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Departamento de Informática e Ingenierı́a de Sistemas

Universidad de Zaragoza
Zaragoza, Spain

E-mail: {jpablo,jmerse,jcampos}@unizar.es

ABSTRACT
Over the last decade, the relevance of performance evalua-
tion in the early stages of the software development life-cycle
has been steadily rising. We honestly believe that the inte-
gration of formal models in the software engineering process
is a must, in order to enable the application of well-known,
powerful analysis techniques to software models. In pre-
vious papers the authors have stated a proposal for SPE,
dealing with several UML diagram types. The proposal for-
malizes their semantics, and provides a method to translate
them into (analyzable) GSPN models. This paper focuses
on activity diagrams, which had not been dealt with so far.
They will be incorporated in our SPE method, enhancing its
expressivity by refining abstraction levels in the statechart
diagrams. Performance requirements will be annotated ac-
cording to the UML profile for schedulability, performance
and time. Last but not least, our CASE tool prototype will
be introduced. This tool deals with every model element
from activity diagrams and ensures an automatic transla-
tion from ADs into GSPNs strictly following the process
related in this paper.

Keywords: UML, software performance, Generalized
Stochastic Petri nets, compositionality, activity diagrams,
CASE tool, UML Profile for schedulability performance and
time specification

1. INTRODUCTION
The Unified Modeling Language (UML) [26] is a semi

formal language developed by the Object Management
Group [28] to specify, visualize and document models of soft-
ware systems and non-software systems too. UML defines
three categories of diagrams: static diagrams, behavioural
diagrams and diagrams to organize and manage application
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modules. Being the objective of our works the performance
evaluation [24] of software systems at the first stages of the
software development process, as proposed by the software
performance engineering (SPE) [30], behavioural diagrams
play a prominent role, since they are intended to describe
system dynamics. These diagrams belong to five kinds: Use
Case diagram (UC), Sequence diagram (SD), Activity dia-
gram (AD), Collaboration diagram and Statechart diagram
(SC).

In this paper we explore a possible role for the AD in the
SPE process: the description, at a lower level, of specific ac-
tivities from an SC diagram. Employing the SC (which mod-
els the life cycle of the objects in the system) together with
the AD allows us to model all the paths in the (potential)
system dynamics. Actually, this work fits in a more general
SPE approach developed by the authors, that deals with
other UML behavioural diagrams: The UC diagram was
proposed in [22] to model the usage of the system for each
actor; in [21], the SC was addressed (by means of the UML
state machines package) to obtain a performance model of
a system described as a set of SCs; while in [6], the SD
was studied together with the SCs to obtain a performance
model representing a concrete execution of the system.

In this environment, we base our interpretation of the AD
on the fact that they are suitable for internal flow process
modeling, as expressed in [26]. Therefore they are relevant
to describe activities performed by the system, usually ex-
pressed in the SC as doActivities in the states. Other inter-
pretations for the AD propose it as a high level modeling
tool, that of the workflow systems [11], but at the moment
we do not consider this role in our SPE approach.

In the following we give the big picture of our SPE ap-
proach before the inclusion of the AD. First the system
is modeled by means of the proposed UML diagrams, and
performance requirements are gathered according the UML
profile for performance [25]. Since UML defines “infor-
mally” their semantics, we propose a method to trans-
late each diagram into a Labeled Generalized Stochas-
tic Petri net (LGSPN), an extension of the well-known
GSPN formalism [1], then gaining a formal semantics for
them. Afterwards, we give a procedure to compose these
LGSPNs, therefore gaining an analyzable model (a perfor-
mance model) for the system or for a particular scenario
(depending on which diagrams have been modeled, as ex-
pressed above). Obviously, the translation method implies
taking decisions on the interpretation of the diagrams. Fi-
nally, the performance models obtained can be analyzed or
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Figure 1: Superposition of places and transitions

simulated using the GSPN tools [13] to obtain performance
indices. Note that the LGSPN formalism was chosen for our
method due to the number of analysis and simulation tools
available for it.

Despite being aware that resource modeling is a funda-
mental issue in SPE terms, at the moment we take an “in-
finite resource” assumption. Taking into account that our
approach is not meant for real-time domain but to estab-
lish primary results in early stages of distributed systems
modeling, it could be a reasonable assumption. Since the
approach is based on a compositional modelling of compo-
nents (LGSPNs), the consideration of the use of resources
could be included by modelling them (mainly in the de-
ployment diagram) as additional components and by using
similar connection rules between these components and the
rest of the system.

In this work, and in order to integrate the AD in our ap-
proach according to the previously referred interpretation
(i.e. activities description), we give a formal semantics to
the AD. It is accomplished by translating into an LGSPN
each one of the concepts defined in the UML activity graphs
package and by composing the resulting LGSPNs, using the
operators defined in Appendix A, into a new one that rep-
resents the whole AD. Figure 1 depicts an informal repre-
sentation of the composition (superposition) operator over
places and transitions. Finally, it is shown how to compose
the LGSPN representing an AD with the LGSPN represent-
ing the SCs that use the doActivity modeled by the AD.
The result of the composition is a new LGSPN that repre-
sents a performance model for the system, according to our
proposal [20].

Therefore in the final performance model, we obtain a rea-
sonable degree of expressivity to deal with the description
and evaluation of the dynamics of large and complex sys-
tems, such as distributed systems where we may want to take
into account inter-node communication and the occurrence
of external events (using SCs, SDs) as well as the internal,
concurrent processing within the nodes (using ADs).

Regarding the expressivity enhancement, several reasons
back the assertion above. First, it is well-known that ADs
are more appropriate for modelling parallelism. Certainly,
one can use nested states in SCs, but this is undesirable
(even deprecated) and, furthermore, inhibits us from mod-
elling unsafe system behaviour. Additionally, we are unable
to model shared methods without ADs: We have not dealt
so far with static diagrams (as the class diagram), and thus
we cannot define (yet) shared methods by means of class in-
heritance. However, we can define a method dynamics using
an AD, invoking this model from different SCs.

Furthermore, in this paper we briefly overview our proto-
type tool, which implements our method for ADs: a CASE
tool front end is used to design performance annotated mod-
els whereas the tool itself constructs their translation into

GSPNs. These nets are finally analyzed with a proper per-
formance evaluation tool (namely, GreatSPN [13]).

The rest of the article is organized as follows: Section 2
enumerates the main rules of the translation method.
Section 3 analyzes the translation of each element in the
AD into a stochastic Petri net model. Section 4 discusses
how the stochastic Petri net model for the whole AD is
obtained. Note that a fairly concise example has been
included at the end of the section in order to illustrate
this process. Section 5 briefly presents our tool prototype.
Section 6 explores the bibliography. Finally, section 7
summarizes the paper and discusses future extensions.

Definitions
We adopt the notation defined in [1] for GSPNs, but sim-

plified to consider only ordinary systems (Petri nets in which
arcs have weight at most one). A GSPN system is a 8-ple
S = (P, T, Π, I, O, H, W, M0), where P is the set of places,
T is the set of immediate and timed transitions, P ∩ T = ∅;
Π : T −→ IN is the priority function that maps transi-
tions onto natural numbers representing their priority level,
by default, timed transitions have priority equal to zero;
I, O, H : T −→ 2P are the input, output, inhibition func-
tions, respectively, that map transitions onto the power set
of P ; W : T −→ IR is the weight function that assigns
real (positive) numbers to rates of timed transitions and to
weights of immediate transitions. Finally, M0 : P −→ IN is
the initial marking function.

A labeled ordinary GSPN (LGSPN) is then a triplet LS =
(S, ψ, λ), where S is a GSPN ordinary system, as defined
above, λ : T −→ LT ∪ τ is the labeling function that assigns
to a transition a label belonging to the set LT ∪ τ and ψ :
P −→ LP ∪ τ is the labeling function that assigns to a place
a label belonging to the set LP ∪ τ . τ -labeled net objects
are considered to be internal.

Note that, with respect to the definition of LGSPN system
given in [9], here both places and transitions can be labeled,
moreover, the same label can be assigned to place(s) and
to transition(s) since it is not required that LT and LP are
disjoint.

2. ACTIVITY DIAGRAMS FOR PERFOR-
MANCE EVALUATION

Activity diagrams represent UML activity graphs and are
just a variant of UML state machines (see [26], section 3.84).
In fact, a UML activity graph is a specialization of a UML
state machine (SM), as it is expressed in the UML meta-
model (see figure 2). The main goal of ADs is to stress the
internal control flow of a process in contrast to SC diagrams,
which are often driven by external events.

As our objective is to use ADs to refine doActivities in
SCs and then to obtain predictive performance measures
from the performance model obtained from these diagrams,
we need additional modeling information, such as routing
rates or the duration of the basic actions. We propose to
annotate the AD to gather this information according to
the UML profile [25]: subsection 2.1 describes this proposal.

It must be noted that in this paper we only focus in those
elements proper of ADs. See that, according to UML spec-
ification ([26], section 3.84), almost every state in an AD
should be an action or subactivity state, so almost every
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Figure 2: UML Activity Graphs metamodel

transition1 should be triggered by the ending of the execu-
tion of the entry action or activity associated to the state.
Since UML is not strict at this point, then the elements
from the SMs package could occasionally be used with the
interpretation given in [21].

As far as this issue is concerned, our decision is not to
allow other states than action, subactivity or call states, and
thus to process external events just by means of call states
and control icons involving signals, i.e. signal sendings and
signal receipts. As a result of this, events are always deferred
(as any event is always deferred in an action state), so an
activity will not ever be interrupted when it is described by
an AD.

2.1 Performance annotations
Concerning performance requirements, as we have ex-

pressed above, we consider to gather in the AD routing rates
as well as the action durations. Then, from the annotations
proposed in the UML profile [25], we consider the stereo-
type ¿PAstepÀ together with its tag definitions PAprob
and PArespTime, that will allow to annotate respectively
routing rates and action durations.

Therefore, the format will be: PAprob = P(k) for rout-
ing rates (if no probability P(k) is provided we will as-

1Notice that the word ‘transition’ has different meanings in

UML and PNs domain. We preserve both meanings in this

paper as the context should be enough to discriminate the

‘transition’ we are referring to (UML or PN ‘transition’)

sume an equiprobable sample space, i.e., identical prob-
ability for each ‘brother’ transition to be triggered); and
PArespTime = (<source-modifier>,’max’,(n,’s.’)), or PAresp-
Time = (<source-modifier>,’dist’,(n-m,’s.’)). Where <source-
modifier>::= ’req’|’assm’|’pred’|’msr’; ’dist’ is assumed to be
an exponential negative distribution and n-m expresses a
range of time.

Such annotations will be attached to transitions in order
to allow the assignment of different action durations depend-
ing on the decision. It implies that the class Transition
should be included as a base class for the stereotype
¿PAstepÀ in [25].

Time annotations will be allocated wherever an action is
executed (outgoing transitions of action states, or outgoing
transitions of decision pseudostates with an action state as
input) and probability annotations wherever a decision is
taken, i.e. in the transition next to guard conditions. It must
be noticed that there is a special case where the performance
annotation is attached to the state instead of the outgoing
transition: when the control flow is not shown because it
is implicit in the action-object flow. We do so because we
do not want to have performance annotations applied to it,
as it usually has a different semantics (it is never used for
modelling the control flow, except in this particular case).

2.2 Proposed translation rules and formal def-
initions

A brief description of each AD element and their trans-
lation to LGSPNs is presented in section 3. Section 4 il-
lustrates the method to compose those LGSPNs to obtain



the whole model for a specific AD, as well as the method
to compose the previous LGSPNs with the LGSPNs of the
SCs obtained according to [21], then obtaining a model that
comprehends all the possible dynamics for the whole system.
The overall method is illustrated in Figure 3

As a rule, the translation of each one of AD elements can
be summarized as a three-phased process:

step 1 Translation of each outgoing and self-loop transi-
tion. Applicable to action, subactivity and call states,
and to fork pseudostates. Depending on the kind of
transition, a different rule must be applied. Figures 4
and 6 depict the subnets that each kind of transition
is translated into.

step 2 Composition of the LGSPNs corresponding to the
whole set of each kind of transitions considered in
step 1. Applicable to action, subactivity and call
states, and to fork pseudostates. This composition is
formally defined in section 3.

step 3 Working out the LGSPN for the element by super-
position of the LGSPNs obtained in the last step (if
any) and, occasionally, an additional LGSPN corre-
sponding to the entry to its associated state (the so-
called ‘basic’ subnets for subactivity states and fork
pseudostates, see figures 4 and 6).

Formal definition of the LGSPN subsystems

The formal definition of one of the LGSPN systems shown
in Figure 4 is stated below. The rest of the cases in Figures 4
and 6 can be straightforwardly derived from this example,
so they will not be explicitly illustrated.

From now onward, we will adopt the Object Constraint
Language [26] (OCL) syntax to indicate the image of an
element (or of a set of elements) belonging to the domain
of a certain relation. Let us consider the relation between
the classes Transition and Action and the role effect be-
tween them, then the image of an instance of class Action,
through the relation effect is denoted as Action.effect. Also
the attributes of a class A, say at1, and at2 are denoted
using the dot notation, A.at1, and A.at2.

Also, we must note that, in the following, we suppose that
every object derived from ModelElement metaclass has an
unique name within its namespace, although it could be not
explicitly shown in the model.

A system for an outgoing timed transition ott of an ac-
tion state AS (see figure 4, case 1.a) is an LGSPN LSott

AS =
(Sott

AS , ψott
AS , λott

AS ) characterized by the set of transitions T ott
AS

= {t1, t2}, and the set of places P ott
AS = {p1, p2, p3}. The

input and output functions are respectively equal to:

Iott
AS (t) =

(
{p1} if t = t1

{p2} if t = t2
Oott

AS (t) =

(
{p2} if t = t1

{p3} if t = t3

There are no inhibitor arcs, so Hott
AS (t) = ∅. The priority

and the weight functions are respectively equal to:

Πott
AS (t) =

(
0 if t = t2

1 if t = t1

W ott
AS (t) =

8><>:rott if Πott
AS (t) = 0

pcond if λott
AS (t) = cond ev

1 otherwise

where, in this case, rott is the rate parameter of the timed
transition t2 and pcond is the weight of the immediate tran-
sition t1.

The weight pcond assigns the value of the probability an-
notation, that is attached to the AD transition ott with the
format PAprob = pcond. If there is not such annotation, pcond

is equal to 1/nt, where nt is the number of elements in the
set AS .outgoing.

The rate rott is equal to 1/n, when the time annota-
tion attached to the AD transition is expressed in the for-
mat PArespTime = (<source-modifier>,max,(n,’s.’)), when
it is expressed in the format PArespTime = (<source-
modifier>,’dist’,(n-m,’s.’)), then rott is equal to 2/(n + m).

The initial marking function is defined as ∀p ∈
P ott

AS : Mott0
AS (p) = ∅. Finally, the labeling functions are

equal to:

ψott
AS (p) =

8><>:ini AS if p = p1

execute if p = p2

ini nextx if p = p3

λott
AS (t) =

(
cond ev if t = t1

out lambda if t = t2

where, for abuse of notation, AS = AS.name and nextx =
ott.target.name.

As they are profusely used in next section, we also define
AG as the activity diagram, LstvertexP the set of labels
of state vertices in it, LstvertexP = {ini target, ∀target ∈
AG.transitions → target.name} and LevP as the set of
events in the system, LevP = {e evx, ∀evx ∈ Ev} ∪
{ack evx, ∀evx ∈ Ev}.

3. TRANSLATING ACTIVITY DIAGRAM
ELEMENTS

The following subsections are devoted to translate each
diagram element into an LGSPN; the composition of these
nets (section 4) results in a stochastic Petri net system that
will be used to obtain performance parameters for the mod-
elled element.

3.1 Action states
An action state is ‘a shorthand for a state with an en-

try action and at least one outgoing transition involving the
implicit event of completing the entry action’ ([26], section
3.85). According to this definition and the translation of
simple states in SMs [23] we should interpret the action
atomic and therefore represent it by an immediate transi-
tion within the LGSPN corresponding to the state.

However, for the sake of an easier performance modelling,
we will allow here timed actions (i.e., actions with a signif-
icant duration). To do so, we will distinguish timed from
non-timed outgoing transitions. As explained in section 2,
annotations are attached to transitions in order to allow the
assignment of different action durations depending on the
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Figure 3: The whole translation method for an AD

termination condition (note that, in ADs, outgoing transi-
tions from action states model decision branching). A timed
transition in an AD will entail the inclusion of a timed tran-
sition (with a rate associated in function of the performance
annotation) in the resulting LGSPN. A non-timed transition
will result in an immediate transition in the LGSPN model.

Translating an action state into LGSPN formalism takes
the three steps expressed in section 2.2. Given an action
state AS let q be the number of outgoing timed transitions
OTi of the state (which do not end in a join pseudostate), q′

the number of outgoing non-timed transitions ONj (which
do not end in a join pseudostate), r the number of outgoing
timed transitions OTJm that end in a join pseudostate, r′

the number of outgoing non-timed transitions ONJn that
end in a join pseudostate, s the number of self-loop timed
transitions STk and s′ the number of self-loop non-timed
transitions SNl .

Then for each outgoing or self-loop transition t, we have
an LGSPN LSt

AS = (St
AS, ψt

AS, λt
AS) as shown in figure 4,

cases 1.a-1.f. This results in a set of q + q′ + r + r′ + s + s′

LGSPN models that need to be combined to get a model of
the state AS, LSAS = (SAS, ψAS, λAS).

Firstly we must compose the submodels of the transitions
of the same type, using the superposition operators defined
in Appendix A and the following equations:

LSOT
AS =

i=1,...,q

| |
LstvertexP

LSOT i
AS LSON

AS =
j=1,...,q′

| |
LstvertexP

LSONj
AS

LSST
AS =

k=1,...,s

| |
ini AS

LSST k
AS LSSN

AS =

l=1,...,s′G
ini AS,out λ

LSSNl
AS

LSOTJ
AS =

m=1,...,r

| |
ini AS

LSOTJm
AS LSONJ

AS =
n=1,...,r′

| |
ini AS

LSONJn
AS

Again composing the subsystems just shown, the LGSPN

model LSAS is now defined by:

LSAS = ((((LSSN
AS | |

ini AS

LSST
AS ) | |

ini AS

LSON
AS ) | |

LstvertexP

LSOT
AS )

| |
ini AS

LSOTJ
AS ) | |

ini AS

LSONJ
AS

Finally we must remember that UML lets any kind of
action to be executed inside an action state. That means
we might find a CallAction or a SendAction there. However,
UML syntax provides two special elements for this type of
states: call states and signal sending icons. We suggest their
use, but if an action state is used instead, then we should
apply the translation method described for the equivalent
element (call state or signal sending control icon).

3.2 Subactivity states
A subactivity state always invokes a nested AD. Its out-

going transitions do not have time annotations attached, as
the duration activity can be determined translating the AD
and composing the whole system (that will be seen later in
this paper).

Translating a subactivity state into the LGSPN formalism
takes those three steps pointed out in section 2.2. Notice
that there is an additional LGSPN that corresponds with
the entry to the state, called basic.

Then, given a subactivity state SS let q be the number of
outgoing transitions Oi of the state (which do not end in a
join pseudostate), r the number of outgoing transitions OJk

that end in a join pseudostate, and s the number of self-loop
transitions Sj . Also let AG ′ be the nested activity diagram
and top the name of the first element of AG ′, top = AG ′.top.

According to the translations shown in figure 4, cases
2.a-2.d, we have a basic LSGPN LSB

SS = (SB
SS, ψB

SS, λB
SS)

and one LGSPN for each outgoing or self-loop transition
t, LSt

SS = (St
SS, ψt

SS, λt
SS). Therefore, we have q + r + s + 1

LGSPN models that need to be combined to get a model of
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the state SS, LSSS = (SSS, ψSS, λSS). The LGSPNs corre-
sponding to each set of kind of transitions are now obtained
by superposition:

LSO
SS =

i=1,...,q

| |
LstvertexP ,end AG

LSOi
SS LSOJ

SS =
k=1,...,r

| |
end AG

LSOJk
SS

LSS
SS =

j=1,...,sG
end AG,out λ,ini SS

LSSj
SS

And the final LGSPN model LSSS for the subactivity
state is now defined by:

LSSS = ((LSOJ
SS | |

end AG

LSS
SS) | |

end AG

LSO
SS) | |

ini SS

LSB
SS

3.3 Call states
Call states are a particular case of action states in which

its associated entry action is a CallAction, so translation
of these elements is rather similar. It must be noted that
when a CallAction is executed a set of CallEvents may be
generated. For the sake of simplicity, we assume that at
most one event is generated, but definition can be extended
adding new places in the LGSPN to consider that possibility
as well.

Besides, the CallAction may be synchronous or not de-
pending on the value of its attribute isAsynchronous, where
synchronous means that the action will not be completed
until the event eventually generated by the action is con-
sumed by the receiver. In that case, we need a new place
and transition in the corresponding LGSPN to model the
synchronization (see figure 4, cases 3.a, 3.c and 3.e).

To translate a call state, steps to follow are similar to
those described in section 2.2. Given a call state CS,

• If verifies S.entry.IsAsynchronous = false (i.e., its
associated CallAction is a synchronous call) we define
u as the number of outgoing transitions OSi of the
state (which do not end in a join pseudostate), v the
number of outgoing transitions OJSk that end in a join
pseudostate and w the number of self-loop transitions
SSm .

• If verifies S.entry.IsAsynchronous = true (i.e., its as-
sociated CallAction is an asynchronous call) we define
u′ as the number of outgoing transitions OAj of the
state (which do not end in a join pseudostate), v′ the
number of outgoing transitions OJAl that end in a join
pseudostate, and w′ the number of self-loop transitions
SAn .

Also let evx be an event generated by the call action,
evx = S.entry.operation→ occurrence. Considering this,
we have one LGSPN for each outgoing or self-loop transi-
tion t, LSt

CS = (St
CS, ψt

CS, λt
CS), as shown in figure 4, cases

3.a-3.f. Therefore, we have either u + v + w or u′ + v′ + w′

LGSPN models that need to be combined to get a model of
the state CS, LSCS = (SCS, ψCS, λCS). The LGSPNs corre-
sponding to each set of kind of transitions are now obtained
by superposition:

LSOS
CS =

i=1,...,u

| |
LstvertexP ,LevP

LSOSi
CS LSOA

CS =
j=1,...,u′

| |
LstvertexP ,LevP

LSOAj
CS

LSOJS
CS =

k=1,...,v

| |
ini CS,LevP

LSOJSk
CS LSOJA

CS =
l=1,...,v′

| |
ini CS,LevP

LSOJAl
CS



[ LSSS
CS =

m=1,...,w

| |
ini CS,LevP

LSSSm
CS LSSA

CS =
n=1,...,w′

| |
ini CS,LevP

LSSAn
CS

The final LGSPN for the state LSCS is defined by one
of the two following equations, depending on whether the
action was synchronous (a) or asynchronous (b):

LSCS = (LSSS
CS | |

ini CS,LevP

LSOS
CS ) | |

ini CS,LevP

LSOJS
CS (a)

LSCS = (LSSA
CS | |

ini CS,LevP

LSOA
CS ) | |

ini CS,LevP

LSOJA
CS (b)

3.4 Decisions
Decisions are preprocessed before the AD translation, as it

will be mentioned in section 4.1.1. They are substituted by
equivalent outgoing transitions on action states (as shown in
figure 5), preserving the properties inherent in performance
annotations. Therefore, they do not have to be translated.
Note that performance annotations in figure 5 do not strictly
follow the UML Profile [25], in order to obtain a more com-
pact notation (otherwise, the figure would be rather over-
loaded).
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Figure 5: Decision to LGSPN (Pre-transformation)

3.5 Merges
Merges are used to reunify control flow, separated in diver-

gent branches by decisions (or outgoing transitions of states
labelled with guards). Often they are just a notational con-
vention, as reunification may be modelled as ingoing transi-
tions of a state.

Translation of a merge pseudostate M depends on the
kind of target element of its outgoing transition. Figure 6
(cases 5.a and 5.b) shows the direct translation of the
model, LSM , according to the condition expressed below.

(a) LSM = LS ′M ⇐⇒ (PS .outgoing.target 6∈
Pseudostate ∨ PS .outgoing.target.kind 6= join) (to join)

(b) LSM = LS ′′M ⇐⇒ (PS .outgoing.target ∈
Pseudostate ∧ PS .outgoing.target.kind = join) (not to
join)

3.6 Concurrency support items
UML provides two elements to model concurrency in an

AD: forks and joins. It is well known that Activity Dia-
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Figure 6: Fork, Join, Merge, Final State, Signal

Sending and Signal Receipt to LGSPN

grams were born as a mixture of characteristics from three
different sources: the event diagram of Odell, SDL and Petri
nets. Forks and joins seem to have been directly inherited
from the latter (although there was already some concur-
rency support in Odell’s event diagrams). Translation into
LGSPN models is quite simple in both cases.

Given a join pseudostate J , it is translated into the la-
belled system LSJ , shown in figure 6, case 4.c.

To translate forks, three steps must be followed:
Given a fork pseudostate F let q be the number of its

outgoing transitions Oi. Then, according to the transla-
tions shown in figure 6, we have a basic LSGPN LSB

F =
(SB

F , ψB
F , λB

F ) (case 4.a in the figure) and one LGSPN (case
4.b) for each outgoing transition t, LSt

F = (St
F , ψt

F , λt
F ).

Therefore, we have q + 1 LGSPN models that need to
be combined to get a model of the pseudostate, LSF =
(SF , ψF , λF ). The LGSPNs corresponding to each set of
kind of transitions are now obtained by superposition:

LSO
F =

i=1,...,q

| |
do fork,LstvertexP

LSOi
F

And the final LGSPN LSF is composed following the
expression:

LSF = LSB
F | |

do fork

LSO
F

3.7 Initial and final states
Initial pseudostates and final states are elements inherited

from UML state machines semantics. However, unlike it
happened on UML SMs [6], the initial pseudostate is not
translated into an LGSPN model when translating an AD,
as no action can be attached to its outgoing transition. On
the other hand, final states are translated, but the resulting
LGSPN is different from that shown in [6].

Given a final state FS, the LGSPN model LSFS =
(SFS, ψFS, λFS) equivalent to the state is defined according
to the translation shown in figure 6, case 6.a.



3.8 Signal sending and signal receipt
Signal sending and signal receipt symbols are control

icons. That means they are not really necessary, but are
used as a notational convention to specify common model-
ing matters. In fact, they seem to be the clearest evidence
of the SDL notation inheritance. In our specific case, these
symbols are the only mechanisms we allow to model the pro-
cessing of external events, and are equivalent to labelling
the outgoing transition of a state with a SendAction corre-
sponding to the signal as an effect or with the name of the
SignalEvent expected as the trigger event, respectively.

As these symbols are control icons, there is not a meta-
class corresponding to this elements in the UML metamodel.
So we assume that before translating the diagram a unique
identificator is assigned to each one of these elements, so
when we say t.target.name, where t is a incoming transi-
tion of the control icon, we are refering to this identificator
(instead of the name of the real target StateVertex according
to the metamodel).

Given a signal sending/receipt symbol CS , the translation
of the symbol depends on whether this target element is a
join pseudostate or not:

• If the symbol is a signal sending, then let SIGS be
its pre-assigned identificator. Its translation into an
LGSPN model LSSIGS is shown in figure 6, cases 7.c-
7.d.

• If the symbol is a signal receipt, then let SIGR be
its pre-assigned identificator. Its translation into an
LGSPN model LSSIGR is shown in figure 6, cases 7.a-
7.b.

It must be noted that, as far as signal sendings is con-
cerned, we have assumed that at most one event is gener-
ated for simplicity, but definition can be extended adding
new places in the LGSPN to consider that possibility as
well.

3.9 Constructions not considered yet
Some elements from ADs are not considered as relevant

for performance evaluation in the scope of our work; thus
they are not translated into LGSPN models. These elements
are:

• Swimlanes, which are mechanisms to organize visually
the states within the diagram, lack a well-defined se-
mantics. In our interpretation, we did not assign them
any particular role; and therefore they are not trans-
lated. Anyway, we are aware that they could be used
to model where the processes are executed, providing
then a useful performance information. This possibil-
ity should be evaluated as soon as we eliminate our
’infinite resource’ assumption.

• Action-Object Flow relationships, as they do not pro-
vide any additional concrete information about the be-
havior of the system.

• Deferrable events as, according to our interpretation
(see section 2), any event is deferred in an AD (except,
obviously, SignalEvents when a signal receipt symbol
is found).

4. THE SYSTEM TRANSLATION PRO-
CESS

In the previous section we have presented our method to
translate every AD element into LGSPN models. Here, we
will focus on the whole system translation process, present-
ing an overview of the steps to follow and allocating the ideas
already presented in their own timing. The process includes
the complete translation method for ADs and the way to
integrate the resulting LGSPN with the ones obtained from
the translation of UML SMs and SDs [6].

4.1 Translating activity diagrams into LGSPN
As an initial premise we assume that every AD in the

system description has exactly one initial state plus, at least,
one final state and another state from one of the accepted
types (action, subactivity or call state). The translation
of an AD can then be divided in three phases, which are
presented in the subsequent paragraphs.

4.1.1 Pre-transformations
Before translating the AD into an LGSPN model, we need

to apply some simplifications to the diagram in order to
properly use the translations given in section 3. These sim-
plifications are merely syntactical so the system behaviour
is not altered. Most relevant ones are:

• Suppression of decisions. Figure 5 shows a particu-
lar case of this kind of transformation. New decisions
could be found in any branch of the chaining tree, but
the figure has been simplified for the sake of simplicity.

• Suppression of merges / forks / joins chaining, bring-
ing them together into a unique merge / fork / join
pseudostate (this process is trivial).

• Deducting and making explicit the implicit control
flow in action-object flow relationships, where aplica-
ble.

• Avoidance of bad design cases (e.g., when the target
of a fork pseudostate is a join pseudostate).

4.1.2 Translation process
Once pre-transformations are applied we can proceed to

translate the diagram into an LGSPN model. This is done
following three steps:

step 1 Translation of each diagram element, as shown in
section 2.

step 2 Superposition of the LGSPNs corresponding to the
whole set of instances of each AD element type:

LSactst
AG =

AS∈ActionStates

| |
LstvertexP

LSAS

LSsubst
AG =

SS∈SubactivityStates

| |
LstvertexP

LSSS

LScalst
AG =

CS∈CallStates

| |
LstvertexP ,LevP

LSCS

LSsigse
AG =

SIGS∈SignalSendings

| |
LstvertexP ,LevP

LSSIGS

LSsigre
AG =

SIGR∈SignalReceipts

| |
LstvertexP ,LevP

LSSIGR



LSmerge
AG =

M∈Merges

| |
LstvertexP

LSM LSfork
AG =

F∈Forks

| |
LstvertexP

LSF

LSjoin
AG =

J∈Joins

| |
LstvertexP

LSJ LSfinst
AG =

FS∈FinalStates

| |
end AG

LSFS

step 3 Working out the LGSPN for the diagram itself by
superposition of the LGSPNs obtained in the last step:

LSAG = (((((((LSsigre
AG | |

LstvertexP ,LevP

LSsigse
AG )

| |
LstvertexP

LSfinst
AG ) | |

LstvertexP

LSjoin
AG ) | |

LstvertexP

LSfork
AG )

| |
LstvertexP

LSmerge
AG ) | |

LstvertexP ,LevP

LScalst
AG )

| |
LstvertexP ,end AG

LSsubst
AG ) | |

LstvertexP

LSactst
AG

It must be noted that the compositional approach does
not deal with recursive invocations between activities. E.g.,
let AG1 be an activity graph where SS is a subactiv-
ity state in it, SS ∈ AG1.transitions.source, and let AG2

be the activity graph that the state invokes, AG2 =
SS.submachine. Also let SS ′ be a subactivity state in AG2,
SS ′ ∈ AG2.transitions.source, which invokes AG1, AG1 =
SS ′.submachine. For this kind of situations, we would need
coloured Petri nets (with an unbounded number of colours),
in order to identify different invocations. Note that the
method to combine different activity diagrams (as well as
other diagram types) is depicted in section 4.2.

4.1.3 Post-optimizations
Contrasting with pre-transformations, which are manda-

tory, post-optimizations are optional. Their objective is just
to eliminate some spare places and transitions in the result-
ing LGSPN so as to make it more compact without altering
its semantics. One example of these kind of transformations
would be, in subnets of the LGSPN corresponding to out-
going timed transitions of action states LSOT

AS , the removal
of the superfluous immediate transitions (and their output
place) in case of no conflict.

4.2 Composing the whole system
As it has been stated before, in terms of performance eval-

uation we use UML ADs exclusively to describe doActivities
in SCs or activities inside subactivity states of others ADs.
Hence, the merging of nets corresponding to SCs and ADs
will be dealt with first.

In case an activity (modelled with an AD) is invoked from
different states in (one or several) SCs/ADs (by means of
doActivities or subactivity states, respectively), we must
replicate the LGSPN of the corresponding AD (one AD per
invocation). Otherwise, undesirable situations could hap-
pen which would degrade the performance evaluation results
(the resulting Markov chain does not capture properly the
system behaviour). A different solution for this issue would
be using coloured Petri nets (applying a different colour for
each doActivity/subactivity invocation). Obviously this im-
plies that the activities invocation graph must be acyclic;
hence neither support for Knuth’s coroutines nor recursion
are offered, as already commented in section 4.1.2.

Let us suppose the replication process has al-
ready been executed. Let d be the number of ADs
used at system description and LinterfacesP =
{Lini topP , LevP , Lend AGP }, where Lini topP is the
set of initial places of the LGSPNs corresponding to the
ADs and Lend AGP the set of final places of those nets.
Now, we can merge the referred LGSPNs by superposition
(of places):

LSad =
AG∈ActivityDiagrams

| |
LinterfacesP

LSAG

Now let LS ′′sc be the LGSPN corresponding to the transla-
tion of the set of SCs in the model. LS ′′sc was previously ob-
tained by composition (superposition of places) of the nets
obtained for each SC and subsequent removal of sink ac-
knowledge places (see [6]).

Then let T act be the set of transitions in LS ′′sc labelled
activity [6] which represent activities that are described with
activity diagrams. LSsc will be the result of that labelled
system with the removal of this set of transitions, LSsc =
LS ′′sc \ T act. Ingoing places for these transitions (labelled
end entry A in LS ′′sc) will be now labelled ini top, where
top is the name of the first element of the activity diagram
AG ′ that represents the activity, top = AG ′.top.name. Simi-
larly, outgoing places (labelled compl A) will be now labelled
end AG ′.

Once done, we can merge the LGSPN systems LSsc and
LSad:

LSsc−ad = LSad | |
LinterfacesP

LSsc

The resulting net LSsc−ad often represents the whole sys-
tem behavior. However, this behavior can be constrained to
obtain performance measures for a particular scenario (pat-
tern of interaction). That is done by merging LSsc−ad and
the LGSPN corresponding to a specific SD into a unique
LGSPN LS, mainly by synchronization (i.e., superposition
of transitions). Paper [6] describes two approaches for doing
an analogous operation, using the referred net LSsc instead
of LSsc−ad. Nevertheless, both procedures are still directly
applicable to the resulting LGSPN LSsc−ad.

A sample case of the translation of a very simple system
is illustrated in figure 7. The reader is encouraged to check
out [18] to obtain a wider vision of our proposal under the
prism of a more complex case study. Here we will focus on a
small portion of the system modelled in that paper. The ex-
ample is quite representative as it formalizes the POP3 pro-
tocol, a well-known instance of the client-server paradigm in
which nodes perform time-relevant internal processing while
there is some intercommunication between them.

More concretely, we built the model to evaluate the be-
haviour of a mail client using the referred protocol. Thus, we
used three SCs (to respectively model the client, server and
user dynamics), one SD (to model the use case we wanted
to analyze) and one AD (to model the internal processing
in the server for the authentication phase), which is shown
in Figure 7. Additionally, we include there the LGSPN ob-
tained by applying the proposal described in this paper to
this last diagram.

The referred AD represents how the login (authentication)
process is performed at the server side. The server waits for
a username from the client, and then for a password; if both



match up with those held in the local machine, the mail-
drop is locked and the server ends up the authentication
phase. On the other hand, if anything fails it returns a er-
ror status message and returns to the initial state. Note
that we estimated some (hypothetical) event probabilities
and task durations and annotated them as tagged values.
Those annotations will allow us to perform some quantita-
tive (performance) analysis over the model.

It must be remarked that the AD is just a part of the
whole system description. That results in the lack of tokens
in the initial marking of the net in Figure 7. The reader is
refered again to the paper [18] to understand how the Petri
net for the whole system is composed.

ClientHostUsername

Wait4User

ERR OK

[user found]

Wait4Password

Password

ERR

[user not found]

[matches][doesn’t match]

LockMaildrop

OKERR

Look4User

CheckPassword

W(t) = 0.8

W(t) = 1/2

W(t) = 0.2

W(t) = 1/5

ini_wait4user
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ini_err1 ini_ok1

ini_wait4password

check_password

e_password

ini_password

W(t) = 0.8 W(t) = 1

W(t) = 0.2

W(t) = 1/3

ini_lock−

maildrop

e_err

e_ok

e_err

e_err e_ok

end_AG

e_err e_ok

W(t) = 0.1 W(t) = 0.9
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{PArespTime=’req’,max,(5,’s’)}
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{PAprob=0.8}

<<PAstep>>

<<PAstep>>

{PArespTime=’req’,max,(2,’s’)}
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<<PAstep>>

{PArespTime=’assm’,max,(3,’s’)}

{PArespTime=’assm’,max,(1,’s’)}

Figure 7: POP3 Protocol (Server side): Authenti-

cation

5. SOFTWARE PERFORMANCE TOOL
To accomplish our objective of successfully integrating

techniques of performance evaluation in the software engi-
neering process, an special effort in the automatization of
the method is required. To do so, we have developed a
module in Javar that translates the SC as proposed in [21]
and the AD as proposed in this work. The module has been
incorporated to the ArgoUML CASE tool [4]: The input
diagrams are provided in the XMI [14] format, while the
output produces a LGSPN in the file format [8, 13].

The module also implements the composition of the re-
sulting LGSPN models for the SCs and ADs as explained
this work. Then, the resulting LGSPN, that represents a
performance model for the modeled system, is directly pro-
cessable by the GreatSPN tool [13] and it has full capability
to make quantitative analysis and obtain performance rates.

Although ArgoUML does not allow a full exploitation of
all the expressivity in the SC and AD that we have dealt
with (since it does not support every model element), our
module provides full capability to translate them. There-
fore, those model elements not contemplated by ArgoUML
should be written by the modeller directly in the XMI file
(or simply using a different front-end CASE tool). Note

that this limitation is introduced by the current state of the
ArgoUML tool.

Finally, it must be noted that an special effort has been
made to obtain highly-legible GreatSPN nets, avoiding the
superimposition of places and transitions in the generated
GreatSPN files.

6. RELATED WORK
Although there are several works devoted to obtain formal

models from the UML SC [16, 15, 29] or the UML SD [31,
7, 3], some of them with performance evaluation purposes,
the AD has not been studied yet so intensively. However, we
would like to remark two significant works, which will be re-
viewed below. The first one (Eshuis et al.) is concerned with
semantical issues of the AD, while the second one (Petriu
et al.) deals with usign ADs for performance evaluation on
stochastic models.

One of the main challenges in adapting UML diagrams to
performance evaluation purposes is choosing an appropriate
formal semantics. I.e., neither too restrictive (allowing the
modeler a good degree of expressivity) nor too permissive.
After all, UML’s informal semantics should be respected;
among other reasons, because communication fluency be-
tween modelers is a very basic, strong SPE principle.

UML 1.5 defines AD semantics in terms of SCs. That is
subject to change in UML 2.0, which will define a (entirely
new) token-based semantics. An interesting contribution to
the semantics discussion can be found in [10]. Eshuis et al.
had previously defined a step-based, STATEMATE-like, se-
mantics [11] for ADs. In the former cite, the authors discuss
the (un)suitability of Petri nets for workflow modelling, in
contrast to their formalized ADs. The reasoning is well jus-
tified under the light of the application field, as these may be
more appropriate for modelling reactive systems (i.e., depen-
dent on the environment) as common workflow processes.

Here we define AD semantics in terms of (labelled)
GSPNs. We do not strive for reactive systems since, for
now, we strictly utilize ADs for modelling processes not de-
pendent on external events, as the UML specification [26]
suggests. Eshuis semantics are aimed to business mod-
elling. Meanwhile, we apply ADs to describe method in-
vocations internals, especially when complex concurrent be-
havior must be depicted. Needless to say, this is one of the
basic roles defined by OMG for the AD.

Due to the nature of this application, we are (theoreti-
cally speaking) closer to OMG’s perspective, when defining
a token-game semantics in the UML 2.0 final draft, than to
Eshuis step-based semantics. That is not very exact either,
as there are rather profound revisions in the AD semantics
(e.g., it seems that outgoing transitions from action states
will have now a fork-like semantics, instead of conditional
branching-like). Moreover, our interpretation is stochastic,
not exactly non-deterministic as in plain Petri nets, so as
to allow performance evaluation. But we share a focus on
the modelling of active systems, while we allow complex,
parallel, and even unsafe, behaviors.

An interesting work has been developed in [27], where ac-
tivity diagrams are translated into layered queue networks
(LQN) using a graph grammar based transformation. A
graph grammar is a set of production rules that generates
a language of terminal graphs and produces non terminal
graphs as intermediate results. A production rule is applied
to the abstractions that represent the activity diagram, then



the activity diagram graph is parsed to check its correction
and to divide it into subgraphs that correspond to the LQN
elements. As it can be seen the approach to formalize activ-
ity diagrams is absolutely different from ours, which is based
in the composition of the submodels obtained for each ab-
straction.

Concerning our tool, it is difficult to make a reasonable
comparison because to our knowledge there exist six tools [5,
2, 19, 27, 12, 17] for performance evaluation based on UML,
but only the last one uses stochastic Petri nets as perfor-
mance model. Besides, their model semantics and sup-
ported diagrams strongly differ from our approach. DSP-
NExpress2000 [17], syntactically speaking, seems to allow
only the modelling of simple SCs. In SimML [5], simula-
tion queuing networks models [24] for performance evalua-
tion are obtained from UML class diagram and SD, while
in the PERMABASE project [2] models for simulation are
obtained from UML SD and class and deployment diagrams.
Finally, Gilmore et al. [12] employ class and collaboration di-
agrams to obtain analyzable stochastic process algebra mod-
els (namely PEPA models). It is interesting to note that the
supporting software architecture for Gilmore’s proposal in-
cludes model checking facilities.

7. CONCLUSIONS
The main contributions of this paper can be summarized

as follows:

• We have incorporated the AD into our SPE approach
with an specific role: modelling the doActivity con-
cept of the SCs. We have found that under this role,
the AD is a tool to gather performance requirements:
routing rates and actions duration. The annotations
are proposed according to the UML profile [25].

• We have given a translation of the AD (that models
a doActivity) into a stochastic Petri net model. In
this way, it can be composed with any other stochastic
Petri net model that represents a SC that uses the
corresponding doActivity, thus gaining an analizable
model for the system.

• A formal semantics for the AD is achieved in terms
of stochastic Petri nets that allows to check logical
properties as well as to compute performance indices.
Obviously, this formal semantics represents an inter-
pretation of the “informally” defined concepts of the
UML AD. Our interpretation is focused on the ba-
sis that the AD is meant for the description of the
doActivities in a SC. Moreover, we have recalled an
example [18] in the client-server paradigm where the
presented approach was successfully applied.

• A Javar module has been incorporated to the Ar-
goUML CASE tool. It allows to translate all the ele-
ments in UML SC and ADs notation as proposed by
our approach. Performance annotations can be in-
troduced to produce a LGSPN model, representing
the system, that can be analyzed by the GreatSPN
tool [13], therefore it is possible to obtain performance
measures in the steady or transient state. The pro-
cessing of XMI files as input by our module ensures
compliance with current standards.

As future work we are working on the following open is-
sues:

• With respect to UML ADs, conditional forks and more
complex external event processing support, especially
important to solve the problem of ‘uninterruptable’
activities due to the use of action states.

• Extension of the Javar module to support UCs and
SDs in order to increase the expressivity at system
description.

APPENDIX

A. FORMAL DEFINITION OF COMPOSI-
TION OF LGSPNS

A.0.0.1 Place and transition superposition of two
ordinary LGSPNs..

Given two LGSPN ordinary systems LS1 = (S1, ψ1, λ1)
and LS2 = (S2, ψ2, λ2), the LGSPN ordinary system LS =
(S, ψ, λ):

LS = LS1 | |
LT ,LP

LS2

resulting from the composition over the sets of (no τ) labels
LT and LP is defined exactly as in our previous works. We
encourage the reader to check out any of the following refer-
ences for further information: [6, 20]. Nonetheless, figure 1
depicts informally the semantics of the superposition oper-
ator (that should be sufficient for a basic comprehension).

A.0.0.2 Place and transition superposition and sim-
plification of two ordinary LGSPNs..

Given two LGSPN ordinary systems LS1 = (S1, ψ1, λ1)
and LS2 = (S2, ψ2, λ2), the LGSPN ordinary system LS =
(S, ψ, λ):

LS = LS1

G
LT ,LP

LS2

resulting from the composition over the sets of (no τ) labels
LT and LP is defined as follows. Let ET = LT ∩ λ1(T1) ∩
λ2(T2) be the subset of LT comprising transition labels that

are common to the two LGSPNs, and T ET
1 be the set of all

transitions in LS1 that are labeled with a label in ET . Same
definitions apply to LS2.

Then P , T , and the functions F ∈ {I(), O(), H(), Π(),
M0(), ψ(), λ()} are defined exactly as it was made for the
previous operator (| |), whereas function W () is equal to:

W (t) =

8>>><>>>:
W1(t) if t ∈ T1\T ET

1

W2(t) if t ∈ T2\T ET
2

W1(t1) + W2(t2) if t ≡ (t1, t2) ∈ T ET
1 × T ET

2

∧λ1(t1) = λ2(t2).}
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