be considered to deal with the state explosion problem.

We start by reviewing the decomposition technique for general PN systems
that was proposed in [8] (more details can be found there).

An arbitrary PN system can always be observed as a set of modules (disjoint
simpler PN systems) that asynchronously communicate by means of a set of
buffers (places).

Definition 4 (SAM). [8] A strongly connected PN system, S = 〈P1∪. . .∪PK∪
B, T1∪. . .∪TK ,Pre,Post,m0〉, is a System of Asynchronously Communicating
Modules, or simply a SAM, if:
1. Pi ∩ Pj = ∅ for all i, j ∈ {1, . . . ,K} and i 6= j;
2. Ti ∩ Tj = ∅ for all i, j ∈ {1, . . . ,K} and i 6= j;
3. Pi ∩B = ∅ for all i ∈ {1, . . . ,K};
4. Ti = Pi

• ∪ •Pi for all i ∈ {1, . . . ,K}.
The net systems 〈Ni,m0i〉 = 〈Pi, Ti,Prei,Posti,m0i〉 with i ∈ {1, . . . ,K} are
called modules of S (where Prei,Posti, and m0i are the restrictions of Pre,
Post, and m0 to Pi and Ti). Places in B are called buffers. Transitions belonging
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Fig. 7. (a) A SAM and (b) its LS1.

to the set TI = •B ∪B• are called interface transitions. Remaining ones ((T1 ∪
. . . ∪ TK) \ TI) are called internal transitions.

A SAM with two modules (the subnets generated by nodes whose tag starts
with Pi or Ti for i = 1, 2) and four buffers (B1, B2, B3, B4) is depicted in
Fig. 7.a.

All the strongly connected PN systems belong to the SAM class with the
only addition of a structured view of the model (either given by construction or
decided after observation of the model). In the case of PN’s obtained from the
SPE process introduced in section 3, the structured view is obtained from the
net components that correspond to each superposed LGSPN.

In [8], a reduction rule has been introduced for the internal behaviour of
modules of a SAM. Each module is decomposed into several pieces and each
piece is substituted by a set Hj

i of new special places called marking structurally
implicit places (MSIP’s). Later, using that reduction, the original model can be
decomposed into a collection of low level systems (LS i with i = 1, . . . ,K) and
a basic skeleton (BS). In each LS i, only one module is kept while the internal
behaviour of the others is reduced. In [8], the LS i and the BS are used for a
tensor algebra-based exact computation of the underlying CTMC.

An algorithm for the computation of the set H j
i of MSIP’s was proposed

in [8]. A place is implicit, under interleaving semantics, if it can be deleted
without changing the firing sequences. Each MSIP of H j

i added to N needs an
initial marking for making it implicit. In [10], an efficient method for computing
such marking is presented.

The next step for the definition of the LS i and the BS is to define an extended
system (ES). Consider, for instance, the SAM given in Fig. 7.a. The original net
system S is the net without the places H11 and H21. These places are the MSIP’s
computed to summarise the internal behaviour of the two modules. Place H11

summarises the module 1 (the subnet generated by nodes whose tags begin with
P1 or T1), and place H21 summarises the module 2. The ES is the net system of
Fig. 7.a (adding to S the places H11 and H21).
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From the ES, we can build the LS i and BS. In each LSi all the modules Nj

with j 6= i, are reduced to their interface transitions and to the implicit places
that were added in the ES, while Ni is fully preserved. Systems LS i represent
different low level views of the original model. In the BS all the modules are
reduced, and it constitutes a high level view of the system. In Fig. 7.b. the LS1

of Fig. 7.a is depicted. The BS is obtained by deleting from Fig. 7.b the nodes
whose tags begin with P1 and T1.

Then, in [8] is presented how the rate matrix of a stochastic SAM can be
expressed in terms of matrices derived from the rate matrix of the LS i systems.

Let Q be the infinitesimal generator of a stochastic SAM. We can rewrite Q
as Q = R − ∆, where ∆ is a diagonal matrix and ∆[i, i] =

∑

k 6=i Q[i, k]. The
same definition holds for the LS i components: Qi = Ri − ∆i.

If states are ordered according to the high level state z (a state in the
reachability set of BS), then matrices Q and R (respectively, Qi and Ri) can
be described in terms of blocks (z, z′). We shall indicate them with Q(z, z′) and
R(z, z′) (Qi(z, z

′) and Ri(z, z
′), respectively).

Diagonal blocks Ri(z, z) have non null entries that are due only to the firing
of transitions in Ti \ TI (internal behaviour), while blocks Ri(z, z

′) with z 6= z′

have non null entries due only to the firing of transitions in TI.
Let TIz,z′ with z 6= z′, be the set of transitions t ∈ TI such that z t

−→z′ in the
basic skeleton BS. From a matrix Ri(z, z

′), with z 6= z′ we can build additional
matrices Ki(t)(z, z

′), for each t ∈ TIz,z′ , according to the following definition:

Ki(t)(z, z
′)[m,m′] =

{

1 if m t
−→m′

0 otherwise

where m and m′ are two of the states with a high level view equal to z and z′

respectively: m|H1∪...∪HK∪B = z, and m′|H1∪...∪HK∪B = z′.
Matrices G(z, z′) can then be defined as:

G(z, z) =
⊕K

i=1 Ri(z, z)

G(z, z′) =
∑

t∈TI
z,z′

w(t)
⊗K

i=1 Ki(t)(z, z
′)

(2)

The steady-state distribution of a stochastic SAM can be computed using
the G matrix given in equation (2).

Instead of using the above result to compute exact indices, the same de-
composition technique for a SAM can be used for an approximate throughput
computation. The method is, basically, a response time preservation algorithm.
In each LSi a unique module of S with all its places and transitions is kept. So,
in LSi interface transitions of module j (for j 6= i) approximate the response
time of module j. The algorithm is the following [33]:

select the modules
derive the reachability graph of LS i for i = 1, . . . ,K and the one of BS

give an initial service rate µ
(0)
i for i = 2, . . . ,K
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j := 0 {counter for iteration steps}
repeat
j := j + 1
for i := 1 to K do

solve LSi: In: µ
(j)
l for l < i and µ

(j−1)
l for i < l ≤ K

Out: initial rates µi and thr. χ
(j)
i of TI ∩ Ti

solve BS: In: µ
(j)
l for l < i and µ

(j−1)
l for i < l ≤ K

µi and χ
(j)
i for transitions in TI ∩ Ti

Out: actual rates µ
(j)
i TI ∩ Ti

until convergence of χ
(j)
1 , . . . ,χ

(j)
K

The gain of state space decomposition techniques with respect to the classi-
cal exact solution algorithm (solution of the underlying CTMC of the original
model) is in both memory and time requirements. With respect to space, the
infinitesimal generator of the CTMC of the whole system is never stored. Instead
of that, the generator matrices of smaller subsystems are stored. With respect
to time complexity, in the case of the above iterative approximation algorithm
we do not solve the CTMC isomorphous to the original system but those much
smaller isomorphous to the derived subsystems.

5 Related work

There exist several works in SPE that inspired the work presented in this article.
They share similarities such as: SPE is driven by models, they were proposed be-
fore or in the first specific conference of the SPE [44], they began to devise UML
as the design notation. Summarizing, they were the first attempts to position
SPE as we understand it today. Concretely, we should mention: the Permabase
project [45], the works developed at Carleton University [47, 48] and the works
by Pooley and King [21, 35].

Another set of works can be considered as contemporary to the one presented
here. They explicitly consider UML as the design language for the SPE process
and they are more mature than those previously cited since they appeared later
in time. Some of them were presented in [46, 18] and others even in posterior
relevant conferences or journals. Among them, the following stand out: the works
of Cortellessa [11], the software architecture approaches [2], the work of De
Miguel [12] and finally the research work at Carleton University [34].

6 Conclusion

In this paper we surveyed recent contributions in the field of SPE using UML
and stochastic Petri nets. The UML behavioral diagrams were studied in order
to:

1. find the possible roles that they can play in a SPE process,
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2. describe the performance annotations that each one can support under these
roles,

3. translate them into stochastic Petri nets.

The result of the proposed translation consists in a performance model that
represents either the whole system (composition of the LGSPN representing
each SC in the system) or a concrete execution of the system (composition of
the LGSPN representing a SD togheter with the LGSPNs of the involved SCs).
Since the performance model can suffer the state space explosion problem, we
also surveyed here several works on efficient analysis techniques that can be used
to solve the model.
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