
Performance Analysis of Internet based Software Retrieval
Systems using Petri Nets�

José Merseguer
Dpto. de Informática e

Ingenierı́a de Sistemas,
University of Zaragoza, Spain

jmerse@posta.unizar.es

Javier Campos
Dpto. de Informática e

Ingenierı́a de Sistemas,
University of Zaragoza, Spain

jcampos@posta.unizar.es

Eduardo Mena
Dpto. de Informática e

Ingenierı́a de Sistemas,
University of Zaragoza, Spain

emena@posta.unizar.es

ABSTRACT
Nowadays, there exist web sites that allow users to retrieve
and install software in an easy way. The performance of

these sites may be poor if they are used in wireless net-
works; the reason is the inadequate use of the net resources
they need. If this kind of systems are designed using mobile
agent technology the previous problem might be avoided.
In this paper, we present a comparison between the perfor-
mance of a software retrieval system especially designed to

be used in wireless networks (e.g., mobile computers) and
the performance of a software retrieval system similar to the
well-known Tucows.com or Download.com web sites.
In order to compare performance, we make use of a soft-

ware performance process enriched with formal techniques.
The process has as important features that it uses UML as

a design notation and it uses stochastic Petri nets as formal
model. Petri nets provide a formal semantics for the system
and a performance model.

Keywords
Software performance engineering, stochastic Petri nets, In-
ternet, UML, wireless networks, mobile agent technology

1. INTRODUCTION
The tasks of retrieving and installing software using In-

ternet have become common in the last years. There are
sites (e.g., Tucows.com [3], Download.com [1], and Game-

Center.com [2]) which permit to perform these tasks in an
easy and friendly way. But the process of selecting the soft-
ware could become costly and sometimes slow: the user
must select a great number of categories until s/he �nds
the desired software, specially if s/he is a naive user. Ev-
ery time the user selects a category, the web site sends a

new HTML page with the contents of the category. This

�This work has been developed within the project UZ00-
TEC-03 of the University of Zaragoza.

technique makes an intensive use of the network connection,
which can result in a poor performance and expensive com-
munication cost (in a wireless environment). Thus, it would
be interesting to get results about the performance of this

kind of systems to exactly know how costly this process is.
A new technology, mobile agents [17], can aid to reduce

the network connection time. We recall in this paper a
software retrieval service [11] belonging to the ANTARC-
TICA system [20] which has been designed using mobile
agents. The aim of this service is to propose an alter-

native method to the current web-based software retrieval
systems, called in this article \Tucows-like" systems. The
ANTARCTICA system has been designed to be used in wire-
less communication environments where net speed is a prob-
lem, say 800 bytes/sec. in GSM networks. Therefore, it
promotes a better use of the net resources, thus supplying

better performance results. In the following, we refer to the
ANTARCTICA software retrieval service as the \ANTARC-
TICA SRS".
Our goal in this work is to compare the performance of

Tucows-like systems with the performance of the ANTARC-
TICA SRS using analytical software performance tech-

niques. The performance index under study for both sys-
tems is the network time, i.e., how much time the network
connection needs to be open in order to retrieve a soft-
ware product. The impact of the intelligent agents in the
ANTARCTICA SRS will be analyzed too.

The software performance engineering [19] proposes eval-
uating performance of software systems in the early stages
of the development process. Thus, if performance problems
are detected, it will be easier and less expensive to take
the appropriate design decisions to solve them. The Uni-

�ed Modelling Language (UML) [5] is the design notation

that we will use to model software retrieval systems. The
selection of UML is motivated because it is widely accepted
by the software engineering community and it �ts very well
in the software life cycle. Since we are interested in perfor-
mance aspects, we use UML extended with performance an-
notations. In general, software systems are complex systems

even more if they are distributed, so we advocate the use of
formal models to obtain performance indices. However UML
lacks of the necessary formal semantics to apply analytical
techniques. Thus, we propose to semi-automatically obtain
Petri nets (PNs) [16] from UML diagrams and to use them
to obtain performance indices. PNs are a widely used formal

model for concurrent systems and provided with a stochastic
time interpretation, they are suitable for performance eval-



uation. Concretely, we use stochastic well-formed coloured

nets (SWNs) [6].
There exist several works that combine design methodolo-

gies and performance modeling. In [10] stochastic Petri nets
are obtained from UML diagrams with performance evalu-
ation purpose. In our opinion, it is not clearly stated the
translation process, and it is not clear how the performance

model is obtained. Therefore, it has not been possible to
test their technique in our examples to compare their solu-
tion with ours. In [21] an approach to performance predic-
tion for the real time �eld is presented. It uses ROOM [18]
as a development method and a layered queuing network as
a performance model, a prototype tool has been developed

to assist the process. A parallel work to our software per-
formance process using UML and queueing networks (QNs)
is being developed in [8]. However, we claim that for the
case of parallel and distributed systems, as those presented
in this paper, PNs improve the adequacy of QNs, since they
provide general synchronization mechanisms and validation

techniques for logical properties. In the �eld of process al-
gebras, there exist interesting works, see [4], closely related
to ours.
The rest of the paper is organized as follows. In section 2,

the process followed to evaluate software performance is de-
scribed. In section 3, a Tucows-like software retrieval sys-

tem is modeled using UML and this model is translated into
SWNs. In section 4, the main components of the ANTARC-
TICA SRS are described. In section 5, we present a com-
parison between performance �gures for both approaches.
Finally, some concluding remarks are stressed in section 6.

2. THE SOFTWARE PERFORMANCE
PROCESS

\The software performance engineering (SPE) is a method

for constructing software systems to meet performance ob-

jectives. SPE augments others software engineering method-

ologies; it does not replace them" [19]. In this section, we
briey present a software performance process, introduced

in [13, 14], that will be applied in sections 3 and 4 to the
software retrieval systems proposed in the introduction. An
interesting characteristic of this process is that it uses a for-
mal model (SWNs) to obtain performance indices. This for-
mal model can be obtained semi-automatically inside the
software development process. In this way, without much

e�ort, the process allows to obtain a performance model as
a by-product and it preserves the bene�ts of the software
design methodologies. A complementary approach to ob-
tain the performance model, based on \design patterns"[9],
is being developed, it can be found in [12].

The performance of a system is traditionally obtained
from its dynamic view. So, we concentrate on developing
the UML diagrams corresponding to the dynamic model.
Unfortunately, UML lacks of the necessary expressiveness
to accurately describe the system load, which is needed
to obtain performance �gures. To bridge the gap, we use

a UML time extension proposed in [13] to successfully
deal with performance features at the design stage. Once
the UML models have been developed, we have to obtain
performance indices from them. As UML lacks of the
necessary formal semantics to obtain them, we use PNs
with this purpose. Our approach is to provide a formal

semantics to UML diagrams in terms of SWNs. Therefore,

(a) (b)

1..n

{20K..30K}

[satisfied]

get(html_page)

{0.1}

observe(html_page)

{1K}
select_category(url)

select_URL(url)

select_sw(url)
{1K}

{1K}

{20K..30K}

{1K}
download(url)

{1K}
succ_install()

{file_size}

Browser WebServer

search engine

Navigation

facility

Keyword-based
User

1-p

p

Figure 1: (a) Use cases for the Tucows-like system

and (b) annotated sequence diagram for the naviga-

tion facility use case.

we propose a translation from the UML time annotated
diagrams into SWNs. This translation will be performed
using the techniques given in [13]. From SWNs, perfor-
mance indices may be computed by applying quantitative

analysis techniques already developed in the literature. The
techniques that we will use are those implemented in the
GreatSPN tool [7].

2.1 Modeling the behaviour of a system using
performance annotated UML diagrams

The process begins by modeling the system dynamics in
a conventional way. The UML dynamic diagrams [5] will

guide the process. Use case diagrams, sequence diagrams

and statechart diagrams will be used in this paper. Activity
diagrams are not used because we are not interested in mod-
eling the actions performed by the systems that we model.
Figure 1 depicts an example of use case and sequence

diagram, that will be explained later on. A sequence di-

agram represents messages sent among objects. Messages
sent among objects on the same computer are considered
as no time consuming in the scope of the modeled system
(for instance, the messages sent between the user and the
browser in Figure 1.b). Messages sent among objects on dif-

ferent computers, those which travel through the net, will
consume time as a function of the message size and the net
speed (for instance, in Figure 1.b the messages sent between
the browser and the web server). Each message size is an-
notated inside braces. For instance, the select URL message
is labelled with f1 Kg in Figure 1.b. It is also possible to

annotate the size with a range in the UML common way
(like the get message with label f20K..30Kg in Figure 1.b).
If the message size is unknown, the annotation is a label
representing a performance parameter (e.g., the return of
the download message is annotated with the label f�le sizeg,
also in Figure 1.b).

In a sequence diagram, conditions represent the possibility



for the associated message to be dispatched. Annotations,

also between braces, express the event probability success
associated with each condition (for instance, see probability
f0.1g associated with the condition satis�ed in Figure 1.b).
If the probability is unknown, the annotation is a label rep-
resenting a performance parameter.
In order to get a complete view of the system dynam-

ics, a statechart for each class with relevant dynamic be-
haviour must be developed, as those depicted in Figure 2.
To study performance aspects on a statechart, two elements
are meaningful, the activities and the guards. In the follow-
ing, we briey comment the annotations used in these kind
of diagrams.

Activities represent tasks performed by the object, there-
fore, they consume computation time that must be anno-
tated. The annotation will be done between braces. For
example, see in Figure 2.c the bold label f1 sec.g close to
the activity �nd �le. If it is necessary, minimum and maxi-
mum values will be annotated.

Guards show conditions in a transition. They must hold
in order to �re the event that they label. The probabil-
ity associated to them, already annotated in the sequence
diagrams, are also indicated in the statecharts to gain read-
ability. In the same way, the size of the messages may be
annotated or omitted.

2.2 Translation of the performance annotated
UML diagrams into SWNs

From the performance annotated UML diagrams it is in-
teresting to obtain performance indices for the system. But,
as we said before, UML lacks of the necessary formal se-

mantics to apply quantitative analysis techniques to obtain
them. Even more, it is not suitable to specify some system
aspects, for example concurrency, which is fundamental in
performance evaluation. Therefore, the UML diagrams will
be translated into SWNs, which allow to obtain performance
indices, taking the proper decisions for the unspeci�ed sys-

tem requirements.
The strategy to obtain the SWNs from the performance

annotated UML diagrams is as follows.

1. Derivation of a SWN from each statechart. These
SWNs will be called component nets. They represent
the behaviour of each class with the underlying SWN

formal semantics. To obtain a component net from a
statechart several rules must be applied, details can be
found in [13]; the following are the most important:

� Each state of the statechart is represented by a
place, with the same name, in the SWN.

� For each transition in the statechart, there will
be in the SWN:

(a) A transition with the same name as the event

that labels the transition in the statechart.

(b) An arc from the place (which represents the
initial state in the statechart) to the transi-

tion in the SWN (which represents the tran-
sition in the statechart).

(c) An arc from the transition in the SWN (which

represents the transition in the statechart) to
the place (which represents the �nal state in
the statechart).

(b)

(c)

(a)

[^user.satisfied]select_sw(url)

^webServer.download(url)

{file_size}

get(html_page)

^user.observe(html_page)
{1K}

^user.succ_install

{1K}

{1K}

{1K}
WAIT

{1K}

reply

select_category(url)

^webServer.select_URL(url)

{20K..30K}

{1K}

download(url) select_URL(url)

Do:find_html_pageDo:find_file

{20K..30K}
^Browser.get(html_page)

{1sec.}

{1K}

^Browser.reply(file)
WAIT

{1sec.}

{1K}

{file_size}

{1K}
[satisfied]^Browser.select_sw(url)

{1K}
observe(html_page)

[not_satisfied]

wait

{1K}
succ_install()

{1K}

{1K}
^Browser.select_category(url)wait

{time}
Do:examine

for
html page

wait
download

for

Figure 2: Annotated statecharts for Tucows-like sys-
tem: (a) user, (b) browser, and (c) the web server

� Guards in the statechart becomes immediate
transitions with the associated corresponding

probabilities for the resolution of conicts.

� Activities inside a state of a statechart are con-
sidered as time consuming, so in the SWN they
are expressed as timed transitions. The rate of

the exponentially distributed service time of the
timed transitions are obtained automatically from
the time annotation of the statechart.

As example, see in Figure 3 the component nets ob-

tained from the statecharts in Figure 2.

2. Obtaining a SWN for the system. From the component
nets, and guided by the sequence diagram(s), a com-

plete SWN for the system is obtained. Transitions in
the component nets that represent the same message
are synchronized if the message has wait semantics;
on the other hand, if the message has no wait seman-

tics the transitions are connected with an extra place,
modeling a communication bu�er.

The outcome SWN models the behaviour of the whole sys-
tem. Figure 4 depicts an example of a complete net obtained
from the component nets in Figure 3 and from the sequence
diagram in Figure 1.b. The performance �gures for the sys-
tem are obtained by analyzing the complete SWN for the
system.

3. MODELING THE TUCOWS-LIKE
SOFTWARE RETRIEVAL SYSTEM

There are a variety of software retrieval systems, as the
popular web sites Tucows.com [3], Download.com [1] or
Gamecenter.com [2], that provide Internet users with fa-
cilities to retrieve and install software. These systems al-
low users to �nd software in two di�erent ways, by using
a keyword-based search engine and by navigating through

categories especially designed to make this task easier.



The software architecture of these kind of systems for the

navigation facility is basically the same, therefore, it is pos-
sible to model how these kind of systems work, making a
number of assumptions, without losing reality with respect
to performance aspects. We will refer to these kind of sys-
tems as Tucows-like systems. Our intent is to evaluate
performance indices for a Tucows-like system in order to

compare them with those obtained for the ANTARCTICA
SRS.
The keyword-based search engine o�ers help to those users

that know some features of the wanted software. This search
facility will not be considered in this paper since it can not be
used by naive users that do not known the concrete software

that they need. The navigation facility consists of several
web pages residing on a server and organized as categories
linked between them in a way that guides the user to �nd the
software. For instance, a number of these systems present
an initial web page where the categories correspond to di�er-
ent operating systems, say Windows 2000, Windows 95/98,

Linux or Unix. The user selects the desired category and a
new web page with several topics like multimedia, browsers
or Internet tools is loaded, in this way the user can continue
the search of the software. The ANTARCTICA SRS o�ers
a mechanism to retrieve software similar to the navigation
facility, but it makes use of intelligent agents to perform

the task, therefore a performance comparison can be made
between the two systems.
In this section, we describe and model the navigation fa-

cility of the Tucows-like systems. According to the software
performance process described in the previous section, we

are going to model the Tucows-like system using UML en-
hanced with performance annotations. Later, this model,
represented by a number of diagrams, will be converted into
an SWN by applying the rules given in [13] and summarized
in section 2. Therefore, we will obtain a formal model as
the input for the analytical techniques in order to obtain

the desired performance indices for the system.

3.1 System description of a Tucows-like sys-
tem and modeling assumptions

In a Tucows-like system, the user navigates, with the help
of a browser, through di�erent HTML pages (representing
software categories and descriptions of concrete pieces of
software) until s/he �nds a piece of software that satis�es
her/his needs. Then, that piece of software is downloaded.

In short, the process of selecting software by navigating
HTML pages is as follows: The user \clicks" on a category,
then the browser requests the web server for the correspond-
ing HTML page. The web server returns the HTML page
to the browser, which presents it to the user. After reading

this page, the user can \click" on another link in order to
access a new web page with other categories or a list of soft-
ware under the current category. This process is repeated
until the user �nds a software that ful�lls her/his needs.
Then the browser requests the web server for the selected
software, which is downloaded into the user computer.

It must be assumed that the user spends some time read-

ing the information presented by the system. An expo-
nentially distributed random variable with rate �examine

(�examine is obtained as the inverse of the time in seconds)
will be used to model several kinds of users.
The number of HTML pages that the user must navigate

until s/he �nds the software is diÆcult to estimate (it de-

wait

RS
P3

R
P4

R
P5

R

examineobserve
not_satisfiedBrowser.select_category

Browser.select_sw

succ_install

<x>

<x>

<x>
<x>

<x><x>

<x>

<x>

<x><x> <x><x>

R:c

request:c

S:m

(a)

wait RS

P2
R

P5
R

P7
R

P8
RP11 R

reply

user.observeget

user.succ_install

webServer.selectURL

select_category

webServer.download select_sw

<x>

<x><x>

<x>

<x><x> <x><x>

<x><x>

<x><x> <x>
<x> <x>

R:c
request:c
S:m

(b)

wait

P2

P3 P4

P5

Browser.reply

downloadselect_URL

Browser.get

find_filefind_html_page

(c)

Figure 3: Component PNs for the Tucows-like sys-
tem: (a) user, (b) browser, (c) web server.

pends on her/his experience). The probability that the user
�nds the software by selecting n categories models di�er-
ent kinds of users, from naive users, those who need to visit

many categories to �nd the software, to expert users, those
who �nd the software visiting very few categories.
Whenever the user requests an HTML page or a concrete

piece of software, the web server must perform the corre-
sponding activities to �nd the page or the piece. The time
consumed by these activities will be modeled by variables

with rates �findHTML and �findFile.
The browser, in the client machine, sends messages

through the net to the web server in the server machine
and vice versa. A variable with rate �mi

models the time
spent by the message i navigating through the net. Notice

that the messages sent between the user and the browser do
not consume net resources.
It could be argued that exponential assumption is not re-

alistic for the modeling of network delays, and that heavy
tailed distributions would be better. However, a perfor-
mance model must many times lose in accuracy of the rep-

resentation of reality in order to be able to be analyzed.
Anyhow, the possibility of representing delays with non-
exponential distributions could be considered in the future
if simulation techniques are used instead of the analytic ap-
proach followed here.

3.2 UML diagrams with performance annota-
tions

In this section we model the dynamic view of the Tucows-

like system using UML notation as proposed in [13]. The



use case diagram (see Figure 1.a) shows the two possible

scenarios for the system: the navigation facility and the
keyword-based search engine. It has been developed follow-
ing the notation given in [8] where p means the probability
that the user executes the scenario. We assume that p=1

because we are not interested in the keyword-based search
engine, in this way all user executions correspond to the

navigation facility.
The sequence diagram in Figure 1.b shows a detailed de-

scription of the \navigation facility" scenario. It shows the
messages sent among the objects in the system with the pur-
pose to retrieve the piece of software that the user needs.
Two di�erent kinds of messages can be distinguished, those

that travel through the net (sent between the browser and
the web server) and those that do not (sent between the user
and the browser). This feature will be relevant in the SWN
model in order to associate time to transitions that repre-
sent messages sent through the net, taking into account the
assumptions made in the previous section.

The sequence diagram begins with a select category(url)

message, its size is f1 Kbyteg, sent by the user to the
browser. It represents the \click" performed by the user
in the browser to select a category in an HTML page. The
rest of the diagram describes in the same way the steps ex-
plained in the previous section for selecting software.

In order to get a complete description of the Tucows-like
system dynamics and its load, we are going to develop the
statechart for each class with relevant dynamic behaviour.

User statechart diagram. In Figure 2.a, the behaviour
of a user is represented. The user is in the wait state

until s/he activates the select category event. This
event sets the user in the wait for HTML page state.
The observe event, sent by the browser, allows the user
to perform the examine activity that has associated the
label ftimeg. This label models the time that the user
spends reading the HTML page. This activity will be

translated in the SWN net in a transition, and by mod-
ifying its rate di�erent kinds of users can be modeled,
as we pointed out in the previous section. Once the
activity is performed two situations can arise:

� If the requested software is not present in the
current HTML page the user returns to the wait

state.

� In other case, the user sends the select sw(url)

message to the browser, where url means the
web address where the software is located in the
server, and enters in the wait for download state.

When the browser ful�lls the necessary activities
to complete the download, it sends to the user the
succ install() message and the user returns to the
wait state.

Browser statechart diagram. Figure 2.b shows the
browser's statechart. The browser behaves as a server
object: it is waiting for user's requests, represented by
select category and select sw events.

When a select category event arrives requesting a url,
the browser sends to the web server the select URL

message and waits for a new HTML page. When
the web server obtains it, it triggers the get event at-

taching the new HTML page, whose estimated size is

f20K..30Kg. Since this message is sent through the

net, it will be translated in the SWN as a transition
with rate �mget , as we pointed out in the previous sec-
tion. After that, the HTML page is shown to the user.

When a select sw event arrives requesting a url that
contains a piece of software a download message with

the url is sent to the web server. The browser waits
for the reply message that contains the requested �le
with size �le size, it will be translated in the SWN
in a transition with rate �mreply

. Finally, the �le is
installed (succ install).

Web server statechart diagram. As the browser, the
web server behaves as a server object. It is wait-
ing for a request (select URL and download) from the
browser. For each request, the web server performs the

corresponding actions to serve it (�nd html page and
�nd �le). When the actions are completed, it sends
the corresponding message to the browser. Figure 2.c
shows the web server's statechart diagram.

3.3 Modeling the system with SWNs
PNs are a suitable formalism for the modeling of con-

current phenomena. There are situations that cannot be
expressed with UML diagrams but they can be perfectly de-

scribed with PNs. For example, with a PN we can exactly
model how many concurrent requests to download software
the system might serve; UML diagrams cannot express that.
In this section, we detail the SWN model for the Tucows-

like system. The nets have been obtained by applying the
translation rules, given in [13] and schematically shown in

section 2. In order to model situations that the Petri nets
can express but the UML notation cannot, the appropriate
decisions will be taken and commented.
Figure 3 represents the component nets, those obtained

from the statecharts, for the Tucows-like system and Fig-

ure 4 represents the net for the whole system, obtained by
synchronizing the component nets. We start describing the
component nets.

User component net. The number of tokens in the place
wait models how many concurrent users supports the
system. This parameter cannot be modeled in the
UML diagrams.

The �ring of the transition named
Browser.select category models the dispatch to
the browser of a message to specialize the current
HTML page, it will arrive when the transition named

observe �res. The �ring of the transition named
examine models the time spent by the user reading
the information presented in the new HTML page.
After the end of the reading, a choice will deter-
mine whether the user is satis�ed with any of the
products shown (�ring of the immediate transition

Browser.select sw), or not (�ring of the immediate
transition not satis�ed).

The �ring of the immediate transition named
succ install models the arrival of a message to con�rm
that the retrieval of the software has been successfully

completed.

Browser component net. The number of tokens in the
place wait models how many concurrent browser ac-

cess to the system. The colour is the same as in the



P4

R

wait_WebServer

P2

R
P3

R

P5

R

wait_Browser
RS

P10
R

buffer_download

R

P12

R

P13
R

P15

R

wait_user

RS

P17
R

uffer_select_sw
R

buffer_get

R

P25 R

P28

R
buffer_reply

R

P26
R

download_browser

select_URL get_browserget

examine

find_file

find_html_page

reply

select_category

select_sw_user

not_satisfied

observe

Browser.replydownload_webServer

select_sw_browser

succ_install

<x>

<x>

<x>

<x>

<x>

<x>

<x><x> <x><x>

<x>

<x> <x>

<x>

<x>

<x>

<x>

<x><x>

<x><x>

<x>

<x><x>

<x><x>

<x> <x>

<x><x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x><x>

R:c
request:c
S:m

Figure 4: Complete SWN for the Tucows-like system.

user component net to identify each browser with a
user. This parameter cannot be modeled in the UML
diagrams.

The �ring of the transition named select category mod-
els the arrival of messages from the user requesting for
a specialization of the category that s/he has exam-
ined, the transition is immediate because both, the
sender and the receiver, are in the client machine.

The request is sent to the web server through the net,
therefore consuming time by �ring the timed transition
named webServer.select URL. The �ring of transitions
get and user.observe models, respectively, the obtain-
ing of the HTML page with new categories and its
dispatch to the user.

The �ring of the transition named select sw models the
arrival of messages from the user requesting a concrete

piece of software. The request is sent to the web server
through the net by �ring the timed transition named
webServer.download. The �ring of the timed transition
named reply models the obtaining of the �le requested
by previous transition. Finally, the �ring of the transi-
tion named user.succ install models the advertisement

to the user that the retrieve of the software has been
successfully completed.

The select category and select sw transitions will be
synchronized in the complete net with the transitions
in the user component net with the same name.

Web server component net. The number of tokens in
the place wait models how many concurrent processes
the web server has launched to attend browser's re-

quests. This parameter could not be modeled in the
UML diagrams.

The �ring of the timed transition named select URL

models the arrival of a remote message to request for
a new HTML page. The �ring of the timed transition
named download models the arrival of a remote mes-
sage to request for a concrete piece of software. The �r-
ing of the timed transition named �nd html page mod-

els the completion of the search for a new HTML page.

Figure 5: Architecture for the ANTARCTICA SRS.

The �ring of the timed transition named �nd �le mod-
els the completion of the search for a requested piece
of software. The �ring of the timed transition named

Browser.get models the dispatch of the HTML page to
the browser. Finally, the �ring of the timed transition
named Browser.reply models the dispatch of the �le to
the browser.

The select URL, download, Browser.get and
Browser.reply transitions will be synchronized in
the complete net with the transitions in the browser
component net with the same name.

As we said before, the net for the whole system, depicted
in Figure 4, is obtained by applying the rules given in [13].
These rules basically state that if two transitions in di�er-
ent nets represent the same message (the sender and the re-
ceiver), they must be connected using an intermediate bu�er
place (no wait semantics) or they must be synchronized in

a unique transition (wait semantics). If the message trav-
els through the net, then the transitions are timed and two
situations can arise:

� If they are connected in the complete net by using an

intermediate bu�er place then only one of them re-



P1
R

wait_SwManager

P5
R

P6
R

P7R

P8 R

wait_UserforService
Rm1

wait_UserforCatalog
R

P15
R

P16R

P17R P18
R

P19 Rm1

P20
R

begin_add_info_saleR

P22RP23 R
end_add_info_saleR

P25
Rm1

P26
R

P27
R

wait_Browser R

P29
R

P30
R

P31
R

wait_Alfred

P35
R

P36
R

P37

R

P38

R

P39 R

P40
R

P41
R

P42
R

P43
R

P46
R

P44
R

P45
R

P47
R

P49
R

P48
R

P50
R

P51
R

P52
R

P53
R

P54
R

P55
R

P56
R

goto_MU_Place2
browser.reply

get_info

observe_GUI_catalog

more_information_remote

goto_MU_Place

goto_Sw_Place

add_info_sale

show_catalog_GUI

create_catalog

add_info4

create_salesman

add_info3

add_info2

add_info

refine

create_BrowserAgentcreate_GUI

info_need_travel

info_need_local

select_sw

refine_catalog

T39

not_info_need

salesman.reply

request

select_sw_browser

refine_catalog_browser

select_sw_service
get_catalog

t38

t37

t36

electronic_commerce

not_info_need_or_local
info_need_travel1

more_information_local

delete_browser

begin_ec end_ec

<x>

<x>

<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x><x>

<x><x>

<x>

<x>

<x>

<x><x>

<x>

<x>

<x>

<x>

<x>

<x><x>

<x>

<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x>

<x> <x>

<x>

<x>

<x> <x>

<x><x><x>

<x>
<x>

<x>

<x>

<x> <x>

<x>

<x>
<x>

<x>

<x><x>

<x>
<x>

<x><x>

<x>

<x>

<x>
<x>

<x>

<x>

<x><x>

<x> <x>

<x>

<x>

<x><x>

<x> <x>

<x><x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>
<x> R:c

request:c

S:m

m1:m

Figure 6: Complete SWN for the ANTARCTICA SRS.

mains as a timed transition, and the other will be con-
verted into an immediate transition. As an example,
see the timed transition named download in the web
server component net (Figure 3.c) and the timed tran-
sition named webServer.download in the browser com-

ponent net (Figure 3.b). In the complete net (Figure
4) the timed transition named download browser mod-
els the time spent by the message navigating through
the net and the immediate transition named down-

load webServer models the reception of the message.

� If the synchronization in the complete net is modeled
using only one transition, it remains as a timed transi-
tion. As example, see the timed transition named se-

lect URL in the web server component net (Figure 3.c)
and the timed transition named webServer.select URL

in the browser component net (Figure 3.b); in the
complete net (Figure 4) the timed transition named
select URL models the time spent by the message nav-
igating through the net and the reception of the mes-

sage.

4. THE ANTARCTICA SOFTWARE RE-
TRIEVAL SERVICE

In this section we present the ANTARCTICA SRS [11].
The goal of the system is to provide mobile computer users
with a service to select and download software in an easy
and eÆcient way. EÆcient because the system optimizes

battery consumption and wireless communication costs. It
provides several interesting features:

� The system manages the knowledge needed to retrieve

software without user intervention, using an ontology.

� The location and access method to remote software is

transparent to users.

� There is a \catalog" browsing feature to help user in
software selection.

� The system maintains up to date the information re-
lated to the available software.

The ANTARCTICA SRS is situated in a concrete server
called the GSN1. Agents are executed in contexts denomi-
nated places [15]. Mobile agents can travel from one place to

another. The service incorporates two places: one place on
the user computer called the Mobile User place, and other
situated on the GSN, called the Software place (see Fig-
ure 5).
The procedure that the ANTARCTICA SRS supports for

the software retrieval process is the following: the user sends

requests for software to an agent (Alfred). The request is
sent to the GSN and an agent (the browser) is created. The
user receives the visit of the browser, which helps the user
to select the most appropriate software by browsing a cata-
log customized to that concrete user. The user can request

more detailed information until s/he �nally selects a piece
of software. Then a new agent arrives to the user computer
(the salesman) with the selected piece of software.
In the following such agents are described, grouped in two

categories:

1. The user agent. Alfred is an eÆcient majordomo that

serves the user and is in charge of storing as much
information about the user computer, and the user
her/himself, as possible.

2. Information exploitation. The software manager agent
creates and provides the browser agent with a catalog

1The Gateway Support Node is the proxy that provides ser-
vices to computer users.



(a) (b)

(c) (d)

0

5

10

15

20

25

30

35

40

refinements

m
in

u
te

s

TUCOWS 4,28779693 7,891414141 15,09661836 22,16312057 29,55082742 37,28560776

ANTARCTICA 5,062778453 7,208765859 11,49425287 15,69365976 20,08032129 24,72799209

5 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

refinements

m
in

u
te

s

TUCOWS 9,331840239 17,1998624 32,93807642 48,30917874 64,35006435 81,30081301

ANTARCTICA 10,10713564 16,51800463 29,29115407 41,8760469 55,00550055 68,87052342

5 10 20 30 40 50

m
in

u
te

s

0

2

4

6

8

10

12

14

16

18

refinements

TUCOWS 1,782912566 3,242542153 6,191183754 9,082652134 12,10360687 16,35590448

ANTARCTICA 1,868041545 3,06710833 5,462689828 7,813720894 10,26904909 12,85016705

5 10 20 30 40 50 0

10

20

30

40

50

60

70

refinements

m
in

u
te

s

TUCOWS 6,811061163 12,5502008 24,01536984 35,23608175 49,75124378 56,88282139

ANTARCTICA 8,304268394 12,37317496 23,24500232 39,40110323 52,24660397 59,31198102

5 10 20 30 40 50

Figure 7: Network time for di�erent scenarios: (a) and (b) represent a net speed of 1 K/sec., (c) and (d)
represent a net speed of 5 K/sec., (a) and (c) represent a \user delay" of 10 sec., (b) and (d) represent a
\user delay" of 60 sec. The intelligence of the ANTARCTICA's browser has been set to 70%.

of the available software, according to the needs ex-
pressed by Alfred (on behalf of the user), i.e., it is

capable to obtain customized metadata about the un-
derlying software. For this task, the Software Man-
ager consults an ontology. The software itself can be
either stored locally on the GSN or accessible through
the web in external data sources. Thus, the GSN can

have access to a great number of distinct software for
di�erent systems, with di�erent availability, purpose,
etc. The goal of the browser agent is to interact with
the user in order to re�ne a catalog of software un-
til the user �nally chooses a concrete piece of soft-
ware. When this is done, the Salesman agent carries

the program selected by the user to her/his computer,
performs any electronic commerce interaction needed
(which depends on the concrete piece of software), and
installs the program, whenever possible.

Some of the advantages of the use of mobile agents, related
to accessing remote information, are the following:

� They encapsulate communication protocols.

� They do not need synchronous remote communications

to work.

� They can act in an autonomous way and carry knowl-

edge to perform local interactions at the server system

instead of performing several remote procedure calls.

� They can make use of remote facilities and perform
speci�c activities at di�erent locations.

The software performance process given in [13] was ap-
plied to the ANTARCTICA SRS (not detailed here for lack
of space). The UML diagrams, the SWNs components and
the SWN net for the system were obtained. The SWN net
for the system (see Figure 6) will be used in the next section

to obtain performance results. It will be interesting to com-
pare the performance of the ANTARCTICA SRS with the
performance of the Tucows-like system, in order to obtain
conclusions about the impact of mobile agent technology in
a wireless network (low speed, costly, disconnections).

5. PERFORMANCE RESULTS
The results presented in this section have been obtained

from the complete SWNs which model the Tucows-like sys-

tem and the ANTARCTICA SRS (Figures 4 and 6 respec-
tively). It is of our interest to study how much time the
systems need to be connected to the net, network time, in
the presence of a user request. Also, it is interesting to know
how much intelligent the browser agent in the ANTARC-
TICA SRS must be, to obtain the same or better results

than the Tucows-like system.



In order to obtain the network time in the Tucows-like

system, the throughput of the succ install transition will be
calculated by computing the steady-state distribution of the
isomorphic Continuous Time Markov Chain (CTMC) with
GreatSPN [7]. The inverse of the previous result gives the
network time. In the ANTARCTICA SRS the target tran-
sition is select sw service.

To study the network time, we have developed a test tak-
ing into account the following scenarios:

1. To test the user re�nement request, we have considered
six di�erent possibilities. A user requesting a mean of

5, 10, 20, 30, 40 and 50 re�nements2 (modeling di�er-
ent expertise of the user).

2. Two di�erent kinds of users have been considered: a
user who spends 10 sec. to study the information pre-

sented by the system (web page or a software catalog)
and a user who spends 60 sec. in that task (modeling
the information processing speed of the user).

3. We have considered two cases for the net speed : 1

K/sec. and 5 K/sec. By considering these low speed
values we want to compare the performance of both
approaches in a wireless computing environment (real
GSM network speed is around 800 bytes/sec.).

For the ANTARCTICA SRS, we have also considered:

1. A browser which does not need to ask for information
to the software manager agent the 70% of the times
that the user asks for a re�nement. When the browser
needs information, it requests the information by a
remote procedure call (RPC).

2. The size of the catalog obtained by the browser is 50 K.

Figure 7 shows network time (in minutes) for the Tucows-
like system and the ANTARCTICA SRS in di�erent sce-
narios. Concretely in Figure 7.b we can observe that when
the net speed is 1 K/sec., the user is naive and performs

50 re�nements (the worst case), then the ANTARCTICA
SRS is almost thirteen minutes faster than the Tucows-like
system. The same results are obtained if the user is expert,
see Figure 7.a. However, when the net speed is increased
to 5 kbyte/sec. (see Figure 7.d), the di�erences decrease,
and if the user performs more than thirty re�nements the

ANTARCTICA SRS behaves worse. In conclusion, we can
say that the ANTARCTICA approach behaves much better
than a Tucows-like system for low network speed. Di�er-
ences between the two approaches become less signi�cant
for a higher network speed. Taking this analysis as basis we
could estimate which approach is better for a given situa-

tion.
About the intelligence of the ANTARCTICA SRS browser

agent, Figure 8 give us interesting results. This �gure shows
the same scenarios than Figure 7.a and 7.b, but varying
the intelligence of the ANTARCTICA SRS browser, from a

browser that needs to ask for information the 100% of the
times to a browser that needs to ask for information the 0%
of the times. When the intelligence of the browser is less
than 40 (it does not need to ask for information the 40% of
the times) the ANTARCTICA SRS behaves worse than the

2We mean by re�nement a \click" in a Tucows-like system
and a catalog re�nement in the ANTARCTICA SRS.

(a)

(b)

Figure 8: (a) and (b) represent the same scenarios

than Figures 7.a and 7.b, respectively, but varying
the intelligence of the ANTARCTICA SRS browser.

Tucows-like system. However, when the intelligence of the
browser does not need to ask for information the 40% of the
times or more, then ANTARCTICA SRS obtains similar or
better results than a Tucows-like system.

6. CONCLUSIONS
In this paper we have compared the performance between

a classical software retrieval system (the so-called Tucows-
like system) and another one proposed using mobile agents
(the ANTARCTICA SRS). The comparison has been per-
formed by applying to each of them a software performance
evaluation process, which has as a major advantage that it
is integrated in the early stages of the software life cycle.

We would like to stress the following points:

� The combination of a UML performance extension
and SWNs is expressive enough to model complex dis-
tributed software systems even taking into account dif-

ferent technologies. It must be remarked that a per-



formance formal model (SWN) can be obtained semi-

automatically from the UML performance annotated
diagrams in the context of the software life cycle.

� Di�erent scenarios can be tested easily by using this
process without investing time in implementing proto-
types.

� As a result of our tests, we can aÆrm that the
ANTARCTICA SRS behaves better than Tucows-like
system when the net speed is slow. So, the ANTARC-
TICA SRS is appropriate for wireless environments.

7. ACKNOWLEDGMENTS
We would like to thank Laura Recalde for all the helpful

collaboration.

8. REFERENCES
[1] CNET Inc., 1999. http://www.download.com.

[2] CNET Inc., 1999. http://www.gamecenter.com.

[3] Tucows.com inc., 1999. http://www.tucows.com.

[4] M. Bernardo, P. Ciancarini, and L. Donatiello.
AEMPA: A process algebraic description language for
the performance analysis of software architectures. In

Proceedings of the Second International Workshop on

Software and Performance (WOSP2000), pages 1{11,
Ottawa, Canada, September 2000. ACM.

[5] G. Booch, I. Jacobson, and J. Rumbaugh. OMG

Uni�ed Modeling Language speci�cation, June 1999.
version 1.3.

[6] G. Chiola, C. Dutheillet, G. Franceschinis, and
S. Haddad. Stochastic well-formed coloured nets for

symmetric modelling applications. IEEE Transactions

on Computers, 42(11):1343{1360, November 1993.

[7] G. Chiola, G. Franceschinis, R. Gaeta, and
M. Ribaudo. GreatSPN 1.7: GRaphical Editor and

Analyzer for Timed and Stochastic Petri Nets.
Performance Evaluation, 24:47{68, 1995.

[8] V. Cortellesa and R. Mirandola. Deriving a queueing
network based performance model from UML

diagrams. In Proceedings of the Second International

Workshop on Software and Performance

(WOSP2000), pages 58{70, Ottawa, Canada,
September 2000. ACM.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

[10] P. King and R. Pooley. Using UML to derive

stochastic Petri nets models. In J. Bradley and
N. Davies, editors, Proceedings of the Fifteenth Annual

UK Performance Engineering Workshop, pages 45{56.
Department of Computer Science, University of
Bristol, July 1999.

[11] E. Mena, A. Illarramendi, and A. Go~ni. A software

retrieval service based on knowledge-driven agents. In
Cooperative Information Systems CoopIS'2000, pages
174{185, Eliat, Israel, September 2000. Opher Etzion,
Peter Scheuermann editors. Lecture Notes in
Computer Science, (LNCS) Vol. 1901, Springer.

[12] J. Merseguer, J. Campos, and E. Mena. A
pattern-based approach to model software
performance. In Proceedings of the Second

International Workshop on Software and Performance

(WOSP2000), pages 137{142, Ottawa, Canada,

September 2000. ACM.

[13] J. Merseguer, J. Campos, and E. Mena. Performance
evaluation for the design of agent-based systems: A
Petri net approach. In M. Pezz�e and S. M. Shatz,

editors, Proceedings of the Workshop on Software

Engineering and Petri Nets, within the 21st

International Conference on Application and Theory

of Petri Nets, pages 1{20, Aarhus, Denmark, June
2000. University of Aarhus.

[14] J. Merseguer, J. Campos, and E. Mena. A
performance engineering case study: Software retrieval
system. In R. Dumke, C. Rautenstrauch,
A. Schmietendorf, and A. Scholz, editors, Performance

Engineering. State of the Art and Current Trends,

Lecture Notes in Computer Science, (LNCS) Vol.
2047, pages 317{332. Springer-Verlag, Heidelberg,
2001.

[15] D. Milojicic, M. Breugst, I. Busse, J. Campbell,

S. Covaci, B. Friedman, K. Kosaka, D. Lange, K. Ono,
M. Oshima, C. Tham, S. Virdhagriswaran, and
J. White. MASIF, the OMG mobile agent system
interoperability facility. In Proceedings of Mobile

Agents '98, September 1998.

[16] T. Murata. Petri nets: Properties, analysis, and
applications. Proceedings of the IEEE, 77(4):541{580,
April 1989.

[17] E. Pitoura and G. Samaras. Data Management for

Mobile Computing. Kluwer Academic Publishers, 1998.

[18] B. Selic, G. Guleckson, and P. Ward. Real-Time

Object-Oriented Modeling. John Wiley & Sons, 1994.

[19] C. U. Smith. Performance Engineering of Software

Systems. The Sei Series in Software Engineering.
Addison{Wesley, 1990.

[20] Y. Villate, D. Gil, A. Go~ni, and A. Illarramendi.
Mobile agents for providing mobile computers with
data services. In Proceedings of the Ninth IFIP/IEEE

International Workshop on Distributed Systems:

Operations and Management (DSOM 98), 1998.

[21] M. Woodside, C. Hrischuck, B. Selic, and S. Bayarov.
A wide band approach to integrating performance
prediction into a software design environment. In
Proceedings of the 1st International Workshop on

Software Performance (WOSP'98), 1998.


