
Exploring roles for the UML diagrams in software performance

engineering∗

José Merseguer, Javier Campos

Dpto. de Informática e Ingenieŕıa de Sistemas

Universidad de Zaragoza, Zaragoza, Spain

{jmerse,jcampos}@unizar.es

Abstract

It is not an overstatement to say that the gap be-

tween software design and performance evaluation tech-

niques has caused the misuse of the last ones by software

engineers. The UML profile for schedulability, performance

and time [13] arose from the intention to close both fields,

software engineering and performance analysis. Neverthe-

less the gap remains, since it is difficult for software engi-

neers to devise which parts of their designs are suitable

to represent performance requirements. The profile has

started to study this problem from a scenarios viewpoint.

In this work, we explore other viewpoints to deal with per-

formance requirements at software design level.

keywords: UML, software performance engineer-
ing, software design.

1. Introduction

The study of the software time efficiency (response
time, delays, throughput) requires from the software
designer the most accurately possible description of the
system load, system usage and the routing rates. In
general, software engineers are not familiar with the
notation of performance modeling, moreover this no-
tation is too far from the artifacts they use to model
software systems.

In the last years, the software performance engi-
neering (SPE) community [14, 15, 6] has dedicated
great efforts to incorporate to the software specifica-
tion languages the abilities to describe performance re-
quirements in understandable terms for software en-
gineers. These efforts have culminated in the adop-
tion of the UML profile for schedulability, performance

∗This work has been developed within the projects TIC2002-
04334-C03-02 of the Spanish CICYT and P084/2001 of the Go-
bierno de Aragón.

and time [13]. The section of this profile that deals
with performance modeling, maps concepts in the per-
formance analysis domain into concepts in the UML
language [12], then bridging the gap between software
designers and performance analysts. Other languages
have been used with these purposes [7].

The profile proposes “determining a system’s per-
formance characteristics” using scenarios, that can be
modeled using collaborations or activity graphs. In this
paper, we explore an alternative approach to scenarios
to determine software system’s performance character-
istics, attending at the object’s life viewpoint [9].

Concretely, in this work we have focussed in the
use case diagram and in the statechart diagram. We
propose to capture performance requirements for each
class with relevant dynamic behavior in the system,
by specifying these requirements in the statechart that
models its life. Also, it will be identified which model
elements in the diagrams are suitable to describe per-
formance aspects and its mapping into concepts of the
profile. The activities in the statechart diagram can
be refined using activity diagrams for a most accurate
description of the requeriments. But the activity and
sequence diagrams will be subject of future research to
find theirs roles in SPE under this perspective.

The paper is organized as follows. Section 2 revises
the performance modeling component of the UML pro-
file [13] and briefly recalls our proposal to specify per-
formance requirements [9]. Sections 3 and 4 study the
use case diagram and the statechart diagram, respec-
tively. For each diagram a short description taken from
the UML specification [12] is given to put the reader
in context (if more information is needed, we refer to
the manual); after that, the role of the diagram con-
cerning performance goals is explored; and finally, the
performance annotations suggested for the diagram are
given. The paper ends by giving some conclusions in
section 5.

ANNOTATION KIND∗ REFERENCED
VALUE

USE CASE
DIAGRAM

Probability that
an actor executes
a use case

A Association link

SEQUENCE
DIAGRAM

Probability of
success of a
message

B Message

Message size C Message
STATECHART
DIAGRAM

Activity duration C Action (with
doActivity role)

Probability of
success of a
message

B Transition1

Message size C Event
ACTIVITY
DIAGRAM

Activity duration C Timed transition

Probability to
take the transi-
tion

B Transition
(timed or imme-
diate)

∗A=System usage, B=Routing rate, C=System load.
1It is not attached to an event since the transition can be

automatic.

Table 1. Summary of the annotations proposed in pa-UML .

2 UML profile for schedulability, per-

formance and time

The UML profile for schedulability, performance and
time [13], among other purposes, enables the construc-
tion of software models that could be analyzed to make
quantitative predictions early in the development pro-
cess.

When studying which performance requeriments
should be or can be represented by a given UML dia-
gram (i.e. its role from the performance analysis view-
point) to get a notation to specify them becames nec-
essary. The Performance Modeling component of the
UML profile [13], we will refer to this component as
the profile later on, provides facilities for this task and
also for specifying QoS characteristics and execution
parameters. The following paragraph and the Figure 1
briefly recall some performance concepts as proposed
in the profile.

A performance context specifies scenarios that are
used to explore dynamic situations. An scenario is

Workload PScenario

PStep

PerformanceContext

PResource

1

1..*
1..*

1..*
0..*

0..*

1..*

1

1

0..*

0..1

0..*

+successor

+predecessor

0..*

1

PProcessing
Resource

PPassive
Resource

0..*
1..*

Workload
Open

Workload
Closed

Figure 1. Performance analysis model from [13].

TaggedValue.dataValue = {a concrete annotation}

 routing rate]
TaggedValue.type.tagType = [system usage | system load |

TaggedValue.type.multiplicity = 1

TaggedValue.type.name = performance annotation

TaggedValue.name = performance annotation

ModelElement

1

+type

*

name : Name

(from Core)

1

*

+referenceValue

multiplicity : Multiplicity

tagType : Name

(from Extension Mechanisms)

TagDefinition

dataValue : String[*]

(from Extension Mechanisms)

TaggedValue

* +taggedValue * +referenceTag

+typedValue

Figure 2. Metamodel of the annotations proposed in pa-UML .

composed by steps which are executions that take finite
time and use resources. The resources can be passive,
then representing devices or logical entities, or active,
the usual servers in a performance model. Scenarios
are executed by workloads, being open when they are
characterized by requests that arrive at a given rate or
closed when they have a number of users which cycle
executing the scenario.

The profile maps these performance concepts into
UML equivalents. Concretely, they are mapped into
concepts of the collaborations and activity graphs
packages. Obviously, a complete definition for the sys-
tem performance requeriments needs complementary
views. So, in sections 3 and 4, the possible performance
roles for the use case and the statechart diagrams, are
explored while trying to map these concepts into UML
equivalents.

Previously to appear the profile, we worked in the
definition of a language (pa-UML [9]) to specify per-
formance requeriments in UML. Table 1 summarizes
for each kind of diagram, the annotations proposed in
pa-UML as well as the model element affected by the
annotation. Figure 2 depicts how pa-UML uses the
tagged values to annotate the system usage, the sys-
tem load and the routing rates. Despite using tagged
values, our proposal differs from the profile since we
do not combine them with stereotypes and neither a
“tagged values language” was proposed. On the other
hand, our proposal allows to (semi)automatically gen-
erate a performance model in terms of Petri nets [4].
Then performance predictions can be computed.

3 Use case diagram

In UML a use case diagram shows actors and use
cases together with their relationships. The relation-
ships are associations between the actors and the use
cases, generalizations between the actors, and general-
izations, extends and includes among the use cases [12].

A use case represents a coherent unit of function-
ality provided by a system, a subsystem or a class as
manifested by sequences of messages exchanged among
the system (subsystem, class) and one or more actors
together with actions performed by the system (subsys-
tem, class). The use cases may optionally be enclosed
by a rectangle that represents the boundary of the con-
taining system or classifier [12].

In the use case diagram in Figure 3 we can see: two
actors, three use cases and four associations relation-
ships between actors and use cases, like that repre-
sented by the link between the actor1 and the UseCase1.

3.1 Role of the use case diagram concerning per-
formance

The use case diagram allows to model the usage of
the system for each actor. We propose the use case di-
agram with performance evaluation purposes to show
the use cases of interest to obtain performance figures.
Among the use cases in the diagram a subset of them
will be of interest and therefore marked to be consid-
ered in a performance evaluation process.

The role of the use case diagram is to show the use
cases that represent executions of interest in the sys-
tem. Then, a performance model can be obtained for
each execution (use case) of interest, that should be
detailed by means of the sequence diagram [11].

The existence of a use case diagram is not manda-
tory to obtain a performance model. In [10] was shown
that a performance model for the whole system can be
obtained from the statecharts that describe it.

It is important to recall the proposal in [2], that con-
sists in the assignment of a probability to every edge
that links a type of actor to a use case, i.e. the proba-
bility of the actor to execute the use case. The assign-
ment induces the same probability to the execution of
the corresponding set of sequence diagrams that de-
scribes it. Since we propose to describe the use case by
means of only one sequence diagram, we can express
formally our case as follows.

Let suppose to have a use case diagram with m users
and n use cases. Let pi(i = 1, . . . ,m) be the i-th user
frequency of usage of the software system and let Pij be
the probability that the i-th user makes use of the use
case j(j = 1, . . . , n). Assuming that

∑m

i=1 pi = 1 and

UseCase1

UseCase2

UseCase3

actor1 actor2

{p1}

{p2}

{p3}

1

*

{p4}

freq. of usage = 0.4 freq. of usage = 0.6

<<PAcontext>>

<<PAstep>>

<<PAstep>>

<<PAstep>>

{PAprob=
 0,4*p2+0,6*p4}

<<PAopenLoad>>

{PArespTime=
PApriority=
PAoccurrence= }

Figure 3. Use case diagram with performance annotations.

∑n

j=1 Pij = 1, the probability of a sequence diagram
corresponding to the use case x to be executed is:

P (x) =
m∑

i=1

pi · Pix (1)

The previous formula, taken from [2], is important
because it allows to assign a “weight” to each particular
execution of the system. As an example, see in Figure 3
the annotations attached to UseCase3.

The relationships between the actors themselves,
and between the use cases themselves are not consid-
ered with performance evaluation purposes.

3.2 Performance annotations

The use case diagram should represent a Perfor-
mance Context, since it specifies one or more scenarios
that are used to explore various dynamic situations in-
volving a specific set of resources. Then, it is stereo-
typed as �PAcontext�. Since there is not a class
or package that represents a use case diagram (just
the �useCaseModel�stereotype) the base classes for
�PAcontext�are not incremented.

Each use case used with performance evaluation
purposes could represent a step (no predecessor nei-
ther successor relationship is considered among them).
Then, they are stereotyped as �PAstep�, therefore
the base classes for this stereotype should be incre-
mented with the class UseCase. A load (�PAclosed-
Load� or �PAopenLoad�) can be attached to them.
Therefore, the base classes for these stereotypes will be
incremented with the class UseCase. Obviously each
one of these steps should be refined by other Perfor-
mance Context, i.e. a Collaboration.

The probabilities attached to each association be-
tween an actor and a use case, although not consis-
tently specified, represent the frequencies of usage of
the system for each actor (see p1, p2, p3 and p4 in Fig-
ure 3). They are useful to calculate the probability for
each Step, i.e. use case, using equation (1).

4 Statechart diagram

A UML statechart diagram can be used to describe
the behavior of a model element such as an object or an
interaction. Specifically, it describes possible sequences
of states and actions through which the element can
proceed during its lifetime as a result of reacting to
discrete events. A statechart maps into a UML state
machine that differs from classical Harel state machines
in a number of points that can be found in section 2-
12 of [12]. Recent studies of their semantics can be
found in [10, 5].

A state in a statechart diagram is a condition dur-
ing the life of an object or an interaction during which
it satisfies some condition, performs some action, or
waits for some event. A simple transition is a relation-
ship between two states indicating that an object in
the first state will enter the second state. An event
is a noteworthy occurrence that may trigger a state
transition [12].

A composite state is decomposed into two or more
concurrent substates (regions) or into mutually exclu-
sive disjoint substates [12].

4.1 Role of the statechart diagram concerning
performance

The profile proposes determining system’s perfor-
mance characteristics using scenarios, described by col-
laborations or activity graphs. By contrast, we have ex-
plored an alternative that consists in determining those
characteristics from an object’s life viewpoint. In order
to take a complete view of the system behavior, it is
necessary to understand the life of the objects involved
in it, being the statechart diagram the adequate tool
to model these issues. Then, it is proposed to capture
performance requirements at this level of modeling: for
each class with relevant dynamic behavior a statechart
will specify its routing rates and system usage and load.

The performance requeriments gathered by mod-
elling the statecharts for the system are sufficient
enough to obtain a performance model [10]. In this
case, all the statecharts togheter represent a Perfor-
mance Context where to explore all the dynamic situ-
ations in the system. A particular (and strange) situ-
ation arises when only one statechart describes all the
system behaviour, then it becames a Performance Con-
text.

Moreover, the statecharts that describe the system
(or a subset of them) togheter with a sequence diagram
constitute a Performance Context that can be used to
study parameters associated to concrete executions [1].

In a statechart diagram the useful model elements

<<PAstep>>
{PAdemand=
PAextDelay=

(’req’,mean,10,’ms’)
(’assm’,max,1,’ms’)}

(’assm’,mean,100,’kb/sc’)
<<PAstep>>
{PAdemand=
PAprob=0.7}

<<PAstep>>
{PAprob=0.3}

State1

State2

Do:activityA

State3

<<create>>

ev4

ev3

ev2

/class1.ev1

Do: activityB

Do: activityC

<<PAcloseLoad>>
{PArespTime=
(’req’,max,30,’ms’)}

[g1]ev1

[g2]ev1

Figure 4. Statechart with performance annotations.

from the performance evaluation viewpoint are the ac-
tivities, the guards and the events.

Activities represent tasks performed by an object
in a given state. Such activities consume computation
time that must be measured and annotated. Activity
graphs are adecuate to refine this level of the state-
chart.

Guards show conditions in a transition that must
hold in order to fire the corresponding event. Then
they can be considered as system’s routing rates.

Events labeling transitions correspond to events in a
sequence diagram showing the server or the client side
of the object. Objects can reside in the same machine
or in different machines for the case of distributed sys-
tems. In the first case, it can be assumed that the
time spent to send the message is not significant in the
scope of the modeled system. Of course, the actions
taken as a response of the message can spend compu-
tation time, that should be modelled. For the second
case, for those messages that travel through the net,
we consider that they spend time, then they represent
a load for the system that should be modeled.

4.2 Performance annotations

As proposed in [13] for the activity-based approach,
the open or closed workload (induced by the object
in our case) is associated with the first step in the dia-
gram, in this case the transition stereotyped �create�,
see Figure 4.

In pa-UML [9] the annotations for the duration
of the activities show the time needed to perform
them. If it is necessary, a minimum and a maxi-
mum values could be annotated. If different durations
must be tested for a concrete activity then a variable
can be used. Examples of these labels are {1sec},

{0.5sec..50sec} or {time1}. Using the profile, an ac-
tivity in a state will be stereotyped �PAstep�, then
the expressivity is enriched by allowing to model not
only response time but also its demand, repetition, in-
tervals, operations or delay, see Figure 4. The succes-
sor/predecessor relationship inherent to the �PAstep�
stereotype is not stablised in this case (causing that
the probability atribute is not used), firstly because in
a state at most one activity can appear [12], but also
because it is not of interest to set order among all the
activities in the diagram.

By stereotyping the transitions as �PAstep�, it is
possible:

A To consider the guards as routing rates. The prob-
ability of event success represents routing rates
in pa-UML by annotating such probability in the
guard. Using the profile, the attribute probabil-
ity could be used also to avoid indeterminism (i.e.
transitions labeled with the same event and out-
going from the same state), be aware that this at-
tribute does not provoke a complete order among
the succesor steps (transitions).

As an example, see Figure 4. The succesor steps
of the �create� transition will be transitions ev4,
[g1]ev1 and [g2]ev2, while the predecessor steps of
transition [g1]ev1 are transitions ev3, �create�
and /class1.ev1. Therefore, it is only necessary
to assign probabilities to transitions [g1]ev1 and
[g2]ev2.

B To model the network delays caused by the load of
the events (messages) that label them. The anno-
tations for the load of the messages in pa-UML are
attached to the transitions (outgoing or internal)
by giving the size of the message (i.e. {1K..100K}
or {1K}). Using the profile, the size of the message
can be specified as a step and the network delay
as a demand, see transition [g1]ev1 in Figure 4.

5 Conclusions

In this work, we have approached to the use case
diagram and the statechart diagram in order to study
how they can be used by a software engineer to iden-
tify (model) performance requirements. Moreover, this
approach keeps in mind the UML profile for schedula-
bility, performance and time, which today becames a
must for software performance engineers [3, 8]. The se-
quence and activity diagrams, addressed by the profile,
will be subject of future research under the viewpoint
followed in this work.

References

[1] S. Bernardi, S. Donatelli, and J. Merseguer, From UML

sequence diagrams and statecharts to analysable Petri net

models, in Inverardi et al. [6], ISBN 1-58113-563-7, pp. 35–
45.

[2] V. Cortellessa and R. Mirandola, Deriving a queueing net-

work based performance model from UML diagrams, in
Woodside et al. [15], ISBN 1-58113-195-x, pp. 58–70.

[3] M. de Miguel, T. Lambolais, M. Hannouz, S. Betge, and
S. Piekarec, UML extensions for the specification of latency

constraints in architectural models, in Woodside et al. [15],
ISBN 1-58113-195-x, pp. 83–88.

[4] F. DiCesare, G. Harhalakis, J. M. Proth, M. Silva, and
F.B. Vernadat, Practice of Petri nets in manufacturing,
Chapman & Hall, London, 1993.

[5] E. Domı́nguez, A.L. Rubio, and M.A. Zapata, Dynamic se-

mantics of UML state machines: A metamodelling perspec-

tiv, Journal of Database Management 13 (2002), 20–38.

[6] P. Inverardi, S. Balsamo, and Selic B. (eds.), Proceedings of

the Third International Workshop on Software and Perfor-

mance, Rome, Italy, ACM, July 24-26 2002, ISBN 1-58113-
563-7.

[7] C. Juiz, R. Puigjaner, and K. Jackson, Performance mod-

elling of interaction protocols in soft real-time design ar-

chitectures, Performance Engineering. State of the Art and
Current Trends, LNCS vol. 2047, Springer-Verlag, 2001,
pp. 300–316.

[8] J.L. Medina, M. Gonzalez, and J.M. Drake, MAST real-

time view: A graphic UML tool for modeling object-oriented

real-time systems, Proceedings of the 22nd IEEE Real-Time
Systems Symposium (RTSS 2001) (London, UK), IEEE
Computer Society Press, December 2001, pp. 245–256.

[9] J. Merseguer, Software performance engineering based on

UML and Petri nets, Ph.D. thesis, University of Zaragoza,
Spain, March 2003.

[10] J. Merseguer, S. Bernardi, J. Campos, and S. Donatelli,
A compositional semantics for UML state machines aimed

at performance evaluation, Proceedings of the 6th Inter-
national Workshop on Discrete Event Systems (Zaragoza,
Spain) (A. Giua and M. Silva, eds.), IEEE Computer Soci-
ety Press, October 2002, pp. 295–302.

[11] J. Merseguer, J. Campos, and E. Mena, Analysing inter-

net software retrieval systems: Modeling and performance

comparison, Wireless Networks (WINET) 9 (2003), no. 3,
223–238.

[12] Object Management Group, http:/www.omg.org, OMG

Unified Modeling Language specification, September 2001,
version 1.4.

[13] Object Management Group, http:/www.omg.org, UML

Profile for Schedulabibity, Performance and Time Speci-

fication, March 2002.

[14] C.U. Smith, M. Woodside, and P. Clements (eds.), Proceed-

ings of the First International Workshop on Software and

Performance, Santa Fe, New Mexico, USA, ACM, October
12-16 1998, ISBN 1-58113-060-0.

[15] M. Woodside, H. Gomaa, and D. Menascé (eds.), Proceed-

ings of the Second International Workshop on Software

and Performance, Ottawa, Canada, ACM, September 17-20
2000, ISBN 1-58113-195-x.

