
Dynamic User Interface Architecture for Mobile
Applications Based on Mobile Agents

Nikola Mitrović1, Carlos Bobed1,2, and Eduardo Mena1,2

1 Dept. of Computer Science & Systems Engineering
University of Zaragoza, Spain

2 Aragon Institute of Engineering Research (I3A), Spain
mitrovic@prometeo.cps.unizar.es, {cbobed,emena}@unizar.es

Abstract. Developing Graphical User Interfaces (GUIs) for mobile applications
is a difficult task. Modern applications frequently need to interact with humans
that use several devices with different characteristics (such as screen size or oper-
ating system). Any application that creates a specific GUI (surely designed for a
certain device family) is likely to be rendered and/or behave incorrectly on many
other user devices. Moreover, user interactions also need to be adapted to the
preferences of each specific user and be learned from user context. The above
challenges delegate every single application to have multiple versions of its GUI
to be correctly executed on every possible device and operating system combina-
tion, in addition to consider user preferences and context.
In this paper, we propose an architecture based on mobile agents for developing
adaptive user interfaces for multiple devices and applications. This architecture
makes it possible to further separate GUIs from their underlying logic, allowing
GUIs to be specified once and automatically be adapted to different platforms and
user preferences without further development. Moreover, our architecture enables
GUIs to be composed in a collaborative way by multiple agents and across differ-
ent devices by automatically adapting them to each device capabilities and user
preferences. Thus every application developer is relieved of considering these
issues.

Keywords: Dynamic GUIs, Mobile Cooperative Agents, Mobile Computing

1 Introduction

Adoption of mobile devices over the last decade has been significant: Just the number
of mobile phones has exceeded world population in 20143. Nowadays people rely on
devices such as smartphones, tablets, laptops, smart watches, smart TVs, and PCs not
only for practical and productivity tasks, but also to enhance social aspects of their lives.
As the user adoption of these devices is increasing, the number of new platforms and
devices is on the increase too.

With the rising use of mobile devices, users’ expectations of new applications and
GUIs have risen too: Users frequently expect applications to be available on any device

3 Definitive data and analysis for the mobile industry, https://www.gsmaintelligence.com/, last
accessed 12th September 2016.



they own, regardless of the operating system or device features. Usability and flexibility
of GUIs are more important than ever as interaction with the computer can happen
anywhere and users dislike spending unnecessary time performing a task. Moreover,
we are increasingly surrounded by sensors, sensing devices, computers which brings
new dynamic and complexities. Users expect that all these devices and sensors will
collaborate to learn about the user, predict users’ needs, understand the context and
help them complete tasks in the most efficient way. In this context, GUIs are required
not only to be adapted to the specific device and platform combinations, but also to take
into account users contexts.

Therefore, creating GUIs for collaborative and mobile applications that can work
on multiple platforms and provide users, with experiences adapted to their context and
preferences, is not an easy task. Different platforms or interaction modes (e.g., Android
or Windows OS, smart watch, or smartphone applications) require different and sepa-
rate GUI code. On the other hand, GUI adaptation to users preferences and context is
typically custom developed for each GUI or application, which reduces the re-usability
of the solutions. Every single application must have multiple versions of its GUI to be
correctly executed on every possible device and operating system combination, in addi-
tion to consider user preferences and context, if its goal is to execute correctly in a wide
spectrum of user devices with different capabilities and features. Even more, applica-
tions developed today are likely expected to be prepared, not adapted, to new incoming
devices and operating systems. To solve all these problems we need 1) a way in which
applications specify GUIs without compromising its flexibility to allow them to adapt
to different devices and preferences, 2) an intermediate module that plays the role of
interface between applications and user devices, alleviating the former from efforts to
adapt their GUIs to user devices, preferences, and context.

Some approaches provide a certain level of GUI portability across one or two spe-
cific platforms (e.g., Android [1] or Xamarin [2]). However, such approaches do not
automatically adapt the GUI to the device, require development of platform-specific
GUI code, and do not offer automatic ability to adapt to the user preferences or context.
Many approaches advocate using a User Interface Definition Language (UIDL) such
as XUL [3], UIML [4], or UsiXML [5]. Such approaches allow re-using a single GUI
design on multiple platforms but the GUI code is typically created and pre-compiled
separately for different platforms [5]. As the code is specifically crafted for individ-
ual devices or platforms, it is hard to change and adapt to user or context once the
application has been deployed to a target device. Some approaches use a client-server
architecture [6] to adapt UIDL at run-time; these approaches can adapt GUI more eas-
ily across multiple devices. However, these approaches do not offer adapting to user
preferences and context, and require the existence of client and server software (a fixed
point in the network). Finally, it is important to note that GUIs in the above approaches
are usually pre-defined and may take input from other devices or software; they are
however seldom generated in a collaborative way, with multiple independent entities
contributing to the GUI.

In this paper, we propose ADUS4, an architecture based on mobile agents [7] for de-
veloping adaptive user interfaces for multiple devices and applications. This is achieved

4 ADUS stands for ADaptive User interface for mobile deviceS.



by adopting the use of UIDL specifications [4], which are processed by a network of
agents who collaborate to both adapt the GUI to the local platform, as well as to learn
from user interactions. By using the proposed architecture, application developers only
have to specify their GUIs according to their functionality, which will be automatically
adapted to each device and user at run-time.
The contributions of this paper can be summarized as follows:

1. We review the state of the art of GUI abstract definitions with specific focus on
applicability to current mainstream mobile environments.

2. We introduce the ADUS architecture for GUI adaptation and its application in
mainstream mobile computing environment.

The remainder of this paper is structured as follows. Section 2 introduces differ-
ent existing GUI adaptation approaches, including different architectures and proposals
based on mobile agents. In Section 3 we summarize the ADUS architecture and show
how ADUS uses mainstream UIDLs. Finally, Section 4 concludes the paper giving a
summary and an outlook.

2 Related Work

The development of GUIs has been and continues being a subject of intensive research,
as they provide users with the means to interact with the computers (and applications).
Up to this point, the different proposals to develop and generate GUIs can be broadly
classified as follows:

1. Design-time GUIs: A tool is used to design the application GUI, the tool generates
some skeleton to write the interaction code, and finally, the code is then compiled
for a specific platform. This approach is presented in Section 2.1.

2. Client-server GUIs: In this approach, the client component renders the GUI to the
specific device and the server component provides the business logic, GUI contents,
and any adaptation. This approach is discussed in Section 2.2.

3. Dynamic GUIs: In this approach, GUIs can be defined at run-time and depend less
on specific operating systems. Dynamic approaches are described in Section 2.3.

4. Mobile agent-based GUIs: Last but not least, the approaches in this category use
mobile agent technology to provide mobility and enable collaboration and adapta-
tion of GUIs to devices and user’s context in run-time.

In the remainder of this section we will describe details of each of these broad
categories of GUIs.

2.1 Design-time

GUIs defined statically during the application design phase are one of the most common
and popular approaches to GUI development. Using this approach, an abstract GUI is
first defined using the abstract User Interface Description Language (UIDL) [4], and it
is then compiled to a concrete user interface using a compiler or similar tool. The GUI
is specifically designed for the target operating system or device.



The Design-time approaches are able to tailor and fine-tune GUIs to the specific
of the target devices or operating systems. However, they require multiple versions
of user interaction code to be developed (e.g., Xamarin [2]) or are able to serve only
proprietary platforms (e.g., Apple Storyboards [8]). The GUI interaction code needs to
be developed multiple times, and if the GUI was to be changed, the application needs
to be re-developed and re-deployed to all devices. Software developers need to have
significant expertise, know how to code for different devices, and how to work with their
quirks. The resulting GUI has limited adaptability to contexts, events, or environments
that have not been explicitly considered and developed by the software developer during
the application design phase. For example, the software development would need to
pre-program GUI code so to adapt to meet user’s preferences whilst in a car or whilst
at office. Besides, all GUI interaction is typically defined within the single application:
GUIs are pre-defined and are not typically modified by other applications (i.e. GUIs are
not generated in a collaborative way).

2.2 Client-Server GUIs

In this category of approaches, the client component usually renders the GUI to the
specific device and the server component provides business logic, GUI contents, and
any adaptation. This approach is very popular on the Internet; in fact, all web pages
are delivered this way. In the case of web pages, the GUI is defined by the software
developer using HTML [9] as the UIDL.

The client-server approach is very complex. HTML is not sufficient to describe and
handle GUIs on its own and is almost always modified using Cascading Style Sheets
(CSS) [9] and multiple JavaScript libraries [9] to achieve desired GUI. Client software
(Web Browser) need to be developed for each device and existing Web Browser imple-
mentations interpret HTML, CSS, and JavaScript differently. Getting run-time insight
for troubleshooting in client-server situations is very difficult too [9]. All of this makes
client-server GUI difficult to develop and troubleshoot. Finally, the client-server ap-
proach relies on the availability of both the server and client component. If the server is
’off line’ the GUI cannot be presented. For example, a Smart Watch does not have a Web
Browser (the client) and so the HTML GUI cannot be displayed. More importantly, for
complex interactions and applications, the GUI requires native code to be developed
which, in turn, requires again multiple versions of code to be developed (specific to
target operating systems or devices).

2.3 Dynamic GUIs

Some approaches allow GUIs to be defined and adapted as they are executed on the
device. Examples of such approach include QML/QT [10]. Using this approach a de-
veloper can define GUI using QML notation and the code is bound to the GUI specifica-
tion at the run time. However, as in the case of QML/QT, availability of the middleware
script runtime for QT will be required for different devices or operating systems.

GUI specification languages in this category sometimes do not offer sufficient GUI
abstraction level; for example, QML requires stronger widget positioning than other



UIDLs. Although QML and QT are available for a number of different operating sys-
tems, it is restricted by some mainstream mobile devices (e.g., Apple) in such a way
that all code must be statically packaged together, effectively making these approaches
equivalent to design-time approach as described in Section 2.1. Dynamic GUI genera-
tion approach suffers from similar problems as the design-time approach when it comes
to user context, device GUI adaptation, and goal orientation (see Section 2.4).

2.4 Mobile Agents and Agent-Based GUI Approaches

Mobile agents are autonomous software entities [7] that are capable of migrating from
one device to another autonomously and continue their execution on the destination de-
vice. Mobile agents are goal oriented and social, i.e., in order to achieve their goal, they
collaborate with other mobile agents. They have been used in the context of distributed
computing [11] and are gaining popularity in fields such the Internet of Things (IoT)
applications [12].

Because of their properties, mobile agents can provide good solutions for adaptive
GUIs that are created in a collaborative way. Mobile agents can arrive at the users’ de-
vice, check the device capabilities (i.e., its display size, the available interaction modes
and GUI elements, etc.), and show their GUIs adapting it to the application goals. Thus,
they can exploit different models of user interfaces on different and heterogeneous plat-
forms. Due to their autonomy, mobile agents can handle communication errors (un-
reachable hosts, etc.) by themselves. Also, in contrast to the client-server model, they
can move to the target device instead of accessing target devices remotely. For exam-
ple, agents can be sent to a Windows desktop computer or they can play the role of a
proxy server for a wireless device such as a Smart Watch that has limited processing
capabilities. A number of researchers have adopted mobile agents technology for GUIs
in order to address specific problems [13] [14] [15].

In our previous and preliminary work [16], we presented a previous version of our
multi-agent system for generating GUIs. The system was using XUL as UIDL and mo-
bile agents to deliver GUIs to different devices. However, the mainstream devices, plat-
forms, and ecosystems have developed significantly over the last few years, and none
of the approaches described in this section would be able to work on modern devices.
The approach presented in this paper devises a new architecture and implementation
that takes into consideration architectural challenges of the current mainstream devices
and platforms.

3 ADUS Architecture Overview

ADaptive User interface for mobile deviceS (ADUS) is a system and architecture for
generating adaptive GUIs. The ADUS is based on mobile agent technology (see Sec-
tion 2.4) and the use of User Interface Description Languages (UIDLs) in order to
achieve its flexibility. Its main goal is to adapt GUIs to devices with very different
characteristics (e.g., fixed vs mobile devices, display sizes, input modes, . . . ).

In this section, firstly, due to their importance in our approach, we present a briefly
mainstream UIDLs which we have analysed, and our choice for ADUS. Then, we
present our mobile agent architecture which enables the development of adaptive GUIs.



3.1 User Interface Definition Languages

One of the basic aspects of GUI adaptation is the adoption of a User Interface Definition
Language (UIDL) [4, 5, 17] to specify the desired GUI. Using this approach, an abstract
GUI is first defined using the abstract UIDL, and it is then compiled to a concrete user
interface. The abstract definitions can be pre-compiled as described in Section 2.1, or
processed in a dynamic way at run-time (see Section 2.3).

We have compared several commercially available mainstream UIDLs [18] to es-
tablish their fitness for mobile application development. For space reasons, we focus
here on three UIDLs based on their high level of adoption for mobile application devel-
opment, namely, Android XML, Windows XAML, and Apple’s Storyboards:

– AndroidXML Android is by far the most widely used operating systems when it
comes to mobile devices (i.e., smartphones and tablets) and the respective UIDL
is Android XML [19]. Given the heterogeneity of Android devices, support for
GUI adaptation to different devices is provided using layout elements and visual
behaviour policies. It is, however, the developer who is in charge to develop and
modify GUI so it is correctly adapted to different Android devices.

– Storyboards (iOS) Similarly to Android, Apple’s iOS also adopts a XML-driven
interface via Storyboards [8]. Apple’s approach goes further than Android: Sto-
ryboards use views (similar to Android’s activities), but they can also explicitly
include navigation aspects of user interaction in the GUI specification. Thus, a sto-
ryboard provides a comprehensive model of the whole application and the workflow
of interactions. Storyboards XML is clearly designed to be machine-generated and
is not developer-friendly.

– XAML (eXtensible Application Markup Language) [17] is the UIDL developed by
Microsoft. XAML is at the core of Microsoft’s effort to unify application devel-
opment on different Microsoft devices and platforms (Unified Windows Platform,
UWP) [17]. Such unified applications share a basic API and GUI elements which
are then extended and specialized for specific device families. Although XAML can
be used on any Windows-based device, there is still a need to adapt GUIs to specific
devices characteristics5; also adaptation to non-Windows devices is still required.

For developing the ADUS system, we decided to adopt Microsoft XAML as UIDL
as it is most suitable for our use. Comparing with other mainstream and commercially
available UIDLs, XAML offers very high abstraction level and is one of the less vendor-
specific languages. XAML also offers good visual tools and most importantly native
support across Microsoft’s extensive ecosystem. XAML can be used as a native tool to
develop for both Windows mobile phones, Windows desktop and laptop devices, and
other Microsoft devices such as tablets or surface computers. It is important to note that
our architecture (as we will see in Section 3.2) can use any abstract UIDL to generate
adaptive GUIs.

5 Note that XAML is thus not used only for mobile devices, but for a broad family of heteroge-
neous devices (e.g., desktop computers, surfaces, consoles, . . . ).



3.2 ADUS Mobile Agent Architecture

In our system, mobile agents collaborate [7] in order to achieve their goal of adapting
GUIs. In particular, as we can see in Figure 1, the ADUS system contains several agents:

1. Visitor Agent: This mobile agent contains the core of the application functionality
and the business logic used in the application. Apart from the application logic,
this agent carries along with him the descriptions of all the different GUI elements
(using a UIDL) that it needs to interact with the user.

2. User Agent: This static agent is in charge of storing and managing information
about the user, her preferences, and the device at which this agent resides. For
example, it provides profile and context information such as device type, location,
or user’s notification and font size preferences.

3. ADUS Agent: This static agent is in responsible for orchestrating all the required
UIDLs adaptations and transformations, as well as for handling the user-computer
interaction by creating the appropriate GUIs.

4. (Optional) Knowledge agents: These agents are specialised agents that can learn
from collected information (e.g., GUI interaction events) and create knowledge that
can be then either 1) passed to ADUS Agent to further adapt/transform the GUI
or 2) passed to another agent for their use.

Using these agents and a UIDL to define the GUI, ADUS adopts an indirect gener-
ation architecture for generating and managing GUIs6. The detailed interaction among
agents is as follows (see Figure 1):

1. The Visitor Agent arrives (or is created) at the target device, carrying both the
application code and a basic GUI specification using UIDL.

2. The resident User Agent detects the Visitor Agent arrival, and creates a new ADUS
Agent, which is specifically assigned to the recently arrived Visitor Agent.

3. The Visitor Agent sends the UIDL specification to the newly created ADUS Agent.
4. The ADUS Agent analyses the UIDL specification and passes it to the User Agent,

which adapts such a specification to taking into consideration the user preferences
and device features (i.e., it applies basic customisations such as font size and back-
ground color).

5. The ADUS Agent receives the adapted specification along with other user and de-
vice related information from the User Agent which might be relevant for the GUI
(e.g., global properties such as when not to disturb the user with notifications).

6. The ADUS Agent generates a GUI for the specific device, reconciling it with the
local device interface model and GUI available elements. Moreover, it handles all
interaction events forwarding them appropriately to the Visitor Agent and calling
its handling callbacks.

7. Each time the Visitor Agent processes a forwarded event, it responds accordingly
presenting an updated GUI specification for ADUS’ consumption (back to point 3).

6 We refer the interested reader to our previous work [20], where a discussion about the benefits
and drawbacks of other possible alternative agent architectures are presented.



8. As ADUS Agent processes interaction data, these data are collected and can be
analysed. Such an information can be made available to any agent, e.g., User or
Knowledge Agents. These agents can then analyse past interactions, learn from
them, and create knowledge that can be applied to improve GUI or application
usability. For example, input data could be saved and pre-populated on the next
launch of the application. ADUS can use any tool set or learning techniques to
enhance the GUI.

Fig. 1. ADUS: Indirect GUI generation architecture

By using the above method, the different elements of the GUI are created via an
ADUS Agent. The GUI can be adapted to target device and to user preferences. In
this way, the Visitor Agent does not have to know how to generate GUI or handle
interactions with the specific device or user. Besides, note how the ADUS Agent is
instantiated by the target platform, so the trust between the User and ADUS Agents
is inherent. The trust relationship is important as agents that are not inherently trusted
(e.g., the Visitor Agent) could generate GUI that is not appropriate or respecting users’
preferences.

The user interactions are completely delegated to the ADUS Agent. The reason is
twofold: 1) if the GUI was to be created by the User or Visitor agent, they would need
to know how to interpret any GUI specification and create it on any device (this pro-
gramming effort is put on the development of ADUS versions); and 2) if the User Agent
was creating GUIs locally, it would quickly be overloaded by the possible multitude of
applications and different tasks (ranging from learning about user and device to creating
GUIs).

Finally, it is important to note that our approach allows collection of interaction
data independently of the underlying platform. Collected data can be analysed at run
time by learning algorithms and specialist agents so that GUI can be improved at the



time of execution. The cooperation of agents when creating GUI in our approach is
significant: the specification of a GUI is built collaboratively by agents with specialist
roles allowing GUI to become truly dynamic and adapted to context and task at hand.
For example, a Knowledge Agent can modify GUI specification so to make GUI more
usable, and User Agent can help GUI be more adapted to users’ preferences.

We have chosen this approach as it enables the creation of a functional, flexible,
and trusted user interface. In addition, as multiple Agents collaborate to create a GUI,
human computer interaction can be easily monitored and system load can be easily
distributed.

4 Conclusions and Future Work

Adapting GUIs to devices and users automatically is a difficult task. In this paper we
proposed ADUS, an architecture based on mobile agents for developing adaptive user
interfaces for multiple devices and applications. Previous GUI adaptation approaches
reviewed in this paper would not be able to operate using mainstream platforms on
current mobile devices. Our focus here has been not only to create an architecture and
approach that adapts GUIs but also that the approach can be implemented using main-
stream technologies and on current mobile and fixed devices. The main contributions
of this paper are:

1. Ability to adapt GUIs on today’s devices and platforms. Majority of related work
reviewed in this paper would not be able to work with the current mainstream
platforms without significant modification. We presented an up-to-date architec-
ture (based on mobile agents) for adapting GUIs that is usable for modern main-
stream platforms and devices. Using our architecture GUIs are specified once and
automatically adapted to devices and user preferences at run-time.

2. Collaborative GUI. ADUS architecture allows GUIs to be created collaboratively
by multiple agents (as opposed by a single entity or agent). Moreover, in ADUS
architecture, agents collaborate in order to enhance GUIs at run-time. Our architec-
ture allows monitoring of user behaviour and application of learning techniques to
improve the GUI.

As future research we intend to improve content transformation and capturing of
GUI events. Finally, we envisage including additional learning and re-targeting algo-
rithms as well as more complex widgets in the prototype.

References

1. Rogers, R., Lombardo, J., Blake, M.: Android Application Development. O’Reilly (2009)
2. Xamarin: http://www.xamarin.com, last accessed 12th Sep 2016.
3. Bullard, V., Smith, K.T., Daconta, M.C.: Essential XUL Programming. Wiley (2001)
4. Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., Shuster, J.E.: UIML: an

appliance-independent XML user interface language. Computer Networks 31(11) (1999)
1695–1708



5. Michotte, B., Vanderdonckt, J.: GrafiXML, a multi-target user interface builder based on
UsiXML. In: Proc. of 4th International Conference on Autonomic and Autonomous Systems
(ICAS’08), IEEE Computer Society (March 2008) 15–22

6. Coninx, K., Luyten, K., Vandervelpen, C., Van den Bergh, J., Creemers, B.: Dygimes: Dy-
namically generating interfaces for mobile computing devices and embedded systems. In:
Proc. of 5th International Symposium, Mobile HCI 2003, Udine, Italy, September 2003,
Springer (September 2003) 256 – 270

7. Gray, R.S., Kotz, D., Nog, S., Rus, D., Cybenko, G.: Mobile agents for mobile computing.
Technical Report TR96-285, Dartmouth College (1996)

8. Neuburg, M.: Progamming iOS 9. O’Reilly (2015)
9. Weyl, E.: Mobile HTML5. O’Reilly (2013)

10. Rischpater, R.: Application Development with Qt Creator (2nd Edition). Packt Publishing
(2014)

11. Bobed, C., Ilarri, S., Mena, E.: Distributed mobile computing: Development of distributed
applications using mobile agents. In: Proc. of the 16th International Conference on Parallel
and Distributed Computing (PDPTA’10), CSREA Press (July 2010) 562–568

12. Leppänen, T., Liu, M., Harjula, E., Ramalingam, A., Ylioja, J., Närhi, P., Riekki, J., Ojala,
T.: Mobile agents for integration of internet of things and wireless sensor networks. In: Proc.
of 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC’13), IEEE
Computer Society (October 2013) 14–21

13. Liu, H., Lieberman, H., Selker, T.: A model of textual affect sensing using real-world knowl-
edge. In: Proc. of the 8th International Conference on Intelligent User Interfaces (IUI’03),
ACM (January 2003) 125–132

14. Su, C.J., Chu, T.W.: A mobile multi-agent information system for ubiquitous fetal mon-
itoring. International Journal of Environmental Research and Public Health 11(1) (2014)
600–625

15. Vassileva, J., Mccalla, G., Greer, J.: Multi-agent multi-user modeling in I-Help. Journal of
User Modeling and User-Adapted Interaction 13(1-2) (2003) 179–210

16. Mitrovic, N., Mena, E.: Adaptive user interface for mobile devices. In: Proc. of the 9th In-
ternational Workshop on Design, Specification, and Verification - Interactive Systems (DSV-
IS’02), Springer (June 2002) 47–61

17. Nathan, A.: Building Windows 10 Applications with XAML and C# Unleashed (2nd Edi-
tion). Sams (2016)

18. Mitrovic, N., Bobed, C., Mena, E.: A review of user interface description languages for
mobile applications. In: Proceedings of 10th International Conference on Mobile Ubiqui-
tous Computing, Systems, Services and Technologies (UBICOMM’16), ARIA XPS (Octo-
ber 2016)

19. Morris, J.: Android User Interface Development. Packt Publishing (2011)
20. Mitrovic, N., Royo, J., Mena, E.: Adus: Indirect generation of user interfaces on wireless

devices. In: Proc. of 7th International Workshop Mobility in Databases and Distributed
Systems (MDDS’04), within 15th International Workshop on Database and Expert Systems
Applications (DEXA’04), Springer (September 2004) 1–5


