
Solving the mobile robot localization problem
using string matching algorithms

Cándida Gonźalez-Buesa and Javier Campos
Departamento de Inforḿatica e Ingenierı́a de Sistemas

Universidad de Zaragoza
Maŕıa de Luna 1, 50018 Zaragoza, Spain

Email: jcampos@unizar.es

Abstract— In this paper we address the mobile robot local-
ization using some techniques borrowed from the Computa-
tional Biology community. The specific problem studied here
is also known as the kidnapped robot problem. Our proposal
is to solve this problem by string matching algorithms,
which have experienced a large advance in the last years
due to (for example) the Genoma Project. The paper uses
three different algorithms to solve the mentioned problem
and shows their advantages, such as the robustness of the
results and the memory and time efficiency. These results are
validated by real experimentation using panoramic images of
indoor buildings, and compared and discussed with existing
techniques that have been used over the same test-bed.

I. I NTRODUCTION

Many of the current robot applications such as emer-
gency response, transportation, demining, exploration, help
care or ludic robots involve the generation of autonomous
motion. By using these modules, the mobile devices im-
prove their navigation performance and thus the versatility
of their usage. Thus in mobile robotics, we are carrying out
a vast effort to improve the robustness of the basic skills
of the mobility task, since it is clear that they have a large
impact over the whole performance of the system. One
of these skills is the localization, that is essential, because
knowing where the vehicle is located allows to address any
issues concerning mobility [1]. We address here a specific
instance of this problem called the kidnapped robot. This
problem arises when the robot is located in an environment
from which it owns a map. Then, at a given moment, and
based on sensory information (e.g. cameras, infrared rays,
ultrasounds), the vehicle has to decide where is located
within the map. In this work, we assume that the map of the
scenario is composed of a set of panoramic images. Thus,
given a new image gathered, the vehicle must conclude its
current location. Many efforts have been carried out during
these last years in this context by using different tools such
as Montecarlo [2], graph theory [3], search in interpretation
trees [1], RANSAC [4], or topological representations [5].

Our idea is to derive profit from the advances in the
field of Computational Biology, based on the large number
of projects that have been undertaken (e.g. the Human
Genoma Project). Some of these advances resulted in
new algorithmic techniques for string processing. This is
because, in this context, a major problem is to find genes
(that match a given large string) among huge data bases
of DNA. These data do not really need to correspond

exactly to the gen, so that there are many issues to consider
such as the codification, matching, etc. Our proposal is
based on reducing the robot localization problem to a
string matching problem, applying then those algorithms
that better adapt to this situation.

In a recent work [6], the authors take panoramic pictures
from the environment by means of a mobile robot, and
then they extract some features that are converted into
strings. Their map is composed by a set of panoramic
pictures taken at given space points, every certain distances,
covering all the environment. Next, they process these
panoramic pictures to obtain the character strings (called
fingerprint sequences). To do it, they propose that some
visual features of each space point generate a unique
sequence, in such a way that it can be distinguished from
the rest of sequences of the environment. Then, they use
two types of features: vertical edges (identified as ‘v’) and
color patches (identified as ‘A’, ‘B’, ..., ‘P’). Extracting
those features from panoramic pictures, a character string
for every map point can be created (see Fig. 1). With
this reduction, it is possible to obtain a database that
incorporates both character strings from the pictures taken
on the map points, and test strings from the pictures taken
on the test points, so that it is possible to compare test and
database strings. The database string most similar to each
test string will correspond to the map picture most similar
to each test picture, and then to the map point nearest to
each test point. In this way, we can predict the approximate
position of the robot into the map. In other words, at a
given moment, the robot obtains a panoramic picture from
its most immediate environment, by using a camera linked
to the robot; this image is converted into a string, and the
similarity of the different character strings is evaluated.

In [6] the authors suggested the use of string matching
algorithms, but they discarded them and implemented
their own minimum energy algorithm, based on dynamic
programming. This decision was motivated by the fact that
they wanted to consider the possibility of different types of
mismatch errors, that is, they wanted to calibrate the rank
of the discordances. A goal that, they thought, could not be
achieved by string matching algorithms. However, in this
work we take the other way around exploring the efficacy
of these string matching algorithms (described in [7]). We
also provide a comparison with the alternative techniques
to show that the localization results are improved and



vBvvvOvvvLvBEvvvvvvBvL

Fig. 1. Panoramic image, its visual features and its string (this image, taken from [6], is used here with permission of the first author of that paper)

we discuss the benefits of our approach on the basis of
the robustness of the results and the memory and time
efficiency of the algorithms. We introduce in Section II
the string matching algorithms. In Section III, several tests
are presented and the results obtained with the algorithms
proposed in this paper are compared with previous results
in the literature. Final remarks and conclusions are stressed
in Section IV.

II. STRING MATCHING ALGORITHMS

There are two types of string matching algorithms: exact
string matching algorithms and inexact string matching
algorithms. Exact string matching algorithms can be useful
for certain restricted types of problems where length of
strings is short and the information on characters in the
strings is free of errors. However, due to the kind of
comparisons that we are going to make, with large strings
and possible data errors, it is very unlikely that an exact
matching between different strings will occur, because
minimum variations in a picture will provoke substantial
differences on the extracted strings. Thus, inexact string
matching algorithms will better suit the problem that we
are facing.

There is a great variety of these algorithms, according
to their use, and an in depth description of some of the
most representative has recently been published [7]. For
this work we have implemented three algorithms: algorithm
A, for the estimation of the global alignment withk
differences, based on dynamic programming; algorithm B,
for inexact matching withk differences, based on hybrid
dynamic programming; and algorithm C, for the estimation
of the longest common subsequence of two strings. We
present the main ideas concerning all of them in the
subsequent paragraphs.

A. Algorithm A (global alignment withk differences algo-
rithm)

Given two character stringsT andP , of lengthm and
n, respectively, and given a fixed numberk, the objective
of the algorithm is to find, if it exists, the best global
alignment ofT andP that contains at mostk differences
and spaces. The algorithm is based on the estimation of
the edit distance between both strings. The edit distance is
the minimum number of operations (insertions, deletions
or substitutions of characters) needed to convert one string

into the other. Dynamic programming is applied to solve
it.

Let P (i) andT (j) be the prefix substrings ofP andT ,
that is to say,P (i) = p1p2...pi and T (j) = t1t2...tj . Let
D(i, j) be the cost of convertP (i) into T (j). The recurrent
equation is the next:

D(i, j) = min





D(i− 1, j) + del cost (deletepi)
D(i, j − 1) + ins cost (inserttj)
D(i− 1, j − 1) + d(i, j) (other case)

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, being the trivial cases the
next:

D(i, 0) = i, for all i, 0 ≤ i ≤ n

D(0, j) = j, for all j, 0 ≤ j ≤ m

and being:

d(i, j) =
{

0, if pi = tj
1, if pi 6= tj

where del cost and ins cost are two parameters whose
value can be adjusted to obtain better results. In the same
way, we can alter the value ofd(i, j) in function of the
similarity between characterspi and tj , that is to say, the
more similar they are, the lower will be the penalty for
mismatching. Making these simple modifications to the
equations, we can achieve what Lamonet al. [6] were
looking for with their algorithm.

In order to calculate the valueD(i, j) we need the values
for D(i−1, j), D(i, j−1) andD(i−1, j−1) (see Fig. 2).

Fig. 2. Dynamic programming table

Therefore, in order to fill the cell(i, j) we need the
values of the shaded areas of the table. In this way, we
can fill the table by rows from left to right, or by columns
from the top.



The cost of filling the table and, therefore, of calculating
D(n,m) is O(n ·m), and obtaining the trace or optimal
transcription has a cost O(n + m).

However, we can define limits around the main diagonal
of the table, that vary depending onk. This can be done
because it is nonsense filling the table beyondk diagonals
starting from the main diagonal when we have limited to
k the total number of differences. In this way, fork = 4,
the shaded area in Fig. 3 would be the only to be filled.

Fig. 3. Limited dynamic programming table

With this modification, that slightly alters the recurrent
equation, the cost of filling the table and calculatingD(n,
m) would be O(k ·m) in time and space.

B. Algorithm B (inexact matching withk differences algo-
rithm)

Given two stringsT andP , of lengthm andn, respec-
tively, and given a fixed numberk, the objective of the
algorithm is to find, if it exists, all the ways of matching
P andT using at mostk character substitutions, insertions
or deletions, that is to say, to find all the occurrences ofP
in T with at mostk differences or spaces. This algorithm
is based onhybrid dynamic programming, a combination
of classic dynamic programming and suffix trees [8].

A few concepts must be first defined. The main diagonal
of the dynamic programming table (DPT) includes all
those cells(i, i) for all i such that0 ≤ i ≤ n ≤ m.
Diagonals above the main diagonal are numbered from 1
to m, whereas diagonals below are numbered from−1 to
−n. A d–path of the DPT is a path that starts at file 0 and
specifies a total of exactlyd differences. Ad–path is the
longest in diagonali if that path is ad–path that ends in
diagonali, and the index of the column where it ends is
greater than or equal to the index of the column of any
otherd–path that ends in diagonali.

The main idea of this method is as follows: we have
k iterations, and in each iterationd ≤ k, we must find
the longestd–path in diagonali, for eachi from −n to
m. The longestd–path in diagonali can be obtained from
the longest (d − 1)–paths in diagonalsi − 1, i and i + 1.
Every longestd–path (in any diagonal) that reaches the
row numbern determines the final point (inT ) of one
occurrence ofP with exactlyd differences.

When d > 0, the longestd–path in diagonali can be
found, as we stated before, from the longest (d− 1)–paths

in diagonalsi− 1, i and i + 1, by choosing the longest of
the next paths:
• Longest (d − 1)–path in diagonali + 1, followed

by a vertical edge to diagonali, followed by the
maximum extension along diagonali that corresponds
to an identical substring inP and T . This path can
be viewed in Fig. 4.

• Longest (d − 1)–path in diagonali − 1, followed
by a horizontal edge to diagonali, followed by the
maximum extension along diagonali that corresponds
to an identical substring inP and T . This path can
be viewed in Fig. 5.

• Longest (d − 1)–path in diagonali, followed by a
diagonal edge, followed by the maximum extension
along diagonali that corresponds to an identical
substring inP andT . This path is shown in Fig. 6.

Fig. 4. Firstd–path in diagonali

Fig. 5. Secondd–path in diagonali

The trivial case of this recurrence corresponds tod = 0,
that is to say, when we do not allow any difference between
P and T . In this case, the longest 0–path in diagonali
corresponds to the longest common extension ofT [i .. m]
andP [1 .. n].

The cost of this algorithm is O(k ·m) in time and space.
To estimate the common substrings ofP andT , as well

as to estimate the longest common extension of the trivial



Fig. 6. Thirdd–path in diagonali

case, generalized suffix trees can be used. Basically, these
trees are suffix trees including more than one string, that
is, trees containing in a very compact representation the
suffixes from two or more character strings.

C. Algorithm C (Longest common subsequence algorithm)

This algorithm calculates the longest common subse-
quence (LCS) of two given strings and, contrary to those
presented above, it is not based on dynamic programming.
The basic idea, already described in [7], consists on reduc-
ing first the LCS problem to the problem of the longest
increasing subsequence (LIS) of a list of numbers. Then, by
solving the LIS problem, we may solve the LCS problem.

Given two stringsT andP , of lengthm andn, respec-
tively, for each character ofT we create a list, in decreasing
order, with the positions inP of that character. If this
character does not appear inP , then it will be associated
to an empty list and no number will be added to the list.
We can then obtain the LIS of this list. Numbers on LIS
correspond to the positions in the stringP of the characters
that form the LCS ofT andP .

Now we must solve the LIS problem. LetΠ be a list
of numbers. We define a cover ofΠ as a set of increasing
subsequences ofΠ such that they contain all numbers of
list Π. We define the size of a cover as the number of
subsequences included on it, and a minimum cover as the
cover with the smallest size.

Let I be an increasing subsequence ofΠ with same size
than a cover ofΠ, calledC. ThenI is a LIS of Π andC
is a cover ofΠ. Therefore, we must find a minimum cover
of Π, and, after that, starting from that cover, an increasing
subsequenceI of Π with the same size thanC, that will
be the subsequence that we are looking for.

In order to obtain the minimum cover ofΠ we must
take each number ofΠ and insert it at the end of the first
possible non increasing subsequence that we can. If it can
not be inserted into any subsequence, a new subsequence
that contains that number is created.

The constructing cost of this cover is O(n· log p), being
p the size of the longest increasing subsequence (LIS).
Furthermore, the LIS can be obtained in time O(n) given
the minimum cover.

III. T ESTS ANDRESULTS

The first test reproduces one of the last performed by
Lamon in his work. The rest of the tests are replica of the
tests in [6]. In this way, we could compare our results, in
terms of success percentages, with their results.

A. Rooms test

The environment of the rooms test is composed by
ten separated rooms. Previously, four fingerprint sequences
were obtained by placing the camera (the mobile robot)
near the center of each room. One fingerprint was assigned
to the environment database, while the others were consid-
ered test points. In this way, a database that includes those
strings corresponding to ten map points, plus thirty test
strings, is generated.

We consider a test point to be correct when the exact
solution is included within the set of optimal matchings
between the test string and all the database strings. A test
point is exact if there is only one optimal matching between
the test string and the database strings, being this matching
the exact solution.

Lamon obtained a 73% of success rate, because their
algorithm was right in 73% of the strings tested.

The percentages of success for each implemented algo-
rithm are presented in Table I.

TABLE I

OUR RESULTS FORROOMS TEST

Algorithms
Alg. A1 Alg. A2 Alg. B Alg.C

Exact 83.3 % 93.3 % 73.3 % 80 %
Correct 96.7 % 96.7 % 90 % 90 %
Wrong 3.3 % 3.3 % 10 % 10 %

The difference between algorithms A1 and A2 rests on
the election of the parameters of algorithm A. Algorithm
A1 includes the default parameters (unitary cost for in-
sertion, deletion, color difference and discordance), while
algorithm A2 differs only in the color difference cost, that
has a lower value (0.75).

As we can see in Table I, the exact results for all
algorithms, except for B, have given us better percentages,
in the case of consider the exact ones, than the 73%
reported from Lamon. This is also evident if we consider
the correct percentages of success. It has to be noted that
algorithm A1 has had the smallest error rate, and algorithm
A2 the greatest success rate.

B. Ground Floor and White Hall tests

The Ground Floor and White Hall tests were performed
by Lamonet al. [6] in two different environments that are
outlined in Fig. 7.

The map on the left represents the Ground Floor, and
covers all the way from the main entry to the Conference
Room in the first floor of the Smith Hall Building. The
map on the right represents the White Hall, and covers the
entrance hall of the same building. For the Ground Floor 21
map points and 22 test points were taken, and for the White
Hall 15 map points and 18 test points were considered.



Fig. 7. Maps of Ground Floor and White Hall

For Lamon el at. [6], a test point wastopologically
correct if the best matching among the map points was
a point adjacent to the test point, and a test point was
geometrically correctif the best matching among the map
points was that one closest to the map point.

However, we have also considered the option of multiple
best matching. A test point is defined astopologically
correct if, among the set of best matchings, there is one
that corresponds to a map point adjacent to the test point.
A test point is taken astopologically exactwhen there is
only one map point adjacent to the test point within the set
of best matchings.

In the same way, a test point is consideredgeometrically
correct if, among the set of best matchings, there is one
that corresponds to the map point that is closest to the
test point. A test point is termedgeometrically exactwhen
there is only one map point in the set of best matchings
that is closest to the test point.

We must note that only those points topologically correct
have been taken into account for the evaluation of their ge-
ometric correction. Thus, the percentages of geometrically
exact, correct and wrong points have not been calculated
from the total of test points, but only from those that were
topologically correct.

Lamon et al. [6] carried out three tests: one with the
points of the Ground Floor, another with the points of
the White Hall, and another one blending the points from
both environments, and they obtained the results shown in
Table II.

TABLE II

LAMON ’ S RESULTS FORGROUND FLOOR, WHITE HALL AND GLOBAL

ENVIRONMENT TESTS

Ground Floor White Hall Global Environ.
Top. exact 91 % 94 % 90 %
Top. wrong 9 % 6 % 10 %
Geom. exact 70 % 82 % 75 %
Geom. wrong 30 % 18 % 25 %

We have performed two kind of tests, one taking the de-
fault parameters of each algorithm, and a second choosing
these parameters in order to obtain a better solution. The
election of these parameters has depended directly on the
string database, and has varied from one database to other.
Parameters have differed slightly in each test because we
have not been able to unify their values.

Default parameters for algorithm A1 are shown in Ta-
ble III and parameters for algorithm A2 for each test

are shown in Table IV. With those parameters, the final
percentages of the tests are shown in Table V, Table VI
and Table VII.

TABLE III

PARAMETERS FOR ALGORITHMA1

Deletion Cost 1.0
Insertion cost 1.0
Colour difference 1.0
Coincidence cost 0.0
Discordance cost 1.0

TABLE IV

PARAMETERS FOR ALGORITHMA2

Ground Floor White Hall Global Env.
Deletion Cost 0.55 0.7 0.55
Insertion cost 0.45 0.6 0.45
Colour difference 0.7 1.0 0.7
Coincidence cost – 0.15 0.0 0.0
Discordance cost 3.0 1.5 3.0

TABLE V

OUR RESULTS FORGROUND FLOOR TEST

Algorithms
Alg. A1 Alg. A2 Alg. B Alg. C

Top. exact 68.2 % 90.9 % 54.5 % 50 %
Top. correct 95.5 % 90.9 % 72.7 % 81.8 %
Top. wrong 4.5 % 9.1 % 27.3 % 18.2 %
Geom. exact 52.3 % 85.0 % 37.5 % 38.9 %
Geom. correct 71.4 % 85.0 % 75.0 % 83.3 %
Geom. wrong 28.6 % 15.0 % 25.0 % 16.7 %

TABLE VI

OUR RESULTS FORWHITE HALL TEST

Algorithms
Alg. A1 Alg. A2 Alg. B Alg. C

Top. exact 61.1 % 77.8 % 61.1 % 38.9 %
Top. correct 83.3 % 88.9 % 77.8 % 77.8 %
Top. wrong 16.7 % 11.1 % 22.2 % 22.2 %
Geom. exact 60.0 % 75.0 % 50.0 % 35.7 %
Geom. correct 73.3 % 87.5 % 78.6 % 71.4 %
Geom. wrong 26.7 % 12.5 % 21.4 % 28.6 %

In general, the number of failures has been lower than
those obtained with the algorithm of Lamonet al. [6].
However, precision has also been lower, specially for
algorithms B and C. Nevertheless, in terms of correction
percentages, our results are quite similar, and in some cases
even better than those from Lamonet al. [6]. The reason
why algorithm C has had a lower exactness is that this
algorithm is very sensitive to length differences between
the strings, and in these tests, length differences between
some strings are considerable. This situation has negatively
affected the results of matching with algorithm C.

Algorithm A has offered very good results, specially
when we have adjusted the parameters (algorithm A2). In
spite of that, in some cases the wrong rate is slightly greater
than that obtained with other algorithms; as its exactness
rate is also greater, it compensates for that wrong rate.



TABLE VII

OUR RESULTS FORGLOBAL ENVIRONMENT TEST

Algorithms
Alg. A1 Alg. A2 Alg. B Alg. C

Top. exact 60.0 % 75.0 % 50.0 % 35.0 %
Top. correct 85.0 % 77.5 % 75.0 % 70.0 %
Top. wrong 15.0 % 22.5 % 25.0 % 30.0 %
Geom. exact 47.1 % 83.9 % 43.3 % 39.3 %
Geom. correct 70.6 % 87.1 % 80.0 % 85.7 %
Geom. wrong 29.4 % 12.9 % 20.0 % 14.3 %

In spite of some cases the wrong rate is lightly greater
than the other algorithms, the exactness rate is also greater,
which rewards that wrong rate.

IV. CONCLUSIONS

The main contribution of this paper is to apply advanced
algorithms developed in the Computational Biology field to
mobile robot localization problems. The results have shown
that the algorithms are robust and its memory and time
efficiency is good.

Some of the implemented algorithms offered good re-
sults when compared with previous tests, whereas others
were less adequate. Conceptually simple algorithms, such
as algorithms A and C, gave in general better results than
the more complicated algorithm B. However, these results
were conditioned by the structure of the environment in
each test.

Algorithm C behaved the best in the Rooms Test. This
may be due to the regularity of the strings of that environ-
ment, since, as we have mentioned before, this algorithm
is very sensitive to size differences between the strings to
be compared.

In the Rooms environment we have noticed the effectiv-
ity of all algorithms, specially that of algorithms A and C.
However, in all other tests (Ground Floor, White Hall and
Global Environment tests) results were slightly worse. This
may be secondary to environments differences. Whereas
the Rooms environment is composed of a few independent
areas, other environments are composed of a single area,
with extracted strings having too many points in common,
specially those located in the same or nearby areas (for
instance, along the same corridor).

As a consequence, and as it has been reported by others
[6], our results were the better the more separate were the
map points chosen. If the points were separated enough, the
effectivity of the results increased substantially. Therefore,
large environments, where we can distribute the map points
properly, are most suitable for the implemented algorithms.
Thus, an interesting future work to consider is the to give
some insights on the better way of selecting points to build
the maps.

ACKNOWLEDGMENTS

Thanks to Pierre Lamon and Roland Siegwart, from the
Swiss Federal Institute of Technology, for their interest in
this work, for their inestimable help in the part of pictures
processing, and for providing us with the code of their
project and their test data.

We wish to thank also José Neira, Javier Ḿınguez,
and Luis Montesano, from theRobotics Groupof our
Department, for their valuable comments and suggestions.

This work has been developed within the project TIC-
2003-05226 of the Spanish Ministry of Science and Tech-
nology.

REFERENCES

[1] J.A. Castellanos and J.D. Tardós, Mobile Robot Localization and
Map Building. A Multisensor Fusion Approach. Kluwer Academic
Publishers, Boston, MA, 2000.

[2] D. Fox, W. Burgard, F. Dallaert and S. Thrun, “Montecarlo local-
ization: efficient position estimation for mobile robots”, Proc. Nat.
Conf. Artificial, pp. 343-349, Orlando, Florida, 1999.

[3] T. Bailey, E.M. Nebot, J.K. Rosenblatt and H.F. Durrant-Whyte,
“Data association for mobile robot navigation: a graph theoretic ap-
proach”, Proc. ICRA 2000, pp. 2512-2517, San Francisco, California,
2000.

[4] J. Neira, J.D. Tard́os and J.A. Castellanos, “Linear time vehicle
relocation in SLAM”, Proc. ICRA 2003, pp. 427-433, Taipei, Taiwan,
September 2003.

[5] H. Choset and K. Nagatani, “Topological simultaneous localization
and mapping (SLAM): toward exact localization without explicit
localization”, IEEE Trans. on Robotics and Automation, 17(2):125-
137, April 2001.

[6] P. Lamon, I. Nourbakhsh, B. Jensen and R. Siegwart, “Deriving and
matching image fingerprint sequences for mobile robot localization”,
Proc. ICRA 2001, pp. 1609-1614, Seoul, Korea, May 2001.

[7] D. Gusfield, Algorithms on Strings, Trees, and Sequences. Cambridge
University Press, New York, 1997.

[8] E. Ukkonen, “On–line construction of suffix trees”, Algorithmica,
vol. 14, pp. 249–60, 1995.


