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Abstract. Importance of performance evaluation at first stages of the
software development life-cycle has been progressively rising. We believe
that the need for integration of formal models in the software engineering
process is a must in order to apply well-known analysis techniques to
software models. In previous papers it has been stated our proposal of
extension of UML semantics for some diagram types and a complete
method to translate them into GSPN models. Here we will focus on
activity diagrams: a new translation method for them will be presented,
while we explain their link with other UML diagrams such as statecharts
so as to amplify the expressivity at system description. Last but not
least, our CASE tool prototype will be introduced. As it will be seen,
every modeling aspect for these diagrams will be covered and, thanks to
it, the translation process will be automatically performed.
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1 Introduction

Unified Modeling Language (UML) [7] is a semi formal language developed by
the Object Management Group [7] to specify, visualize and document models of
software systems and non-software systems too. UML defines three categories
of diagrams: static diagrams, behavioural diagrams and diagrams to organize
and manage application modules. Behavioural diagrams are intended to describe
system dynamics, therefore they play a prominent role for us since the objective
of our works is the performance evaluation [20] of software systems at the first
stages of the software development process [23, 25]. These diagrams belong to five
kinds: Use Case diagram, Sequence diagram, Activity diagram, Collaboration
diagram and Statechart diagram.

Our proposal consists in introducing new syntactical elements in UML dia-
grams to model performance concepts. By doing so, the software engineer can
model behavioural, functional and performance requirements in a consistent
fashion. In this paper the role played by the Activity diagram (AD) for the
� This work has been developed within the project P084/2001 of the Gobierno de
Aragón, and the project UZ00-TEC-03 of the Universidad de Zaragoza.
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performance evaluation of software systems is fully analyzed under the perspec-
tive of this proposal [19]. Since UML diagrams are not meant for performance
evaluation and moreover its semantics is “informally” defined, we translate them
into Generalized Stochastic Petri nets (GSPN) [1], gaining a formal semantics
for them and besides an analyzable model. Obviously, the translation implies
taking decisions on the interpretation of the diagrams.

So far we have dealt with the Sequence diagram (SD) (by means of the UML
collaborations package) and the Statechart diagram (SC) [6] (by means of the
UML state machines package). In the case of the AD we base our interpretation
on the fact that ADs are suitable for internal flow process modeling, therefore
they are relevant to describe activities performed by the system, usually ex-
pressed in the SC as doActivities in the states.

In this paper we investigate the key concepts to describe performance issues
in the context of the AD and we give a formal semantics for the AD in terms of
GSPN, compatible with that proposed for the SD and the SC in [6]. Furthermore,
we briefly overview our prototype tool, which implements both aspects: its GUI is
designed as a front end to model annotated ADs whereas the tool itself constructs
their translation into GSPNs in order to analyze them with the GreatSPN tool
[12].

We adopt the notation defined in [1] for GSPNs, but simplified to consider
only ordinary systems (Petri nets in which arcs have weight at most one). A
GSPN system is a 8-ple S = (P, T,Π, I,O,H,W,M0), where P is the set of
places, T is the set of immediate and timed transitions, P ∩T = ∅; Π : T −→ IN
is the priority function that maps transitions onto natural numbers representing
their priority level, by default, timed transitions have priority equal to zero;
I,O,H : T −→ 2P are the input, output, inhibition functions, respectively, that
map transitions onto the power set of P ; W : T −→ IR is the weight function
that assigns real (positive) numbers to rates of timed transitions and to weights
of immediate transitions. Finally, M0 : P −→ IN is the initial marking function.

A labeled ordinary GSPN (LGSPN) is then a triplet LS = (S, ψ, λ), where
S is a GSPN ordinary system, as defined above, λ : T −→ LT ∪ τ is the labeling
function that assigns to a transition a label belonging to the set LT ∪ τ and
ψ : P −→ LP ∪τ is the labeling function that assigns to a place a label belonging
to the set LP ∪ τ . τ -labeled net objects are considered to be internal.

Note that, with respect to the definition of LGSPN system given in [10],
here both places and transitions can be labeled, moreover, the same label can
be assigned to place(s) and to transition(s) since it is not required that LT and
LP are disjoint.

The rest of the article is organized as follows: Section 2 describes the pro-
posed annotations for the ADs and enumerates the main rules of the translation
method. Section 3 analyzes the translation of each element in the AD into a
stochastic Petri net model. Section 4 discusses how the stochastic Petri net
model for the whole AD is obtained. Section 5 briefly presents our tool pro-
totype. Finally, section 6 summarizes the paper, explores the bibliography and
discusses future extensions.
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2 Activity Diagrams for Performance Evaluation
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Fig. 1. UML Activity Graphs metamodel (extended)

Activity Diagrams represent UML activity graphs and are just a variant of
UML state machines (see [7], section 3.84). In fact, a UML activity graph is
a specialization of a UML state machine (SM), as it is expressed in the UML
metamodel (see figure 1). The main goal of ADs is to stress the internal control
flow of a process in contrast to statechart diagrams, which represent UML SMs
and are often driven by external events.

As our objective is to use ADs to obtain performance measures of the model
element they describe, we need additional modeling information, such as routing
rates or the duration of the basic actions. We propose to annotate the AD to
collect this information: subsection 2.1 describes this proposal.
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It must be noted that in this paper we only focus in those elements proper
of ADs. See that, according to UML specification ([7], section 3.84), almost
every state in an AD should be an action or subactivity state, so almost every
transition1 should be triggered by the ending of the execution of the entry action
or activity associated to the state. Anyway, UML is not strict at this point, so
elements from state machines package could occasionally be used.

As far as it is concerned, our decision is not to allow other states than action,
subactivity or call states, and thus to accept only the use of external events by
means of call states and control icons involving signals, i.e. signal sendings and
signal receipts. As a result of this, events are always deferred (as any event is
always deferred in an action state), so an activity will not ever be interrupted
when it is described by an AD. Further attempts to include other SM elements
are not discarded and could be object of future work, although they introduce
some new problems.

Anyway, we suggest the use of SCs to describe the dynamical behaviour of
those parts of the system dependable of external events.

2.1 Performance annotations

Our proposal is to include two different aspects in our annotations: time and
probability. As it was stated in previous papers [19], we will use tagged values as
an extensibility mechanism to integrate them in our UML models. Annotations
will be attached to transitions instead of states as in previous works, in order
to allow the assignment of different action durations depending on the decision.
Anyway, any other syntax is accepted as long as it is consistent with the process
described below.

It must be noticed that, in the following, we will use the notion of not-timed
transitions in the scope of ADs to specify those arcs which have no time anno-
tation or to which a duration equal to zero is assigned. Doing so, we are trying
to avoid confusions with immediate transitions, as long as they are different
concepts in the domain of UML SMs.

The format suggested is {n sec.; P(k)} or {n-m sec.; P(k)} for timed tran-
sitions and {P(k)} for not-timed transitions. If no probability P(k) is provided
we will assume an equiprobable sample space, i.e., identical probability for each
‘brother’ transition to be triggered. As it is shown, we allow time expressed in
terms of an estimated value or a range of them. We have discarded the usage of
packet size annotations as proposed for SMs [19] due to the fact that ADs are
commonly used to model internal control flow. Figure 5 shows some examples of
annotations (in braces).

Time annotations will be allocated wherever an action is executed (outgoing
transitions of such states, including outgoing transitions of decision pseudostates
with an action state as input) and probability annotations wherever a decision

1 Notice that the word ‘transition’ has different meanings in UML and PNs domain. We
preserve both meanings in this paper as the context should be enough to discriminate
the ‘transition’ we are referring to (UML or PN ‘transition’)
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is taken, i.e. next to guard conditions. It must be noticed that there is a special
case where the performance annotation is attached to the state instead of the
outgoing transition: when the control flow is not shown because it is implicit in
the action-object flow. We do so because we do not want to have performance
annotations applied to it, as it has a different semantics.

2.2 Translation rules and formal definitions

A brief description of each AD element and their translation to LGSPNs is
presented in the next section. Section 4 illustrates the method to compose those
LGSPNs to obtain the whole model for a concrete AD according to our proposed
semantics. We must note that, in the following, we suppose that every object
derived from ModelElement metaclass has an unique name within its namespace,
although it could be not explicitly shown in the model.

As a rule, the translation of each one of AD elements can be summarized as
a three-phased process:

step 1 Translation of each outgoing and self-loop transition. Applicable to ac-
tion, subactivity and call states, and to fork pseudostates. Depending on the
kind of transition, a different rule must be applied (see figures 2 and 4).

step 2 Composition of the LGSPNs corresponding to the whole set of each kind
of transitions considered in step 1. Applicable to action, subactivity and call
states, and to fork pseudostates.

step 3 Working out the LGSPN for the element by superposition of the
LGSPNs obtained in the last step (if any) and, occasionally, an additional
LGSPN corresponding to the entry to its associated state.

The formal definition of one of the LGSPN systems shown in Figure 2 is
stated below. The rest of the cases in Figures 2 and 4 are straightforward from
this example, so they will not be explicitly illustrated.

From now onward, we will adopt the Object Constraint Language [7] (OCL)
syntax to indicate the image of an element (or of a set of elements) belonging
to the domain of a certain relation. Let us suppose there exists an association
between the classes D and C and let rel be the name of the role played by the
class C in the association, then the image of an instance d of class D, through
the derived relation rel : D → C, is denoted as d.rel. Also the attributes of a
class D, say at1, and at2 are denoted using the dot notation, D.at1, and D.at2.

A system for an outgoing timed transition ott of an action state AS (see
figure 2, case 1.a) is a LGSPN LSottAS = (SottAS , ψottAS , λottAS ) characterized by the set
of transitions T ottAS = {t1, t2}, and the set of places P ottAS = {p1, p2, p3}. The input
and output functions are respectively equal to:

IottAS (t) =
{ {p1} if t = t1
{p2} if t = t2

OottAS (t) =
{ {p2} if t = t1
{p3} if t = t3

There are no inhibitor arcs, so HottAS (t) = ∅. The priority and the weight
functions are respectively equal to:
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ΠottAS (t) =
{
0 if t = t2
1 if t = t1

W ott
AS (t) =

{
rott if ΠottAS (t) = 0
pcond if λottAS (t) = cond ev
1 otherwise

where, in this case, rott is the rate parameter of the timed transition t2 and pcond
is the weight of the immediate transition t1.

The weight pcond is assigned the value of the probability annotation attached
to the AD transition ott. If there is not such annotation, pcond is equal to 1/nt,
where nt is the number of elements in the set AS .outgoing.

The rate rott is equal to 1/n if the time annotation attached to the AD
transition is expressed in the format {n sec.}, or equal to 2/n+m if it is expressed
in the format {n−m sec.}. Furthermore, in our CASE tool (presented in section
5) the last case is considered as a parameter of the system in order to automatize
the analysis of the final LGSPN for different values within the range specified.

The initial marking function is defined as ∀p ∈ P ottAS : Mott0
AS (p) = ∅. Finally,

the labeling functions are equal to:

ψottAS (p) =

{
ini AS if p = p1

execute if p = p2

ini nextx if p = p3

λottAS (t) =
{
cond ev if t = t1
out λ if t = t2

where, for abuse of notation, AS = AS.name and nextx = ott.target.name.
As they are profusely used in next section, we also define AG as the activ-

ity diagram, LstvertexP the set of labels of state vertices in it, LstvertexP =
{ini target,∀target ∈ AG .transitions→target.name} and LevP as the set of
events in the system, LevP = {e evx,∀evx ∈ Ev} ∪ {ack evx,∀evx ∈ Ev}.

3 Translating Activity Diagram elements

The following subsections are devoted to translate each diagram element into a
LGSPN; the composition of these nets (section 4) results in a stochastic Petri
net system that will be used to obtain performance parameters for the modelled
element.

3.1 Action states

An action state is ‘a shorthand for a state with an entry action and at least
one outgoing transition involving the implicit event of completing the entry
action’ ([7], section 3.85). According to this definition and the translation of
simple states in SMs [19] we should interpret the action atomic and therefore
represent it by an immediate transition within the LGSPN corresponding to the
state. However, if we considered every action immediate (for action states), then
most of the activities modelled by ADs would be immediate too, when they
are expected to have a concrete duration. So we will distinguish between timed
and not-timed transitions (in ADs) to determine the type of transition needed
—timed or immediate— and its rate associated in the resulting LGSPN.
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Fig. 2. Action, Subactivity and Call States to LGSPN

Translating an action state into LGSPN formalism takes the three steps
expressed in section 2.2. Given an action state AS let q be the number of outgoing
timed transitions OTi of the state (which do not end in a join pseudostate), q′

the number of outgoing not-timed transitions ONj (which do not end in a join
pseudostate), r the number of outgoing timed transitions OTJm that end in a
join pseudostate, r′ the number of outgoing not-timed transitions OTNn that
end in a join pseudostate, s the number of self-loop timed transitions STk and
s′ the number of self-loop not-timed transitions SNl .

Then for each outgoing or self-loop transition t, we have a LGSPN LStAS =
(StAS, ψ

t
AS, λ

t
AS) as shown in figure 2, cases 1.a-1.f. This results in a set of q+ q′+

r + r′ + s + s′ LGSPN models that need to be combined to get a model of the
state AS, LSAS = (SAS, ψAS, λAS).
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Firstly we must compose the submodels of the transitions of the same type,
using the superposition operators defined in Appendix A and the following equa-
tions:

LSOT

AS =
i=1,...,q

| |
LstvertexP

LSOT i
AS LSON

AS =
j=1,...,q′

| |
LstvertexP

LSONj
AS

LSST

AS =
k=1,...,s

| |
ini AS

LSST k
AS LSSN

AS =
l=1,...,s′⊔

ini AS ,out λ

LSSNl
AS

LSOTJ

AS =
m=1,...,r

| |
ini AS

LSOTJm
AS LSONJ

AS =
n=1,...,r′

| |
ini AS

LSONJn
AS

Again composing the subsystems just shown, the LGSPN model LSAS is
now defined by:

LSAS = ((((LSSN

AS | |
ini AS

LSST

AS ) | |
ini AS

LSON

AS ) | |
LstvertexP

LSOT

AS )

| |
ini AS

LSOTJ

AS ) | |
ini AS

LSONJ

AS

Finally we must remember that UML lets any kind of action to be executed
inside an action state. That means we might find a CallAction or a SendAction
there. However, UML syntax provides two concrete elements for this type of
states: call states and signal sending icons. We suggest their use, but if an action
state is used instead, then we should apply the translation method described for
the equivalent element (call state or signal sending control icon).

3.2 Subactivity states

A subactivity state always invokes a nested AD. Its outgoing transitions do
not have time annotations attached, as the duration activity can be determined
translating the AD and composing the whole system (that will be seen later in
this paper).

Translating a subactivity state into LGSPN formalism takes the three steps
expressed in section 2.2. Notice that there is an additional LGSPN that corre-
sponds with the entry to the state, called basic.

Then, given a subactivity state SS let q be the number of outgoing transitions
Oi of the state (which do not end in a join pseudostate), r the number of outgoing
transitions OJk that end in a join pseudostate, and s the number of self-loop
transitions Sj . Also let AG ′ be the nested activity diagram and top the name of
the first element of AG ′, top = AG ′.top.

According to the translations shown in figure 2, cases 2.a-2.d, we have a basic
LSGPN LSB

SS = (SB
SS, ψ

B
SS, λ

B
SS) and one LGSPN for each outgoing or self-loop

transition t, LStSS = (StSS, ψ
t
SS, λ

t
SS). Therefore, we have q + r + s + 1 LGSPN

models that need to be combined to get a model of the state SS, LSSS =
(SSS, ψSS, λSS). The LGSPNs corresponding to each set of kind of transitions are
now obtained by superposition:
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LSO

SS =
i=1,...,q

| |
LstvertexP ,end AG

LSOi
SS LSS

SS =
j=1,...,s⊔

end AG,out λ,ini SS

LSSj
SS

LSOJ

SS =
k=1,...,r

| |
end AG

LSOJk
SS

And the final LGSPN model LSSS for the subactivity state is now defined
by:

LSSS = ((LSOJ

SS | |
end AG

LSS

SS) | |
end AG

LSO

SS) | |
ini SS

LSB

SS

3.3 Call states

Call states are a particular case of action states in which its associated entry
action is a CallAction, so translation of these elements is quite similar. It must be
noted that when a CallAction is executed a set of CallEvents may be generated.
For the sake of simplicity, we assume that at most one event is generated, but
definition can be extended adding new places in the LGSPN to consider that
possibility as well.

Besides, the CallAction may be synchronous or not depending on the value
of its attribute isAsynchronous, where synchronous means that the action will
not be completed until the event eventually generated by the action is not con-
sumed by the receiver. In that case, we need a new place and transition in the
corresponding LGSPN to model the synchronization (see figure 2, cases 3.a, 3.c
and 3.e).

To translate a call state, steps to follow are similar to those described in
section 2.2. Given a call state CS,

– If verifies S.entry.IsAsynchronous = false (i.e., its associated CallAction
is a synchronous call) we define u as the number of outgoing transitions
OSi of the state (which do not end in a join pseudostate), v the number of
outgoing transitions OJSk that end in a join pseudostate and w the number
of self-loop transitions SSm .

– If verifies S.entry.IsAsynchronous = true -i.e., its associated CallAction
is an asynchronous call- we define u′ as the number of outgoing transitions
OAj of the state (which do not end in a join pseudostate), v′ the number of
outgoing transitions OJAl that end in a join pseudostate, and w′ the number
of self-loop transitions SAn .

Also let evx be an event generated by the call action, evx =
S.entry.operation→ocurrence. Considering this, we have one LGSPN for each
outgoing or self-loop transition t, LStCS = (StCS, ψ

t
CS, λ

t
CS), as shown in figure 2,

cases 3.a-3.f. Therefore, we have either u+ v+w or u′ + v′ +w′ LGSPN models
that need to be combined to get a model of the state CS, LSCS = (SCS, ψCS, λCS).
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The LGSPNs corresponding to each set of kind of transitions are now obtained
by superposition:

LSOS

CS =
i=1,...,u

| |
LstvertexP ,LevP

LSOSi
CS LSOA

CS =
j=1,...,u′

| |
LstvertexP ,LevP

LSOAj
CS
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| |
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m=1,...,w

| |
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LSSSm
CS LSSA
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n=1,...,w′

| |
ini CS ,LevP
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The final LGSPN for the state LSCS is defined by one of the two following
equations, depending on whether the action was synchronous or not:

LSCS = (LSSS

CS | |
ini CS ,LevP

LSOS

CS ) | |
ini CS ,LevP

LSOJS

CS (synchronous)

LSCS = (LSSA

CS | |
ini CS ,LevP

LSOA

CS ) | |
ini CS ,LevP

LSOJA

CS (asynchronous)

3.4 Decisions

Decisions are preprocessed before the AD translation, as it will be mentioned in
section 4.1. They are substituted by equivalent outgoing transitions on action
states (as shown in figure 3), preserving the properties inherent in performance
annotations. Therefore, they do not have to be translated.
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Fig. 3. Decision to LGSPN (Pre-transformation)
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3.5 Merges

Merges are used to reunify control flow, separated in divergent branches by
decisions (or outgoing transitions of states labelled with guards). Often they
are just a notational convention, as reunification may be modelled as ingoing
transitions of a state.

Translation of a merge pseudostate M depends on the kind of target
element of its outgoing transition. Figure 4 (cases 5.a and 5.b) shows the direct
translation of the model, LSM , according to the condition expressed below.
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p1|ini_F

M
er

ge

(6.a) Final State

Fi
na

l S
ta

te

p2|end_AG

p1|ini_FS

t1|ending

p1|ini_M
p1|ini_M

t1|do_merge

p2|ini_nextx

is not a join
(5.a) Target vertex

t2|do_nextx

pseudostate

(5.b) Target vertex
is a join

Si
gn

al
 s

en
di

ngp1|ini_SR

p3|ini_nextx

t1|receipt

p2|e_evx

t2|do_nextx

t1|receipt

p3|waiting2join

p1|ini_SR

(7.b) Signal receipt

join pseudostate
Target vertex is a

(7.a) Signal receipt

not a join
Target vertex is

p2|e_evx

Si
gn

al
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ec
ei

pt

p3|waiting2join

t1|sending

p1|ini_SS

t3|do_nextx

p2|e_evx

(7.d) Signal sending

p3|ini_nextx

p1|ini_SS

t1|sending

join pseudostate
Target vertex is a

(7.c) Signal sending

not a join

p2|e_evx

Target vertex is

Fig. 4. Fork, Join, Merge, Final State, Signal Sending and Signal Receipt to LGSPN

(a) LSM = LS ′
M ⇐⇒ (PS .outgoing.target �∈ Pseudostate ∨

PS .outgoing.target.kind �= join) (to join)
(b) LSM = LS ′′

M ⇐⇒ (PS .outgoing.target ∈ Pseudostate ∧
PS .outgoing.target.kind = join) (not to join)

3.6 Concurrency support items

UML provides two elements to model concurrency in an AD: forks and joins.
Their use and meaning do not need further explanation, as they have been
commonly explained in classic literature. Translation into LGSPN models is
quite simple in both cases.

Given a join pseudostate J , it is translated into the labelled system LSJ ,
shown in figure 4, case 4.c.
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To translate forks, three steps must be followed:
Given a fork pseudostate F let q be the number of its outgoing transitions Oi.

Then, according to the translations shown in figure 4, we have a basic LSGPN
LSB

F = (SB
F , ψB

F , λB
F ) (case 4.a in the figure) and one LGSPN (case 4.b) for each

outgoing transition t, LStF = (StF , ψ
t
F , λ

t
F ). Therefore, we have q + 1 LGSPN

models that need to be combined to get a model of the pseudostate, LSF =
(SF , ψF , λF ). The LGSPNs corresponding to each set of kind of transitions are
now obtained by superposition:

LSO

F =
i=1,...,q

| |
do fork,LstvertexP

LSOi
F

And the final LGSPN LSF is composed following the expression:

LSF = LSB

F | |
do fork

LSO

F

3.7 Initial and final states

Initial pseudostates and final states are elements inherited from UML state ma-
chines semantics. However, unlike it happened on UML SMs [6] the initial pseu-
dostate is not translated into a LGSPN model when translating an AD, as no
action can be attached to its outgoing transition. On the other hand, final states
are translated, but the resulting LGSPN is different from that shown in [6].

Given a final state FS, the LGSPN model LSFS = (SFS, ψFS, λFS) equivalent
to the state is defined according to the translation shown in figure 4, case 6.a.

3.8 Signal sending and signal receipt

Signal sending and signal receipt symbols are control icons. That means they are
not really necessary, but are used as a notational convention to specify common
modeling matters. In our specific case, these symbols are the only mechanisms we
allow to model the processing of external events, and are equivalent to labelling
the outgoing transition of a state with a SendAction corresponding to the signal
as an effect or with the name of the SignalEvent expected as the trigger event,
respectively.

As these symbols are control icons, there is not a metaclass corresponding
to this elements in UML metamodel. So we assume that before translating the
diagram a unique identificator is assigned to each one of these elements, so when
we say t.target.name, where t is a incoming transition of the control icon, we are
refering to this identificator (instead of the name of the real target StateVertex
according to the metamodel).

Given a signal sending/receipt symbol CS , the translation of the symbol
depends on whether this target element is a join pseudostate or not:

– If the symbol is a signal sending, then let SIGS be its pre-assigned identifi-
cator. Its translation into a LGSPN model LSSIGS is shown in figure 4, cases
7.c-7.d.



X Jornadas de Concurrencia

– If the symbol is a signal receipt, then let SIGR be its pre-assigned identifi-
cator. Its translation into a LGSPN model LSSIGR is shown in figure 4, cases
7.a-7.b.

It must be noted that, as far as signal sendings is concerned, we have assumed
that at most one event is generated for simplicity, but definition can be extended
adding new places in the LGSPN to consider that possibility as well.

3.9 Performance-irrelevant constructs

Some elements from ADs are not relevant for performance evaluation, so they
are not translated into LGSPN models. These elements are:

– Swimlanes, which have no meaning in the dynamics of the system modelled,
as they are mechanisms to organize visually the states within the diagram.

– Action-Object Flow relationships, as they do not provide any additional con-
crete information about the behavior of the system.

– Deferrable events as, according to our interpretation (see section 2), any
event is deferred in an AD (except, obviously, SignalEvents when a signal
receipt symbol is found).

4 The System Translation Process

In the previous section we have presented our method to translate every AD
element into LGSPN models. Here, we will focus on the whole system transla-
tion process, presenting an overview of the steps to follow and allocating the
ideas already presented in their own timing. The process includes the complete
translation method for ADs and the way to integrate the resulting LGSPN with
the ones obtained from the translation of UML SMs and SDs [6].

4.1 Translating activity diagrams into GSPN

As an initial premise we assume that every AD in the system description has
exactly one initial state plus, at least, one final state and another state from one
of the accepted types (action, subactivity or call state). The translation of an
AD can then be divided in three phases, which are presented in the subsequent
paragraphs.

Pre-transformations Before translating the AD into a LGSPN model, we
need to apply some simplifications to the diagram in order to properly use the
translations given in section 3. These simplifications are merely syntactical so
the system behaviour is not altered. Most relevant ones are:

– Suppression of decisions. Figure 3 shows a particular case of this kind of
transformation. New decisions could be found in any branch of the chaining
tree, but the figure has been simplified for the sake of simplicity.
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– Suppression of merges / forks / joins chaining, bringing them together into
a unique merge / fork / join pseudostate.

– Deducting and making explicit the implicit control flow in action-object flow
relationships, where aplicable.

– Avoidance of bad design cases (e.g., when the target of a fork pseudostate
is a join pseudostate).

Translation process Once pre-transformations are applied we can proceed to
translate the diagram into a LGSPN model. This is done following three steps:

step 1 Translation of each diagram element, as shown in section 2.
step 2 Superposition of the LGSPNs corresponding to the whole set of each

kind of diagram elements:

LSactst

AG =
AS∈ActionStates

| |
LstvertexP

LSAS LSsubst

AG =
SS∈SubactivityStates

| |
LstvertexP

LSSS

LScalst

AG =
CS∈CallStates

| |
LstvertexP ,LevP

LSCS LSmerge

AG =
M∈Merges

| |
LstvertexP

LSM

LSfork

AG =
F∈Forks

| |
LstvertexP

LSF LSjoin

AG =
J∈Joins

| |
LstvertexP

LSJ

LSfinst

AG =
FS∈FinalStates

| |
end AG

LSFS LSsigse

AG =
SIGS∈SignalSendings

| |
LstvertexP ,LevP

LSSIGS

LSsigre

AG =
SIGR∈SignalReceipts

| |
LstvertexP ,LevP

LSSIGR

step 3 Working out the LGSPN for the diagram itself by superposition of the
LGSPNs obtained in the last step:

LSAG = (((((((LSsigre

AG | |
LstvertexP ,LevP

LSsigse

AG ) | |
LstvertexP

LSfinst

AG )

| |
LstvertexP

LSjoin

AG ) | |
LstvertexP

LSfork

AG ) | |
LstvertexP

LSmerge

AG )

| |
LstvertexP ,LevP

LScalst

AG ) | |
LstvertexP ,end AG

LSsubst

AG ) | |
LstvertexP

LSactst

AG

Thanks to this compositional approach, all kind of legal dependencies be-
tween diagrams (as looping dependencies) can be processed. E.g., let AG1 be an
activity graph where SS is a subactivity state in it, SS ∈ AG1.transitions.source,
and let AG2 be the activity graph that the state invokes, AG2 = SS.submachine.
Also let SS ′ be a subactivity state in AG2, SS ′ ∈ AG2.transitions.source, which
invokes AG1, AG1 = SS ′.submachine. The superposition operators allows the
performance engineer to deal with such syntactical issues.

Post-optimizations Contrasting with pre-transformations, which are manda-
tory, post-optimizations are optional. Their objective is just to eliminate some
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spare places and transitions in the resulting LGSPN so as to make it more attrac-
tive without altering its semantics. One example of these kind of transformations
would be, in subnets of the LGSPN corresponding to outgoing timed transitions
of action states LSOT

AS , the removal of the superfluous immediate transitions (and
their output place) in case of no conflict.

4.2 Composing the whole system

As it has been stated before, in terms of performance evaluation we use UML
ADs exclusively to describe doActivities in SCs or activities inside subactivity
states of others ADs. Hence, the merging of nets corresponding to SCs and ADs
will be dealt with first.

Let d be the number of ADs used at system description and LinterfacesP =
{Lini topP , LevP , Lend AGP }, where Lini topP is the set of initial places of the
LGSPNs corresponding to the ADs and Lend AGP the set of final places of those
nets. Now, we can merge the referred LGSPNs by superposition (of places):

LSad =
AG∈ActivityDiagrams

| |
LinterfacesP

LSAG

Now let LS ′′
sc be the LGSPN corresponding to the translation of the set of

SCs in the model. LS ′′
sc was previously obtained by composition (superposition

of places) of the nets obtained for each SC and subsequent removal of sink
acknowledge places (see [6]).

Then let T act be the set of transitions in LS ′′
sc labelled activity [6] which

represent activities that are described with activity diagrams. LSsc will be the
result of that labelled system with the removal of this set of transitions, LSsc
= LS ′′

sc \ T act. Ingoing places for these transitions (labelled end entry A in
LS ′′
sc) will be now labelled ini top, where top is the name of the first element

of the activity diagram AG ′ that represents the activity, top = AG ′.top.name.
Similarly, outgoing places (labelled compl A) will be now labelled end AG ′.

Once done, we can merge the LGSPN systems LSsc and LSad:

LSsc−ad = LSad | |
LinterfacesP

LSsc

The resulting net LSsc−ad often represents the whole system behavior. How-
ever, this behavior can be constrained to obtain performance measures for a
particular scenario (pattern of interaction). That is done by merging LSsc−ad
and the LGSPN corresponding to a specific SD into a unique LGSPN LS, mainly
by synchronization (i.e., superposition of transitions). Paper [6] describes two ap-
proaches for doing an analogous operation, using the referred net LSsc instead
of LSsc−ad. Nevertheless, both procedures are still directly applicable to the
resulting LGSPN LSsc−ad.

A sample case of the translation of a very simple system is illustrated in
figure 5. Two SC and AD models for the system are presented on the left side
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of the figure. We have obviated some diagrams of the system description so only
part of the resulting LGSPN is included on its right side. That results in the
lack of tokens in the initial marking of the net.

The SC represents the life-cycle of an object from the class car wash machine,
that can be either working or inactive (i.e, waiting for a new car to be washed).
The activity performed by the machine when it is working is described by the
AD below. As it is shown, the machine works in a different way depending on
the amount of money spent by the driver, and can do some tasks simultaneously.

It must be noted that the LGSPN subsystem for the SC has been simplified.
In order to proceed to the composition of the LGSPN corresponding to the whole
system we should eliminate the transition t1 and change the labels of the places
p2 and p3 to ini weighcoins and end wash car, respectively.

p17|ini_FS

t14|ending

p18|end_wash_car

e_coin_ins

t6|cond_ev

p16|execute

p14|ini_M

t11|do_merge

p15|ini_raise&dry

t12|cond_ev

p13|waiting

p10|execute

p5|ini_F

p7|ini_shampoo

p6|ini_quick

t10|do_J

t7|cond_ev

t5|cond_ev

p8|ini_full

p9|execute

p12|waiting

t4|do_fork
1

t   |outout

t13|out_λ

t3|out_λt2|out_λ

p4|ini_weighcoins

λt8|out_ λt9|out_
out

LGSPN corresponding

(simplified)

Washing

DO:wash_car

roll−over

to the statechart

e_turn_off

Inactive

t1|activity

p3|compl_working

p1|ini_inactive

t   |out
2

p2|e_coin_ins

p2|ini_working

{40−50 sg.}

[5    ]

QuickWeigh coins

Full roll−overShampoo

Rinse & Dry

{P(0.7)}

{0 sg.; P(0.3)}

[3    ]

{25−35 sc.} {75 sg.}

{50 sc.}

Fig. 5. Car wash machine example

5 Software Performance Tool

To accomplish our objective of successfully integrating techniques of performance
evaluation in the software engineering process, an special effort in the automa-
tization of the method is required. To do so, we have developed a CASE tool
prototype that generates generalized stochastic Petri nets (GSPN) in a file for-
mat [9, 12] directly processable by the GreatSPN tool [12], which is used to make
quantitative analysis and obtain performance rates.

The prototype itself provides full capability to model and translate any aspect
of ADs as described in this paper, by means of an intuitive, flexible and highly
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configurable GUI. Furthermore, support for importing and exporting models in
XMI [13] format, standard for CASE tools, is currently in development phase.

In order to easily describe complex systems with a number of diagrams, the
tool and the internal file formats are fully project-oriented. This means that
every UML element and diagram our tool handles always belongs to a project.

Finally it must be noted that an special effort has been made to obtain
highly-legible GreatSPN nets, avoiding superposition of places and transitions.
Figure 6 shows a snapshot of a diagram in our tool (the classical ‘coffee’ example,
shown in UML specification [7]) and its resulting translation in GreatSPN, as it
was obtained originally.

Fig. 6. Tool - Extended coffeepot example and results in GreatSPN

6 Conclusions

The main contributions of this paper can be summarized as follows:

– We have described the kind of annotations suitable to model performance
requirements in the context of ADs.

– We have given a translation of the AD (that models a doActivity) into a
stochastic Petri net model. In this way, it can be composed with any other
stochastic Petri net model that represents a SC that uses the doActivity.

– A formal semantics for the AD is achieved in terms of stochastic Petri nets
that allows to check logical properties as well as to compute performance
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indices. Obviously, this formal semantics represents an interpretation of the
“informally” defined concepts of the UML AD. Our interpretation is focused
on the basis that the AD is meant for the description of the doActivities in
a SC.

– A prototype tool has been implemented for the Windows� platform. It offers
a front end that allows to model all the elements in UML ADs notation in
contrast with other tools such as Rose [21] which does not allow to model
important features such as signal sending or signal receipt symbols. Perfor-
mance annotations can be introduced to produce a GSPN system that can
be analyzed by the GreatSPN tool [12], therefore it is possible to obtain
performance measures in the steady or transient state.

Concerning related work, in [5] can be found a survey of the different ap-
proaches for performance evaluation based on UML diagrams. Although there
are several works devoted to obtain formal models from the UML SC [16, 15,
22] or the UML SD [24, 8, 3], some of them with performance evaluation pur-
poses, the AD has not been studied yet so intensely. But an interesting work
can be found in [11], where a formal semantics for the AD is given based on the
STATEMATE semantics [14] of the statecharts.

To date it is not possible to compare our tool because to our knowledge there
exist three tools [4, 2, 18] for performance evaluation based on UML but they do
not use stochastic Petri nets as performance models. On the other hand, although
DSPNExpress2000 [17] claims to be, it seems that only very simple SCs can be
modelled with this tool. In SimML [4], simulation queuing networks models [20]
for performance evaluation are obtained from UML class diagram and SD, while
in the PERMABASE project [2] models for simulation are obtained from UML
SD and class and deployment diagrams.

As future work we are working on the following open issues:

– With respect to UML ADs, conditional forks and more complex external
event processing support, especially important to resolve the problem of
‘uninterruptable’ activities due to the use of action states.

– Extension of the prototype tool to support SCs and SDs in order to increase
the expressivity at system description.

– Possibility of processing XMI files in our CASE tool prototype, in order
to import models from other CASE tools and thus ensure compliance with
current standards.

A Formal definition of composition of GSPNs

Place and transition superposition of two ordinary labeled GSPNs. Given two
LGSPN ordinary systems LS1 = (S1, ψ1, λ1) and LS2 = (S2, ψ2, λ2), the LGSPN
ordinary system LS = (S, ψ, λ):

LS = LS1 | |
LT ,LP

LS2
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resulting from the composition over the sets of (no τ) labels LT and LP is defined
as follows. Let ET = LT ∩ λ1(T1) ∩ λ2(T2) and EP = LP ∩ ψ1(P1) ∩ ψ2(P2) be
the subsets of LT and of LP , respectively, comprising place and transition labels
that are common to the two LGSPNs, P l1 (T l1) be the set of places (transitions)
of LS1 that are labeled l and PEP

1 (TET
1 ) be the set of all places (transitions) in

LS1 that are labeled with a label in EP (ET ). Same definitions apply to LS2.
Then: T = T1\TET

1 ∪ T2\TET
2 ∪ ⋃

l∈ET
{T l1 × T l2}, P = P1\PEP

1 ∪ P2\PEP
2 ∪⋃

l∈EP
{P l1 × P l2}, the functions F ∈ {I(), O(),H()} are equal to:

F (t) =




F1(t) if t ∈ T1\TET
1

F2(t) if t ∈ T2\TET
2

F1(t1) ∪ F2(t2) if t ≡ (t1, t2) ∈ TET
1 × TET

2 ∧ λ1(t1) = λ2(t2)

where ∪ on the third line is the union over sets. Functions F ∈ {Π(),W ()} are
equal to:

F (t) =




F1(t) if t ∈ T1\TET
1

F2(t) if t ∈ T2\TET
2

min(F1(t1), F2(t2)) if t ≡ (t1, t2) ∈ TET
1 × TET

2 ∧ λ1(t1) = λ2(t2)

The initial marking function is equal to:

M0(p) =




M0
1 (p) if p ∈ P1\PEP

1

M0
2 (p) if p ∈ P2\PEP

2

M0
1 (p1) +M0

2 (p2) if p ≡ (p1, p2) ∈ PEP
1 × PEP

2 ∧ ψ1(p1) = ψ2(p2)

Finally, the labeling functions for places and transitions are respectively
equal to:

ψ(x) =




ψ1(x) if x ∈ P1\PEP
1

ψ2(x) if x ∈ P2\PEP
2

ψ1(p1) if x ≡ (p1, p2) ∈ PEP
1 × PEP

2 ∧ ψ1(p1) = ψ2(p2)

λ(x) =




λ1(x) if x ∈ T1\TET
1

λ2(x) if x ∈ T2\TET
2

λ1(t1) if x ≡ (t1, t2) ∈ TET
1 × TET

2 ∧ λ1(t1) = λ2(t2).

Place and transition superposition and simplification of two ordinary labeled
GSPNs. Given two LGSPN ordinary systems LS1 = (S1, ψ1, λ1) and LS2 =
(S2, ψ2, λ2), the LGSPN ordinary system LS = (S, ψ, λ):

LS = LS1

⊔
LT ,LP

LS2

resulting from the composition over the sets of (no τ) labels LT and LP is defined
as follows. Let ET = LT ∩ λ1(T1) ∩ λ2(T2) and EP = LP ∩ ψ1(P1) ∩ ψ2(P2) be
the subsets of LT and of LP , respectively, comprising place and transition labels
that are common to the two LGSPNs, P l1 (T l1) be the set of places (transitions)
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of LS1 that are labeled l and PEP
1 (TET

1 ) be the set of all places (transitions) in
LS1 that are labeled with a label in EP (ET ). Same definitions apply to LS2.

Then: T = T1\TET
1 ∪ T2\TET

2 ∪ ⋃
l∈ET

{T l1 × T l2}, P = P1\PEP
1 ∪ P2\PEP

2 ∪⋃
l∈EP

{P l1 × P l2}, the functions F ∈ {I(), O(),H(),Π(t),M0(), ψ(), λ()} are
defined exactly as it was made for the last operator, whereas function W(t) is
equal to:

W (t) =




W1(t) if t ∈ T1\TET
1

W2(t) if t ∈ T2\TET
2

W1(t1) +W2(t2) if t ≡ (t1, t2) ∈ TET
1 × TET

2 ∧ λ1(t1) = λ2(t2)
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