
A Compositional Semantics for UML State Machines Aimed at Performance
Evaluation

�

José Merseguer, Javier Campos
Dpto. de Informática e Ingenierı́a de Sistemas

Universidad de Zaragoza, Spain�
jmerse,jcampos � @posta.unizar.es

Simona Bernardi, Susanna Donatelli
Dipartimento di Informatica
Università di Torino, Italy�
bernardi,susi � @di.unito.it

Abstract

Unified Modeling Language (UML) is gaining accep-
tance to describe the behaviour of systems. It has attracted
the attention of researchers that are interested in deriving,
automatically, performance evaluation models from sys-
tem’s descriptions. A required step to automatically pro-
duce a performance model (as any executable model) is that
the semantics of the description language is formally de-
fined. Among the UML diagrams, we concentrate on States
Machines (SMs) and we build a semantics for a significant
subset of them in terms of Generalized Stochastic Petri Nets
(GSPNs). The paper shows how to derive an executable
GSPN model from a description of a system, expressed as
a set of SMs. The semantics is compositional since the
executable GSPN model is obtained by composing, using
standard Petri net operators, the GSPN models of the single
SMs, and each GSPN model is obtained by composition of
submodels for SM basic features.

1 Introduction

Unified Modeling Language (UML) [13] is a semi for-
mal language that defines twelve types of diagrams, divided
into three categories: static, behavioural and diagrams to
organize application modules. Behavioural diagrams are of
five kinds: Use Case diagram, Sequence diagram (SD), Ac-
tivity diagram, Collaboration diagram and Statechart dia-
gram (SC). The SC describes possible sequences of states
and actions through which the modeled element can pro-
ceed during its lifetime as a result of reacting to discrete
events [13]. The SD specifies a set of partially ordered mes-
sages.

We consider discrete event systems whose behaviour is
�
This work has been developed within the projects: P084/2001 of the

Gobierno de Aragón, UZ00-TEC-03 of the Universidad de Zaragoza and
IST 25434 DepAuDE.

described by means of SC and SD and we aim at validat-
ing and evaluating the system behaviour by checking prop-
erties and computing performance on the SC and SD de-
scription. Since SC and SD are not meant for performance,
we translate them into Generalized Stochastic Petri Nets
(GSPNs) [1]. In this paper we concentrate on SC, while
the case of SD is tackled in a companion paper [3] where it
is also shown how the SD and SC descriptions can be used
synergically in the performance analysis step.

An SC maps into a UML State Machine (SM), a behav-
ioural package of UML, which specifies a set of concepts
that can be used for modeling discrete behaviour through
finite state-transition systems [13]: indeed in the UML de-
finition SC is seen as a graph representation of a SM, and
therefore the semantics of an SC is given in terms of SM.

We assume that a system is described by a set of SMs,
and we show in this paper how a GSPN can be generated by
composing the GSPN models of the single SMs. The GSPN
models are defined compositionally starting from the GSPN
models of each state together with its transitions. Also these
models are defined in terms of smaller GSPNs that model
the basic elements of a SM: entry and exit actions, do ac-
tivities, internal and outgoing transitions, events, deferred
events, etc. The translation is performed taking into ac-
count that the operational semantics of the PN system must
guarantee the “run to completion assumption” of UML, that
means that an event can only be dequeued and dispatched
if the processing of the previous current event is fully com-
pleted.

The main contribution of this paper is therefore to de-
fine the translation of a number of elementary SM concepts
into GSPN submodels and to define the formulas that allow
to obtain a translation of a set of UML SMs into a GSPN
model. So, we accomplish the future work proposed in [12]
to get a formal translation instead the set of translation rules
given in that work, then gaining the benefits of a formaliza-
tion.

Our translation is meant for performance evaluation, and
this justifies the choice of GSPNs as the target language of

ev2/act2

B

C

ev3/act3

act_en = A.entry
activity = A.doActivity
act_ex = A.exit
{tr5} = A.internal
tr5.trigger = ev5
tr5.effect = act5
{ev6} = A.deferrableEvent

{tr1} = ps.outgoing
{tr4} = B.outgoing
tr4.trigger = 0
tr4.effect = act4

A

act_en
DO:activity
act_ex
INT:ev5/act5
DEF:ev6 /act4

<<create>>/act1

ev7/act7

DO:activityB

DO:activityC

ps

f

Figure 1. A UML State Machine.

the translation, since there is a large number of performance
evaluation tools available for GSPNs. GSPNs being a lan-
guage with a formal semantics, we also get the equally im-
portant contribution of providing a formal semantics to a
subset of SMs.

From the richness of the SM package we have cho-
sen a subset of elements, in particular those that relate to
“flat” SMs, disregarding other important constructs such as
SynchStates, StubStates, CompositeStates, SubmachineS-
tates, Pseudostates (except initial states) that are mainly
meant for a hierarchical definition of the SMs, and to in-
troduce concurrency inside a single SM, instead of between
different SMs.

UML SMs are defined in [13] as an object-based variant
of Harel statecharts [5], with major differences identified
in [13]. Several semantics for Harel statecharts have been
proposed in the literature [14, 6, 18, 11], but none of them
in the context of performance evaluation. Other works have
been devoted to give formal semantics to UML SMs as [9,
8], but with model checking of properties as main goal.

A good survey of the different approaches for perfor-
mance evaluation based on UML diagrams can be found in
[2]: among them [7] is the one that shares most similarity
with this paper. In [7], GSPN models are produced starting
from UML diagrams: the main difference with our work is
that the construction in [7] is described only at an intuitive
level, through an example, and no systematic approach to
the translation is given.

In this paper we adopt the notation defined in [1] for
GSPN, but simplified to consider only ordinary systems.
A labeled ordinary GSPN (LGSPN) is a triplet

�����
���	��
�����

, where
�

is a GSPN ordinary system,
��������

�������
is the labeling function that assigns to a transition a

label belonging to the set
� �!�"�

and

#�%$&��� ��'(�!�

is
the labeling function that assigns to a place a label belong-
ing to the set

� ')�(�
.
�

-labeled net objects are considered
to be internal.

The rest of the article is organized as follows: Section 2

describes through an example, the UML informal seman-
tics of the subset of elements that we consider and estab-
lishes the three steps of the translation. Section 3 dis-
cusses the first step, the translation of a state and its associ-
ated transitions. Section 4 illustrates the second step, how
the GSPN models of the states are composed to produce
a GSPN model of a SM. Section 5 accomplishes the third
step, how a model of a system is obtained by composing the
GSPNs of the component SMs. Section 6 summarizes the
paper and discusses future extensions.

2 Translating UML State Machines into
GSPNs

A SM *,+.-0/�13241357682:9,;=<?>�5 is basically characterized by
states and transitions. In the following we describe the in-
formal semantics given by the UML SMs package, consid-
ering only those elements that are used for the definition of
“flat” SM. Figure 1 shows a flat SM that is used as a running
example in the paper.

The SM @BA in Figure 1 is composed of three simple
states C ��D��,E - �	F AHG�IKJ �	LNMOL J , an initial pseudostate, rep-
resented by a black dot, G�@0- $ @PJBQ�ROST@ LNMOL J , a final state,
represented by a bull eye UV-XW FZY[M I �	LNMOL J , and five out-
going transitions. The SM @\A starts its execution by firing
transition

L3]=^ -_G�@%` SaQ LZb S FZY�b which means the arrival of
the stereotyped event ced] J MOL Jgf , d] J MOL J � 1gh\i[`j1gh7<lkBkO5mhn-oqp J YrL ; as a consequence, action

M d L7^ � 1gh\i[`?5�s�5,9m1t-
C�d L3F S Y is performed. When in state C , the entry actionM d L J Y � Cu` J YrL3]av -wCxd L3F S Y is executed first; after, the ex-
ecution of the activity

M d L3F p FZL3v � Cu` ROS4C�d L3F p FgL3v -)Cxd L3F S Y
begins. Either outgoing transitions of state C or the internal
transitions as

L3]4y -)Cu` FgYrL J]aY[M I or deferrent events such as
J pOz -nCu` R%J4U�J]a]4M={ IKJ oqp J YrL @ may occur during the activity
execution. Outgoing transitions provoke an exit from the
state and an entry into the target state (possibly the source
state itself – self-loop outgoing transitions). Internal transi-
tions instead do not provoke a change of state and no entry
or exit action is executed. Deferred events are not triggered
in the present state, they are retained by the SM. Completion
of activity means the generation of the “completion event”
for state C . When an outgoing transition as

L3]a|
from

D
toE

has no trigger it means that it fires when the “comple-
tion event” for its source state

L3]a| ` @PSaQ] d\J � D
is generated

(they are called immediate outgoing transitions). After vis-
iting states

D
and

E
or just

E
depending on the triggered

events, @BA completes when arrives to its final state U .
Given a SM, the approach taken for its translation into a

LGSPN model consists of the following steps:

step 1 Each @}- �	F AHG�IKJ �	LNMOL J is modelled by a LGSPN
representing the basic elements of states and transi-
tions. Section 3 discusses this step.

π = 2
|sendsendt |ini_A1p

|act_enent

|compl_Ap3

|out_cet λ

π = 2
|sendsendt

|ini_A1p

|act_enent

|outout2t

|compl_Ap3

|defdef2t

|intint2t

|end_intintet

 (a) with activity and no
immediate outgoing transition

(b) no activity and no immediate
 outgoing transition

(c) with activity and immediate
 outgoing transition

(d) no activity and immediate
 outgoing transition

π = 2

|sendsendt |ini_A1
p

|act_enent

2|end_entry_Ap
|intint1t

|defdef1t |outout1t

|outout2t|compl_Ap3

|activitydot

|defdef2t

|intint2t

|end_intinte
t

π = 2

|sendsendt
|ini_A1p

|act_enent

|compl_Ap3

|outout1t

|intint1t

|defdef1t

|end_intintet

|out_cet λ

2|end_entry_Ap

|activitydot

|loop_Aloopt |loop_Aloopt

|loop_Aloopt|loop_Aloopt

Figure 2. The LGSPN basic systems.

step 2 The initial pseudostate and the final states are trans-
lated into LGSPN subsystems to be composed with
those of the previous step to produce a LGSPN model
of the entire SM. Section 4 discusses this step.

step 3 If the system is described through a set of SMs then
compose the LGSPN subsystems of the SMs and de-
fine the initial marking. Section 5 discusses this step.

3 Translation of simple states

A state *q-0/�1324135 models a situation during which some
invariant condition holds. The invariant may represent a
static situation such as an object waiting for some external
event to occur. However, it can also model dynamic condi-
tions such as the process of performing some activity. As
we see in Figure 1 two special cases of states are consid-
ered in a “flat” SM: simple states, those that do not have
substates (A, B and C), and final states. Some of the asso-
ciations involving the class /�1324135 are heavily related with
the class

� 9\1�<��T> . Actions are specifications of executable
statements and can be realized by: sending a message to
an object (actions belonging to the subclass ��2���� � 9\1�<��T> or
/�5\>�� � 9\1�<��T>) or modifying a link or a value (the rest); they
are the following:

	 5m>�1�h�
 � /�1324135 ��� � 9\1�<��T> , associates to * an optional� 9\1g<��4> that is executed whenever * is entered regard-
less of the transition taken to reach * .

	 5�%<?1 � /�1324135 ��� � 9\1g<��4> , associates to * an optional� 9\1g<��4> that is executed whenever * is exited regard-
less of which transition was taken out of * .

	 ��� � 9\1�<��P<?1�
 1 � /�1324135 ��� � 9\1�<��T> , associates to * an
optional

� 9m1g<��4> that is executed while being in * .
1In the following �������� .

Moreover, in order to understand the semantics of a state,
the following associations must be mentioned:

	 <?> 135\h7>�2�� � /�1Z2T1Z5 ����� h�24> *7<?1g<��4> , associates to * a set
of transitions that, if triggered, occur without causing
a state change.

	 ��� 1?k��4<?>Ok � /�1Z2T1Z5���5\h71Z5�� ����� h�2T> *7<?1�<��T> , given a
state *q- /�1324135 playing a /�1324135���5mh7135�� role, associates
a set of transitions that, if triggered, occur causing a
state change.

	 �:5! m5\h7h�2�"�� 5$#%�a5\> 1 � /�1324135 ��� #%�a5\> 1 , associates to * a
set of events that can be retained in it.

3.1 Entry actions and activities

In the following, we give a representation into LGSPN
formalism for the entry actions and the activities in a sim-
ple state, such as state C of @\A depicted in Figure 1. The
resulting LGSPN will include also “interface” transitions to
compose itself with the rest of the nets that interpret C , and
interface transitions that will be useful for the composition
of C with the rest of the states in @BA ; for this reason we
call this net “basic”. The last kind of information contained
in the net refers to immediate outgoing transitions, that is
transitions without triggering events. An immediate outgo-
ing transition

L3]
, such as the one connecting state

D
to stateE

in Figure 1, is characterized by the following restriction:L3] - � `���� 1?k��4<?>Ok and
L3] ` 1gh7<lkPk%5\h �'&

. Note that if a state has
got several immediate outgoing transitions then the choice
of which transition to execute is non deterministic, other-
wise guards should be introduced to solve the conflict.

Depending on whether an activity exists or not and
whether immediate outgoing transitions exist or not in the
state, a different translation is required for the correspond-
ing state. Figure 2 shows the four possible translations of
a state into LGSPN: net objects are denoted as

Y[M AnJ)(I M { JaI
where

Y[M AnJ is the name of the object and I M { JaI is the label.
Let us consider the more complex case with activity and

without immediate outgoing transitions of Figure 2(a): tran-
sition

L+*-,,/.
puts a token in place G10 meaning the entry in

state C due to outgoing self-loop transitions;
L�*-,�,2.

may exist
or not depending whether there exist self-loop transitions.
Firing of transition

L3/4
represents the execution of entry ac-

tion
� `?5\> 1gh�
 that, being an action, can belong to any of

the subclasses of class
� 9\1g<��4> . In particular, if an action

belongs to either the subclass /�5\>�� � 9\1�<��T> or to the sub-
class ��2���� � 9\1�<��T> it will generate the corresponding events.
The interpretation of these particular cases will be given
when transitions are translated; now, for simplicity, we as-
sume that actions do not belong to any of these subclasses.
A token in place G�5 represents action termination as well
as the beginning of the activity

� `6�7� � 9m1 modeled by the

timed transition
L � , . The computation of its rate depends on

stereotyped annotation in the SM largely described in [12]
and surveyed in [2]. The “completion event” for the state is
generated when the activity completes and it is represented
by a token in place G�� .

The rest of the elements in the LGSPN are interface tran-
sitions which represent deferred events, outgoing and inter-
nal transitions. Deferred events are accepted either when
the activity is in execution or after the “completion event”
has been generated; the reception of those events is modeled
by transitions

L � 3�� 0 and
L � 3�� 5 , respectively. Deferred events

are sent back to the SM event queue just before the exit
action is executed: the sending is therefore represented by
transition

L��+3/4 � characterized by an higher priority (� �	�)
and by inhibitor places G 5 � G � . Internal and outgoing transi-
tions, as well as deferred events, are accepted either when
the activity is in execution (modeled by transitions

L�
 4�� 0
and

L ,��� 0 , respectively) or after the “completion event” has
been generated (modeled by transitions

L�
 4�� 5 and
L ,��� 5 , re-

spectively). The termination of internal transitions does not
cause neither an entry to the current state nor an exit to the
current state and it is modeled by

L
 4���3
.

The LGSPN of Figure 2(c) models the case of a state
with both the activity and immediate outgoing transition(s);
it differs from the LGSPN of Figure 2(a) since transitionsL � 3�� 5 � L�,��� 5 and

L
 4�� 5 do not appear, while transition
L��/3

is
added to represent the triggering of the “completion event”.

In order to give the definition of the LGSPN basic system
for a state C�- � F AHG�I�J �	LNMOL J of the SM that encompasses
the four cases of Figure 2 we need the following emptiness
indicator functions:

� ��� � ����� if
� � &

^
if
���� &����! � ���0� � ^ � � ���0�7�

where
�

is a subset of class instances. Moreover, by abuse
of notation, we assume that �#" � �'&

and
^ " � � �

.
A basic system for state C of the SM @\A is a LGSPN���%$& � ��� $& �
 $& �� $& � characterized by the following set
of transitions:
� $& � ' L 3/4)(� � � Cu` R%S4Cxd L � ' L � ,�(�� � C ` FZYrL J]aY[M I ��* � � Cu` R%S4Cxd L � ' L�
 4�� 0 ��L�
 4���3�(�� �,+.- �0/=� ' L
 4�� 5 ��L
 4���3 (21 � � � Cu` SaQ LZb S FZY�b �* � � C ` ROS4C�d L � ' L ,��� 0 (� � �3+.- � / � ' L ,��� 5 (1 �� � C ` ROJ4U�J]P]4M { I�J oup J YrL ��* ' L���3/4 � (�� � C ` ROS4C�d L � ' L � 3�� 0 (� � �3+.- � / � ' L � 3�� 5 (1 �� �,+.- � * ,,/. � ' L * ,,/.4(� � �,+.- � / � ' L �/3�(�

where
+.- � *-,,/. �5' L3] -�C ` SaQ LZb S FZY�b�� L3] ` @PSaQ] dmJ � L3] ` LNMO]Pb J L (

and
+.- �6/ �7' L3] -nCu` SaQ LZb S FZY�b�� L3] ` L3]PFgbOb J] �'& (`

The set of places is
$ $& �8' G 0 � G � (� � � Cu` R%S4Cxd L � ' G 5 (.

The input, output and inhibitor functions are respectively:

9 $& � L � �;:<= <>
' G 0 (if

L � L�3/4' G 5 (if
L - ' L � ,a� L � 3�� 0 � L
 4�� 0 ��L�,��� 0 (' G � (if
L - ' L � 3�� 5 � L
 4�� 5 � L�,��� 5 � L��/3 (&

otherwise

+ $& �KL � � :<<<<<= <<<<<>

' G 0 (if
L � L/* ,,/.' G�5 (if
L - ' L � 3�� 0 (� � � C ` ROS4C�d L � ' L�3+4[� L
 4���3 (' G � (if
L - ' L � ,a��L � 3�� 5 (� � � C ` ROS4C�d L � ' L�3+4[� L
 4���3 (&

otherwise? $& � L � ��� � � Cu` R%S4Cxd L � ' G 5 (� ' G � (if
L � L��+3/4 �&

otherwise

The priority and the weight functions are respectively:

@A$& �KL � �CB � if
L � L � ,�

if
L � L��+3/4 �^

otherwise

�ED $& �KL � �GF] � , if
L � L � ,^

otherwise

where
] � , is the rate parameter of the timed transition

L � , .
The labeling functions for places and transitions are:

 $& � G � �HB FZYrF C if G � G 0
J Y R J YrL3]av C if G � G 5
dmSaAHG�I C if G � G �

 $& �KL � �
:<<<<<<<<<<<<<<<<<= <<<<<<<<<<<<<<<<<>

IKS4S,G C if
L � L *-,�,2.

if
L - � � Cu` J YrL3]Pv � ' L 3/4)(M d L J Y if
L - � � Cu` J YrL3]Pv � ' L 3/4)(JIM d L J Y � Cu` J YrL3]av ` Y[M AwJM d L3F p FZL3v if
L � L � , IM d L3F p FZL3v � Cu` R%S4Cxd L ` Y[M AnJ

@PJ Y R if
L � L��+3/4 �

ROJaU if
L - ' L � 3�� 0 � L � 3�� 5 (

J Y R FZYrL if
L � L
 4���3

FZYrL
if
L �	' L
 4�� 0 � L
 4�� 5 (

SaQ L if
L �	' L�,��� 0 � L�,��� 5 (

SaQ L if
L � L �/3

where, by abuse of notation, C � Cu` Y[M AwJ .
Finally, the initial marking function is defined as KOG -$ $& �AL $,M& � G � � � `
3.2 Deferred events

An event 5 - #%�a5\> 1 is a specification of a type of ob-
servable occurrence. The occurrence that generates an event
instance is assumed to take place at an instant in time with
no duration.

A state may specify a set of event types that are can-
didates to be retained by the SM if they trigger no tran-
sition in that state. Let us give a representation into the

(a) Outgoing transitions

p6|end_act2_A_ev2

p3|A_accept_ev2

t2|act2

t3|act_ex

t1|out
p1|e_ev2

p7|ini_B

p2|ack_ev2

p6|end_act2_A_λ

p3|A_accept_λ

t2|act2

t3|act_ex

t1|out_λ

p7|ini_B

(b) Outgoing immediate
transitions

(c) Outgoing self-loop
transitions

t4|loop_A

p6|end_act2_A_λ

p3|A_accept_λ

t2|act2

t1|out_λ

(d) Outgoing immediate
self-loop transitions

p6|end_act2_A_ev2

p3|A_accept_ev2

t2|act2

t3|act_ex

t1|out

p1|e_ev2

p7|τ

p2|ack_ev2

t4|loop_A

t3|act_ex

p7|τ
(g) Initial pseudo-states

p4|ini_A

p3|ps_accept_create

t2|act1

t1|out

p1|ini_ps
p2|create

p1|ini_f

(h) Final states

(e) Internal transitions

p4|end_act5_A_evx5

p3|A_accept_ev5

t2|act5

t3|end_int

t1|int

p1|e_ev5

p2|ack_ev5

(f) Deferred events

t1|send p1|e_ev6
p2|mbox_ev6

t2|def

π = 2

t4|send

Figure 3. Translation of the elements in a simple state, the initial state and the final state into LGSPNs.

LGSPN formalism of a deferred event, such as J pOz -� `��:5! m5mh7h�27" �j5�#%�45\> 1�* of the SM depicted in Figure 1. Fig-
ure 3(f) shows the translation of the deferred event into a
LGSPN. Note that the size of the set

� `6�%5� m5\h7h�27" � 5$#%�45m>�1K*
in the example is one; if it were larger then there would ap-
pear a net as the one in Figure 3(f) for each event in the
set.

A token in place G 0 labelled 5 5�� � represents an instance
of an event of type 5 � � in @BA , it will not trigger any tran-
sitions in state C , therefore it will be queued by transitionL 5 into place G 5 labelled + "$��� 5�� � until a state is reached
where either the event is no longer deferred or where the
event triggers a transition. The LGSPN in isolation does
not show the decisions taken to guarantee the behaviour de-
scribed for the deferred events, this behaviour will be un-
derstood when the LGSPN is composed with the rest of the
systems for C when inhibitor arcs are added.

A formal definition of the LGSPN can be derived simi-
larly to what was previously done for basic states.

3.3 Transitions

A transition 1ghu-0*7+w`j1gh�24> *,<?1g<��4> represents a com-
plete response of *7+ to a particular event instance
5 � � 1�h=`j1�h7<lkPkO5mh - #%�45\> 1 . Firing of a transition can pro-
voke an action

M d L � L3] `?5�s�5,9m1 -(C�d L3F S Y to be performed.
Given a simple state C there may exist two kinds of tran-

sitions: internal transitions, belonging to the set
� `j<?> 135mh7>�2�� ,

and outgoing transitions, belonging to the set
� `���� 1?k7�T<?>Ok .

Depending on whether a transition is internal, such as
transition

L3]Ty
of Figure 1, or outgoing, such as transitionL3] �

of the same Figure, a different translation into LGSPN
is required. Figure 3(e) depicts the translation into LGSPNs
of the internal transition

L3]Ty
, Figure 3(a) depicts the trans-

lation into LGSPNs of the outgoing transition
L3] �

. The ad-
ditional pictures (b), (c), and (d) are modifications of tran-
sition

L3] �
to show the case of outgoing immediate transi-

tions, outgoing self-loop and outgoing immediate self-loop,
respectively.

Let us consider first the case of the internal transitions.

A token in place G 0 with label J J p y represents an instance
of an event of type J p y . Places labeled with event names
represent event queues (observe that no policy is associated
to the place, apart for the choice of the term “queue”). Place
G 0 triggers the transition

L 0 meaning that the event has been
accepted and therefore tokens in places G 5 and G � are added.
A token in place G 5 with label

M d�� J p y means the acknowl-
edge of the arrival of the event J p y to the action which gen-
erates the event, but actually there is no way to determine
whether the event has been generated by a synchronous or
asynchronous action, the only possibility is that each transi-
tion that consumes an event J p�� puts a token into the place
of label

M d�� J p�� . Place G�� inhibits transition
L��

, that when
composed with the system for the deferred events means
that they cannot be dequeued until the internal transition
has been accepted. Transition

L 5 is labelled with the effectM d L y of the transition
L3]Ty

.
Let us consider the case of the outgoing transition

L3] �
modelled in Figure 3(a). The translation given for the pre-
vious case is valid with slight changes: the exit action of
C is represented by transition

L � labeled
M d L J � (if there is

no exit action then transition
L � is labeled

), transition la-

beled J Y R FZYrL is replaced by other transition labeled
M d L J �

(that represents
� `?5�%<?1), finally the interface place

FZYrF D
has been added, it represents the entrance in the state

D
.

The other cases of outgoing transitions are just minor vari-
ations of this one.

A LGSPN system
��� ,& � ��� ,& ��
 ,& �, ,& � for outgoing

transition - illustrated in Figure 4(a,b,c,d) - is characterized
by the following sets of transitions and places, respectively:

� ,& �7' L 0 � L 5 � L � (� � �3+.- � *-,,/.:� ' L � (�
$,& � � � 1ghO`j1gh7<lkBkO5mh � ' G 0 � G�5 (� ' G � � G	� � G	
 (

where, � �g� is the emptiness indicator function and
+.- � * ,,/.

is the set of the outgoing self-loop transitions of state C
as defined in the previous subsection 3.1. For brevity, we
omit the other net elements that can be easily derived as in
subsection 3.1.

Depending on whether an action
M d L belongs to� J Y R%Cxd L3F S Y � E M IKI�C�d L3F S Y or not, one or more events may

��� � �����	��

 ��� � ��������� ������� � ������������ � ��� ��! #"�����$�%�������&' !()� %�&'�
*�+ , -�./�0 *�1 1 2�+ , 3 4�5�6�798#5�:�2�+ , 3 4�5

;�< = >�?�@	;�A A B�< = C D�EF�G�H�;�< = >�I C J�B!J#K�E�<�L�M�D�E�D�N'J!OQP';�A J�R
t2’|E_act2

p5|e_evx

t2|S_act2

p5’|ack_evx
p4

p5|e_evx

t2|act2

t2|act2

Figure 4. Different types of actions.

or may not be generated. For simplicity, we assume that at
most an event may be generated: it is trivial to extend the
translation in case of more events. Moreover,

M d L is charac-
terized by the attribute isAsynchronous that allows to spec-
ify if the dispatched stimulus is asynchronous or not, where
as synchronous means that the action will not be completed
until the event eventually generated by the action is con-
sumed by the receiver. Figure 4 shows the different ways
of translating an action, observe in particular the case of
synchronous call actions that require an acknowledge, and
therefore for each event place an acknowledge place has
been added.

3.4 The model of a simple state

The LGSPNs obtained in the previous sections can be
composed using the associative operator of superposition of
places and transitions based on non injective labeling func-
tions defined in [3],

(�(SUTQV SUW
� �YX � $[Z]\ �YX � $[Z � �^X � $[Z

where
� � � � ' are the sets of transition and place labels, re-

spectively. The resulting LGSPN
��� � � �g� � �
 � �, � �

inter-
prets a simple state @ together with its outgoing transitions.
Obviously the interest of this net is not to perform any kind
of analysis but to establish the fine grain unit to compose
SMs (together with the LGSPNs for the initial pseudostate
and the final states).

Let
oup

be the set of events produced/consumed by @
and

� J p=' the set of labels of event and event acknowledge
places,

� J p=' � ' J J p�� � KrJ p�� - oqp (`_ ' M d�� J p�� � K�J p�� -oqp (
. Let

�	LNMOL J4@ be the set of the states of the SM, and� @ LNMOL J ' the set of labels of places representing the entrance
into states,

� @ LNMOL J ' �7' FZYrF LNMO]Pb J L7� K LNMO]Pb J L - �	LNMOL J4@ (.
According to the translations defined up to now, given a

state @ with a internal transitions, � deferred events, I outgo-
ing self-loop transitions and Icb outgoing transitions we get
aed �fd Igd I�b�d ^ LGSPN models that need to be combined
to get a model of the state @ . Figure 5 shows an interface
view of the five kinds of models that are composed: (a) is
the basic net model

DhZ
, (b) is the internal transition model9 Z(�

, (c) is the deferred event model i o Wkj , (d) is the out-

going transition model
+.- ��.

, (e) is the outgoing self-loop
transition model

+.- � �ml
.

The composition proceeds in two steps: first we compose
submodels of the same “type” and then the resulting models
are composed together,9 Z)� �
on 0 V#p#p#V q((S 39r W 9 Z(�
 � i o W � j n 0 V#p#p#V s(�(S 39r W i o Wmj �

+.- � �
. n 0 V#p#p#V *�t(�(S 39r WQu S � ��v ��3 W +.- � .=� +.- � � �

l n 0 V#p#p#V *(�(S 39r W
+.- � �wl

where ((

on p#p#p

is the
Y

-ary extension of ((.
Finally,

��� � � �g�6�a��
 �P�, �\�
is the LGSPN model represent-

ing state @ and it is defined by:
��� � � � ��� 9 Z(� ((S 39r W i o W

� (�(S 39r W
+.- � ��� ((S 39r W

+.- �x�
((S 39r W V S �'l T DxZ

where
DxZ

is the LGSPN basic system for state @ and� L3] � �8' FZYrL7� J Y R FZYrL7� R%J4U � @PJ Y R � SaQ L7� IKS4S,G @ (.
Figure 5(f) shows an interface view of

��� �
, while the

net
��� �

for state @ equal to C is shown in Figure 6.

4 Translation of a State Machine

In this section, we address the second step of our pro-
posal by defining LGSPNs for the initial and final states
and composing them with the LGSPNs for the simple states.
The resulting net is the interpretation of the whole SM.

4.1 Initial and final states

An initial pseudostate depicted by a black dot means
the start point of the SM. At most one initial pseudostate
can appear in a “flat” SM , let us name it G�@ , such asy *q-{z *\5 ���7�a*71324135 of the SM depicted in Figure 1. More-
over, the pseudostate can have at most one outgoing transi-
tion,

L3] - G�@%` SaQ LZb S FZY�b , without trigger or with a trigger
stereotyped c d] J MOL JKf . It is possible to associate an effectM d L - 1ghO`?5�s�5,9m1 to the outgoing transition. No incoming
transitions are allowed for initial pseudostates.

Figure 3(g) shows the translation into a LGSPN of G�@
and its outgoing transition. It results into a LGSPN

��� .�� �
��� .��a��
�. �P�, .��m�

.In case the effect of the transition is left out
then transition

L 5 and place G � are removed, and in case of
outgoing transition is not stereotyped place G 5 is removed.

A token in place G 0 represents a resource waiting for an
instance event of type “create” (a token in G 5) to fire tran-
sition

L 0 that starts the SM. After completion of the action
(firing of transition

L 5), a token in place G � means the com-
pletion of the initial pseudostate therefore the entry into the
state C .

send

intdef

out

def int

end_int

loop_s ini_s

......
e_ev1 e_evn

......
ack_ev1 ack_evn

end_int

e_evi

ack_evj

int

BN
INT

ini_target

e_evi

ack_evj

out

OUT

loop_s

e_evi

ack_evj

out

OUT_S

e_evi

DEF

def

send

(a) basic net (b) internal transitions (c) deferred events (d) outgoing transitions (e) self-loop transitions
ini_target1 ini_targetK

ini_s

......
e_ev1 e_evn

......
ack_ev1 ack_evn

State_s

......

(f) simple state
out

Figure 5. (a..e) LGSPN components for a state. (f) LGSPN representing a state.

p13|end_act2_A_ev2

p12|A_accept_ev2

t15|act_ex

t14|act2

t10|out

p10|ack_ev2
p9|e_ev2

p9|end_act5_A_evx5

p8|A_accept_ev5

t13|act5

p7|ack_ev5
p6|e_ev5

p2|end_entry_A

p1|ini_A

t2|act_en

t3|activity

p3|compl_A

t4|def

t6|send

p4|e_ev6p5|mbox_ev6

t5|def

t9|end_int

t7|int

t8|int

p11|e_ev3
p12|ack_ev3

t11|out

p16|end_act3_A_ev3

p15|A_accept_ev3

t18|act_ex

t17|act3

t11’|out

t10’|out

p14|ini_B p17|ini_C

Figure 6. LGSPN of the state A in Figure 1.

A final state is a special kind of state that can appear
in a flat SM meaning that the entire SM has completed; a
final state, like UV-XW FZY[M I �	LNMOL J for the SM of Figure 1,
is depicted by a bull eye. Figure 3(h) shows the translation
into a LGSPN of the final state U , i.e., a single place G 0 .
4.2 The model of a State Machine

The LGSPN that interprets the whole SM is obtained as
follows. Let

�	LNMOL J4@ be the set of states of the SM @BA (in-
cluding initial and final ones),

� @ LNMOL J ' the set of labels of
the initial places of the LGSPN models of the states. Let

oqp
be the set of events produced/consumed by @BA ,

� J p ' the
set of labels of event and event acknowledge places. The
LGSPN model of @BA is obtained by composing the models��� �

as follows:

��� �
�
� �

���
��v ��3��
((S 3�r W u S � ��v ��3 W ��� �

Figure 7 shows the LGSPN
��� �

� that represents the inter-
pretation of the SM in Figure 1.

5 System translation

This section explains how to create an analysable model
for the system assuming it is described as a set of SMs. By
analysable model we mean a GSPN model that includes the
behaviour of the SMs that describe it on which we can com-
pute logical properties and performance results: we have

p18|end_act2_A_ev2

p17|A_accept_ev2

t15|act_ex

t14|act2

t10|out

p10|ack_ev2
p9|e_ev2

p9|end_act5_A_evx5

p8|A_accept_ev5

t13|act5

p7|ack_ev5
p6|e_ev5

p2|end_entry_A

p1|ini_A

t2|act_en

t3|activity

p3|compl_A

t4|def

t6|send

p4|e_ev6p5|mbox_ev6

t5|def

t9|end_int

t7|int

t8|int

p11|e_ev3

p12|ack_ev3

t11|out

p21|end_act3_A_ev3

p20|A_accept_ev3

t18|act_ex

t17|act3

t11’|out

t10’|out

p27|end_act4_B_λ

p26|B_accept_λ

t27|λ

t26|act4

p24|end_entry_B

p23|ini_B

t23|λ

t24|activityB

p25|compl_B

t25|out_λ

p33|end_act7_C_ev7

p32|C_accept_ev7

t34|λ

t33|act7

p30|end_entry_C

p29|ini_C

t30|λ

t31|activityC

p31|compl_C

t32|out

p37|ini_f

p35|e_ev7
p36|ack_ev7

π = 2

p15|ps1_accept_create

t21|act1

p13|ini_ps

t20|out

p14|create

Figure 7. LGSPN of the SM in Figure 1.

therefore to define how the LGSPN components are com-
posed, what is the initial marking and the performance in-
dices.

We assume that the system is described by
�

SMs
' @BA 0 � `\`B` � @BA s (which interact by exchanging

synchronous and asynchronous messages through ac-
tions of the type � 2 ��� � 9m1g<��4> and /�5\>�� � 9\1�<��T> . Let'B��� �

� 0 � ` `j` � ��� � ��� (be the LGSPN models of the
�

SMs
produced according to the translation given in step two.

A complete SM model for the system is obtained by
superposition over event and event acknowledge places
of the

�
SMs. Let

oup j be the set of events pro-
duced/consumed by @\A j and

� J p='j the set of la-
bels of event and event acknowledge places,

� J p 'j �' J p�� � KrJ p�� - oqp j (_ ' M d�� J p�� � KrJ p�� - oqp j (, and� J p=' � _ j ��� 0 V#p#p#p#V �
	 � J p='j , then the complete model of
the

�
SMs is given by the LGSPN

��� b � j n 0 V#p#p#V s((S 3�r W
��� �

� j

��� b can contain acknowledge places that are sinks (indeed
all transitions that represent the consumption of an event
send an acknowledge back since it is not defined if the event
is synchronous or asynchronous), but if the event is gen-
erated by an asynchronous action no acknowledge is ever
consumed and therefore the corresponding places should be
removed. Let

$ v � s be the set of sink places with label of
type

M d�� J p�� , then the model is,
���_� ��� b � $ v � s , where

C �%D
removes from net C all places in

D
and their incidence

arcs.
The initial marking for the LGSPN will be defined in two

steps:

	 The places that represent the initial pseudostates of the
�

SMs will be marked. For those SMs without initial
pseudostate, one should be chosen for this purposes.
These tokens represent the population (resources) of
the system.

	 The event or the set of events that launch the system
is selected: the place/s that represent queues for these
events are marked so that each token represents an
event instance.

From the GSPN, system performance indices should be de-
fined. The usual way to do that is to define proper reward
functions [1] to compute throughput of transitions (repre-
senting speed of the system), average marking of places
(representing utilization of a resource or average occupa-
tion of a buffer), or any other measure of interest for the
particular system.

6 Conclusions

In this paper we have presented a translation of UML
SMs into GSPNs. This allows the qualitative and quantita-
tive analysis of systems that are described using UML SMs
(or their graph-based representation called SC) by means of
GSPN tools. The translation, being automatic, may contain
unnecessary elements that contribute to increase the “state
space explosion poblem”, then additional work to define
equivalent models [15] of reduced size is necessary.

The translation, being compositional, should be easy to
implement, since only the basic elements need to be trans-
lated, while tools already exist that implement the compo-
sition operators used in the paper, for example the program
algebra associated with the GreatSPN tool [4]. We have
implemented a prototype [10] for the UML Activity dia-
grams, that also are based on the semantics of the SMs.

There are a number of features of SM that we have
not considered: among them compound states and concur-
rent regions. The extension may not be trivial: as pointed
out in [16] some of the hierarchical constructs of SM may
lead to ambiguity and destroy compositionality. The work

in [16] also indicates the restrictions that should be posed
to avoid the problems and we intend to adhere to them. An-
other feature that we have not considered are guards: in SM
guards may be associated to transitions to condition their
execution. A guard is a boolean expression, usually over
the values of attributes of the object modelled by the SM, if
indeed the SM models the behaviour of an object. Since we
have not considered objects and attributes we have omitted
guards as well. This implies that our analysis is of the so
called “static” type, as discussed in [17].

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis. Modelling with Generalized Stochastic
Petri Nets. John Wiley, 1995.

[2] S. Balsamo and M. Simeoni. On transforming UML models
into performance models. In Transfs. in UML, ETAPS’01.

[3] S. Bernardi, S. Donatelli, and J. Merseguer. From UML se-
quence diagrams and statecharts to analysable Petri net mod-
els. In WOSP’02. ACM. To appear.

[4] The GreatSPN tool. http://www.di.unito.it/˜greatspn.
[5] D. Harel. Statecharts: a visual formalism for complex sys-

tems. Science of Computer Programming, 8(3):231–274,
1987.

[6] D. Harel and A. Naamad. The STATEMATE semantics of
the statecharts. ACM Transactions on Software Engineering
and Methodology, 5(4):293–333, 1996.

[7] P. King and R. Pooley. Using UML to derive stochastic Petri
nets models. In UKPEW’99, pages 45–56.

[8] D. Latella, I. Majzik, and M. Massink. Towards a for-
mal operational semantics of UML statechart diagrams. In
FMOODS’99. Kluwer.

[9] J. Lilius and I. Paltor. The semantics of UML state machines.
Tech. rep. no.273 - Turku Centre for CS, Finland, 1999.

[10] J. López-Grao, J. Merseguer, and J. Campos. Performance
engineering based on UML and SPN: A software perfor-
mance tool. In ISCIS XVII. To appear.

[11] A. Maggiolo-Schettini, A. Peron, and S. Tini. Equivalences
of statecharts. LNCS 1119, pages 687–702. Springer.

[12] J. Merseguer, J. Campos, and E. Mena. Performance eval-
uation for the design of agent-based systems: A Petri net
approach. In SEPN, within ICATPN’00, pages 1–20.

[13] OMG. Unified Modeling Language v1.4, Sept. 2001.
http:/www.omg.org.

[14] A. Pnueli and M. Shalev. What is in a step: On the semantics
of statecharts. LNCS 526, pages 44–264. Springer.

[15] L. Pomello, G. Rozenberg, and C. Simone. A survey of
equivalence notions for net based systems. LNCS 609, pages
410–472. Springer.

[16] A. Simons. On the compositional properties of UML state-
chart diagrams. In ROOM’00.

[17] R. Taylor. A general purpose algorithm for analyzing con-
current programs. Communication of ACM, (26), May 1983.

[18] A. Uselton and S. Smolka. A compositional semantics for
statecharts using labeled transition systems. LNCS 836,
pages 2–17. Springer.

