
Performance Engineering based on UML & SPN’s: A software performance tool
�

Juan Pablo López-Grao, José Merseguer, Javier Campos
Dpto. de Informática e Ingenierı́a de Sistemas

Universidad de Zaragoza
Zaragoza, Spain�

jpablo,jmerse,jcampos � @posta.unizar.es

Abstract

The increasing relevance of UML as a semi-formal mod-
elling paradigm has entailed the need for an adjustment
of the classical performance evaluation methods within the
scope of the new working environment. Under these cir-
cumstances, a formal semantics for the UML language and
a strong mathematical substratum are required in order to be
able to compute performance estimates and validate logical
properties in the first stages of the software life-cycle. We
believe that stochastic Petri nets are specially suited for this
aim. A compositional approach for the translation of several
UML diagrams into analyzable Petri net models has there-
fore been considered in previous papers. Following this ap-
proach, we will focus here in the depiction of a model case
study from the perspective of our new performance-oriented
CASE tool.

1. Introduction

Achieving a balance between the usage of strong, well-
known performance formalisms and the usability of the
method for non-experienced end-users may be one of the
most challenging tasks the software performance engineer-
ing (SPE) [18] community has to face nowadays. Perfor-
mance evaluation often requires wide knowledge in queu-
ing theory [13] and formal performance models. Thus, a
successful deployment in industrial terms depends on the
degree of integration of this kind of techniques into the reg-
ular work of the software analyst or developer.

In line with these considerations, the Unified Modeling
Language (UML) [5] has progressively spread as the cur-
rent universal standard in software modeling. UML is a
semi-formal language maintained by the Object Manage-
ment Group (OMG) [16] consortium and used to specify,�

This work has been developed within the project P084/2001 of the
Gobierno de Aragón and the project UZ00-TEC-03 of the Universidad de
Zaragoza .

visualize and document artifacts of discrete event systems,
being particularly suited for software development environ-
ments.

Our proposal is based on taking advantage of UML for
SPE purposes. Providing a fully UML-complaint mod-
elling framework ensures an efficient communication be-
tween software architects whereas performance issues are
integrated in their everyday work in a consistent way. In
previous papers [12, 11, 4, 9], this approach has been widely
presented. According to that work, the performance evalu-
ation process basically takes three steps: extension of UML
diagrams with performance annotations, translation of ex-
tended UML diagrams to labelled stochastic Petri net mod-
ules [1, 6] and a final composition of the modules into a
single model representing the whole system behavior. This
model can be used either for validation or performance eval-
uation means, even though this paper focuses in the last per-
spective.

Currently, three different classes of UML diagrams have
already been studied. All these classes belong to the set of
behavioral diagrams of UML: UML statecharts (SCs) were
studied in [11] by means of the UML State Machines (SMs)
package, UML sequence diagrams (SDs) were discussed in
[4] (as well as their relationship with SCs) and UML activity
diagrams (ADs) were recently analyzed in [9].

Nevertheless, other kinds of UML diagrams may be
taken into consideration in the future. That includes behav-
ioral diagrams (as the Use Case diagram) as well as some
structural (as the Class diagram) and implementation dia-
grams (Deployment and Component diagrams), which will
allow us to avoid the infinite resource assumption. Collabo-
ration diagrams may not need further study anyhow, as they
are isomorphic to SDs.

In addition, previous work has been developed [12] to
illustrate the link between SDs and SCs in the context of a
real-world case study. In particular, the software retrieval
service in the ANTARCTICA system [12] was profusely
discussed and compared with other non-agent-based alter-
natives thanks to a performance analysis based on our pro-

posal.
Our main goal in this paper is to focus in our most recent

work, so as to clarify and establish the connection between
ADs and the previously studied diagrams through a realistic
test problem. Obviously, the whole process will be reflected
in this framework.

Furthermore, our new CASE tool prototype will be pre-
sented. Its main features will be depicted, as well as the
main topics to be considered in future versions. This pro-
totype automatizes the process described below, letting the
analyst model performance issues in an intuitive way. That
also enables a perfect coordination between the software
architect or developer and the performance engineer, estab-
lishing well-defined roles. The performance engineer would
then be able to perform a profuse analysis based on the sys-
tem specification without being concerned about details.

This paper is organized as follows: Section 2 recalls
the main aspects of the process given in [4, 9]. Section 3
traces the guidelines of the sample case study and applies
the concepts stated in the previous section to it. Section 4
presents our CASE tool prototype. Finally, section 5 con-
cludes the paper summarizing its most relevant points be-
sides discussing related and future work.

2. Process

Although the main rules of our SPE process were briefly
considered in Section 1, there are a number of points that
should be clarified regarding these guidelines. Moreover,
we must specify which role is taken by each UML diagram
according to the present system description potential. All
these issues will be discussed in this section.

As it was previously stated, three steps are taken to ob-
tain directly analyzable models. Firstly, our UML model is
(at least) extended with a temporal interpretation of its dy-
namics, usually based on estimations. In particular, adding
performance annotations to UML diagrams lets us define
a stochastic interpretation according to their associated se-
mantics. Tagged values will be used to ensure full UML
compatibility.

In [9], our proposal for performance annotations in ADs
is broadly discussed. Similarly, our performance annota-
tions in SCs and SDs have been studied in previous works,
such as the description of the ANTARCTICA Software Re-
trieval Service [12]. Hence, we will have recourse to the
syntax illustrated in those papers.

Secondly, every UML diagram is translated into an ana-
lyzable formal model. In particular, we use a specific class
of stochastic Petri nets: the labeled Generalized Stochastic
Petri Nets (LGSPNs) [6] . LGSPNs are specially suitable
for this task, as they allow a compositional (bottom-up) ap-
proach to construct a unique analyzable model describing
the whole system behaviour.

The reader is assumed to know basic definitions of
GSPN and LGSPN systems. Here we follow the notation
given in [1, 6]. Note that, with respect to the definition of la-
beled GSPN system given in [6] both places and transitions
can be labeled, moreover, the same label can be assigned to
place(s) and to transition(s) since it is not required that

���
and

���
are disjoint. The particular translation rules for SCs,

SDs and ADs have already been considered in [4, 11, 9], re-
spectively, and thus they will not be discussed here.

Finally, the whole system is composed from the LGSPNs
obtained in the previous step. At our current research sta-
tus, the system can be described through n SDs, m SCs and
o ADs, being �����
	����� , ���� , ����������� IN. That means
we have ��������� nets to be composed. Every diagram be-
longing to a same diagram class must be composed together
(as explained on [4, 11, 9]) to form a unique LGSPN system
(either by synchronization or fusion of places).

Hence, we will have (at most) three LGSPNs called "!$#&%
,
 �!'#&(

,
 "!$)*%

(for SDs, SCs and ADs, respectively).
The diagram corresponding to ADs will then be composed
with that for SCs through superposition of places (i.e., fu-
sion of modules) and elimination of some spare acknowl-
edge places. The resulting LGSPN system

 "!)*%,+-#&(
de-

scribes the whole system behavior.
As far as the SD is concerned, it lets us consider the

behavior of the system under certain restrictions. That is,
in terms of the resulting LGSPN, it constrains the firable
sequences of

 "!)*%,+.#&(
(composition by synchronization).

Paper [11] defines two different approaches (the ‘full’ case
and the ‘constrained’ case), depending on the interpretation
given to the scenario described by the SD.

Concretely, SDs are used to model patterns of interaction
between classes within a particular scenario (e.g., in the de-
piction of a use case). Meanwhile, SCs are used to model
the life-cycle for instances of a particular class and ADs
to model activities performed in a particular state of a SM
(that includes ADs and SCs). This latest task could be ac-
complished by SCs too, but ADs are rather more suitable for
activities that are not dependable of external events. Notice
that the system is always modelled at class level. Otherwise,
we may require other kinds of formal models, as Stochastic
Well-formed Nets (SWN), in order to be able to distinguish
between different instances of a class (or classes) [12].

It must be noted that, after composing the entire LGSPN,
there exist a lot of unnecessary elements on the net. Thus, it
would be useful to apply some proper reduction techniques
so as to obtain a more compact model. This matter will be
a subject of future research.

3. Case study

In order to shine a light on the process outlined in sec-
tion 2 a test problem will be analyzed below. The analytical

results will be stated in section 4, as well as the facilities our
CASE tool provides to obtain them.

The problem consists in modelling a basic mail client.
Here we will focus in the first Use Case (UC) showed in
figure 1: checking mail from a server using the POP3 [14]
protocol.

User

Mail

Check

Mail
Send

Figure 1. Use Case view of the ‘mail client’ model

The behavior of the referred client is rather intuitive for
this UC. First, the client tries to establish a TCP connec-
tion with the server via port 110. If succeeds (reception
of a greeting message), both (client and server) begin the
authentication (authorization) phase. The client sends the
username and his/her password through a USER and PASS
command combination. For the sake of simplicity, usage of
the APOP command has not been contemplated here.

If the server has answered with a positive status indicator
(”+OK”) to both messages, then the POP3 session enters
the transaction state (phase). Otherwise (e.g., the password
doesn’t match the one specified for the username), it returns
to the beginning of the authorization phase.

In the transaction phase, the client checks for new mail
using the LIST command. If there is any, the client obtains
every e-mail by means of the RETR and DELE commands.
It must be noted that, for simplicity, potential errors have
not been considered here; thus, no negative status messages
(”-ERR”) are modelled.

Once every e-mail has been downloaded, the mail client
issues a QUIT command to end the interaction. This pro-
vokes the POP3 server to enter the update state and release
any resource acquired during the transaction phase. The
protocol is ended with a goodbye (”+OK”) message.

A SC has been used to depict the mail client behavior
(MailClient class) for the referred UC, concretely in fig-
ure 2. Notice that the resulting GSPN for the SC has been
included right below the SC. Similarly, figure 3 illustrates
the server host and user behaviors via two SCs describing
the POP3Server class and User actor dynamics. Nonethe-
less, it should be noted that it is not always possible to apply
an stochastic interpretation to the user behavior.

In the original proposal [11] usage of guards in UML
transitions was avoided. However, not-event-driven deci-
sions have been considered in this example by modelling
guards with its success probability. Concretely, a combina-
tion of guards and events has been used in some SC transi-
tions. That probability will be represented in the Petri net
using an immediate transition. This has lead to some minor
adjustments to the translation rules expressed in [11]. Due

e_ok

send_−
 password

quit
send_−

send_retr

e_ok

e_err

e_text_message send_dele

e_dele

send_−

ini_delete−
message

ini_retrieve−
message

e_attach_message

W(t) = 1−P’

ini_authen−
tication

username

_connection
send_open_tcp−

W(t) = P’

e_ok e_ok W(t) = P’

ini_check−
messages

e_ok

e_ok

(...........)

ini_checkpassword

W(t) = 1−P’

send_list

e_list

e_ok

quitting

e_quit

e_ok

e_err

e_err

ini_−

mail
ack_check−

ini_greeting

MClient
ini_fs−

ini_psMClient

e_retr

e_exit_exec

e_password

e_greetinge_open_tcp_connection

e_check_mail

e_username

ini_waiting4entry

fsMClient

psMClient

ok

username = m_username.ocurrence

m_username = send_username.signal

send_username SendAction

send_username = Authentication.entry

ok[not new]

Greeting

exit_exec

attach_message

text_message

send_dele

ok[messages_left]

ok[new]
send_list

CheckMessages ok

ok[not messages_left]

DeleteMessage

m_open_tcp_connection = send_open_tcp_connection.signal

send_open_tcp_connection SendAction

send_open_tcp_connection = Greeting.entry

open_tcp_connection = m_open_tc_connection.ocurrence

ok

greeting

send_password

CheckPassword

send_username

err
errsend_quit

Quitting

send_retr

RetrieveMessage

Authentication

send_open_tcp_connection
check_mail

Waiting4Entry

{P’}

{1−P’}

{P’}

{1−P’}

Figure 2. Statechart and resulting LGSPN for the dynamics of

the class ClientHost

to the fact that these details do not fit the scope of the paper,
they will be commented in future work.

psPOP3Server

/ send_greeting
open_tcp_connection

_message
/ send_attach−

retr

_message

Transaction

(...........)

quit

dele
/ send_ok

list / send_ok

/ send_text−

UserMainState

fsClient

psClient

/ send_exit_exec

/ send_check_mail

DO: Thinking

/ send_ok
unlock_maildrop

Listening on
TCP port 110

DO: Authorization

Update

send_greeting = tr1.effect.name

send_greeting SendAction

m_greeting = send_greeting.signal

greeting = m_greeting.ocurrence

Sending

Authorization

read_message

{1−P’’} {P’’}

{1}

{0}

Figure 3. Statecharts for the dynamics of the classes ServerHost

and User (actor)

Apart from being necessary to complete system descrip-
tion, the activity Authenticate associated to the state Autho-
rization in the SC for ServerHost (figure 3) is rather rele-
vant to the system performance. Therefore, it is necessary
to model the actions performed within. Here we will use an
AD (see figure 4), although it may be more useful in cases
where there is not such a strong external event dependence
(e.g., ‘internal’ operations). The activity could have been
described extending the SC but, in general, ADs provide
some additional expresiveness [9] for certain tasks.

ClientHostUsername

Wait4User

W(t) = 0.8 W(t) = 1

W(t) = 0.2

W(t) = 1/3

ini_password

ini_err1 ini_ok1

ini_wait4password

check_password

e_password

ini_lock−

end_AG

e_err e_ok

W(t) = 0.1 W(t) = 0.9

e_ok

maildrop

e_err

e_ok

e_err

e_err

ini_look4user
[user not found]

[matches][doesn’t match]

LockMaildrop

OK

ERR

ERR OK

[user found]

Wait4Password

Password

ERR

W(t) = 0.2

W(t) = 1/5

ini_wait4user

ini_username

e_username

W(t) = 1/2

[already locked] [not locked]

Look4User

CheckPassword

W(t) = 0.8

{P(0.9)}

{2 sg.; P(0.8)}{5 sg.; P(0.2)}

{1 sg.; P(0.8)}{3 sg.; P(0.2)}

{P(0.1)}

Figure 4. Activity Diagram for POP3ServerHost::Authenticate

and resulting LGSPN

Finally, we use SDs to obtain performance analytical
measures in a certain context of execution. Figure 5 shows
an example of interaction between both server and client.
Some results for this particular scenario will be obtained in
section 4.

4. Final performance model & analysis

Once the final LGSPN models are obtained (following
the composition rules given in [9, 11]) performance esti-
mates can be extrapolated. These figures can be related to
either the whole system behavior (somehow unrestricted) or
the system behavior in a concrete scenario (thus adjusted to
certain restrictions).

Figure 6 shows some results for both cases. The graph
on the left represents the effective transfer rate of the client
when checking mail (maximum transfer rate: 56 Kbps).
Note that higher amounts of data minimize the relative
amount of time spent by protocol messages. The analysis
has been taken considering the whole system behavior (that
is, using the net obtained by composition of the ones corre-
sponding to the SCs and the AD).

Meanwhile, the graph on the right represents the time
cost of executing the interaction illustrated in figure 5 in
function of different attach file sizes and maximum network
speeds. The analysis has been taken using the SD to con-
struct the net for the constrained case [9, 11]. In general,
SDs can be extremely useful to check the behaviour of the
system for a particular use case. Moreover, analysts may
use them to model test conditions in an easy way.

In section 1, our proposal for the establishment of a
UML-complaint performance modelling framework was
pointed out. The advantages of this approach have been
previously discussed in this paper, and they are especially

e_ok

m9_m10

send_list

e_list

m10_m11

send_ok

e_ok

send_ok

m6_m7

send_ok

e_ok

m7_m8

m8_m9

e_password

password
send_−

m11_m12

send_dele

e_dele

m14_m15

send_ok

send_retr

...

m15_m16

e_ok

m13_m14

send_retr

e_retr

m12_m13

send_−

e_attach−
_message

attach−
_message

name

m1_m2

send_open_−
tcp_connec−
tion

_mail

_mail
E_check−

startSD

S_check−

username

e_open_tcp−

connection

m5_m6

e_user−

send_−

send_−

username

e_greeting

m2_m3

send_−
greeting

m3_m4

e_username

e_err

send_err

m4_m5

m_ok

{0.1K}

{0.1K}

{0.1K} m_quit

: ClientHost : POP3ServerHost

{0.1K}
m_open_tcp_connection

m_check_mail

m_greeting

m_ok

m_dele{0.1K}

{300K}
m_attach_message

m_retr{0.1K}

{0.1K}

m_ok

{0.1K} m_dele

m_text_message {3K}

m_retr{0.1K}

m_ok

{0.1K} m_username

m_err{0.1K}

{0.1K} m_username

{0.1K}

{0.1K}

{0.1K}

m_list{0.1K}

m_password

{0.1K}

{0.1K}

m_ok

m_ok

Figure 5. Sequence Diagram describing scenario, and corre-

sponding LGSPN

strong if the process itself is automatizable. To fulfill this
objective, a CASE tool prototype based in our own process
has been developed.

Some features of this CASE tool (as the possibility to
model and translate SDs and SCs) are currently in develop-
ment phase. However, it is already possible to model ADs
(full syntax support) and translate them into GSPNs, as ac-
cording to [9]. Moreover, importation of models in XMI
format is also being implemented. This enables the usage of
the tool as a performance analysis front-end for other CASE
tools or environments, such as

���������
	��
����������
[17].

Furthermore, tool and files are fully project-oriented (in
the sense that every UML element or diagram belongs to a
project). This facilitates the construction (and further trans-

0,25
0,5

0,75
1

4

7

10

13

44

46

48

50

52

54

56

Effective

transfer rate

(Kbps)

P'' (% attachs)

avg. mean of

e-mails

(from P')

54-56

52-54

50-52

48-50

46-48

44-46

0

50

100

150

200

250

300

350

100 300 500 700 1000

Attach size

t
(s

c
.)

Modem 28,8 Kbps

Modem 56 Kbps

ADSL 256 Kbps

Figure 6. Some analytical results for the presented case study

lation) of complex UML models. The tool also performs
basic checking of the diagrams syntax (based on the current
UML specification [5]) and provides an intuitive and highly
flexible GUI.

The GSPNs generated by the tool are saved in Great-
SPN [7] format. These nets are subsequently processed in
the referred tool in order to obtain analytical results. Fig-
ure 7 shows a snapshot of our tool (the traditional cof-
feepot sample AD, which appears in the UML specification
[5], with performance annotations) and its resulting transla-
tion in GreatSPN, as it was obtained originally. Note that
an special effort has been made to avoid superposition of
places and transitions in the resulting nets. Support for other
GSPN tools may be part of future work.

Figure 7. Tool - Extended coffeepot example and results in

GreatSPN

5. Concluding remarks

In the present paper, a sample test problem has been stud-
ied so as to take a longer view on our UML-based SPE
process. Moreover, our new CASE tool prototype has been
presented, which supports and automatizes this process.
The approach lets the software architect model the system
along with performance issues in an easy, consistent fash-
ion whereas performance models can be automatically ob-
tained.

Concerning related work, we are unable to compare our
tool due to the fact that, as far as we know, there exist four
SPE tools [3, 2, 10, 15] based on UML and none of them
uses stochastic Petri nets as performance model. On the
other hand, we do not consider DSPNExpress2000 [8] a re-
ally UML-based SPE tool as it seems that only rather sim-
ple SCs can be used to model the system. Meanwhile, in
SimML [3], simulation queuing networks (QN) models [13]
for SPE are obtained from UML class diagram and SDs,
while in the PERMABASE project [2] models for simu-
lation are obtained from UML SDs and class and deploy-

ment diagrams. Finally, PROGRES [15] is a graph rewrit-
ing tool that captures XMI descriptions of UML models
(using ADs, collaboration and deployment diagrams) and
translates them into layered QNs.

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis. Modelling with Generalized Stochastic
Petri Nets. John Wiley Series in Parallel Computing, 1995.

[2] D. Akehurst, G. Waters, P. Utton, and G. Martin. Predic-
tive Performance Analysis for Distributed Systems - PER-
MABASE position. In Workshop on Software Performance
Prediction, Heriot-Watt University, November 1999.

[3] L. Arief and N. Speirs. A UML tool for an automatic genera-
tion of simulation programs. In 2nd International Workshop
on Software and Performance, pp. 71–76, Ottawa, Septem-
ber 2000. ACM.

[4] S. Bernardi, S. Donatelli, and J. Merseguer. From UML se-
quence diagrams and statecharts to analysable Petri net mod-
els. In 3rd International Workshop on Software and Perfor-
mance, Rome, July 2002. ACM. To appear.

[5] G. Booch, I. Jacobson, and J. Rumbaugh. OMG Unified
Modeling Language specification, v. 1.4, September 2001.

[6] S. Donatelli and G. Franceschinis. PSR Methodology: inte-
grating hardware and software models. In LNCS 1091, pp.
133–152. Springer-Verlag, June 1996.

[7] The GreatSPN tool. http://www.di.unito.it/˜greatspn.
[8] C. Lindemann, A. Thummler, A. Klemm, M. Lohmann, and

O. Waldhorst. Quantitative system evaluation with DSPNex-
press 2000. In 2nd International Workshop on Software and
Performance, pp. 12–17, Ottawa, September 2000. ACM.

[9] J. P. López-Grao, J. Merseguer, and J. Campos. From UML
activity diagrams to stochastic PNs: Application to software
performance analysis. Technical report, April 2002.

[10] J. Medina, M. González, and J. M. Drake. MAST-UML:
Visual modeling and analysis suite for real-time applications
with UML. http://mast.unican.es/umlmast/.

[11] J. Merseguer, S. Bernardi, J. Campos, and S. Donatelli. A
compositional semantics for UML state machines aimed at
performance evaluation. In 6th International Workshop on
Discrete Event Systems, October 2002. To appear.

[12] J. Merseguer, J. Campos, and E. Mena. Performance eval-
uation for the design of agent-based systems: A Petri net
approach. In M. Pezzé and S. M. Shatz, editors, Proceed-
ings of the Workshop on Software Engineering and PNs, pp.
1–20, Aarhus, June 2000.

[13] M. Molloy. Fundamentals of Performance Modelling.
Macmillan, 1989.

[14] J. Myers and M. Rose. RFC 1725: Post Office Protocol -
version 3, November 1994.

[15] D. C. Petriu and H. Shen. Applying the UML performance
profile: Graph grammar based derivation of LQN models
from UML specifications. In LNCS 2324, pp. 159–177.
Springer-Verlag, 2002.

[16] Object Management Group. http://www.omg.org.
[17] Rational Software Corporation. http://www.rational.com.
[18] C. U. Smith. Performance Engineering of Software Systems.

Addison–Wesley, 1990.

