
A Review of User Interface Description Languages
for Mobile Applications

Nikola Mitrović∗, Carlos Bobed∗†, Eduardo Mena∗†
∗Dept. of Computer Science & Systems Engineering

University of Zaragoza, Spain
†Aragon Institute of Engineering Research (I3A), Spain

Email: mitrovic@prometeo.cps.unizar.es, {cbobed,emena}@unizar.es

Abstract—Adapting a graphical user interface (GUI) for var-
ious user devices is still one of the most interesting topics
in today’s mobile computation. The benefits of separating the
specification of the GUI from its implementation are broadly
accepted. However, it is not clear which are the benefits and
disadvantages of current GUI specification languages in order to
define and develop multiplatform mobile applications which can
adapt dynamically to different devices with different features.
In this paper, we review User Interface Description Languages
(UIDLs) that can be used currently to specify GUIs in mainstream
mobile platforms. We analyze their features and usefulness for
dynamic adaptation of GUIs to heterogeneous mobile devices. All
reviewed UIDLs are suitable for developing mobile applications;
however, there are no UIDLs that will truly be able to operate
across multiple platforms.

Index Terms—Adaptive GUI; Mobile Computing.

I. INTRODUCTION

The use of mobile devices and applications is increasing.
Adapting GUIs to different mobile devices is still one of the
most interesting problems in mobile computing as modern
devices vary considerably in their properties (e.g., screen size,
resolution, user input controls). The benefits of working with
User Interface Definition Languages (UIDLs) [1] to specify
GUI is that such a specification can be re-used and adapted
to different devices automatically. This approach has been
accepted by the GUI researchers a long time ago [2], and
it has been applied to multiple devices in the Personal Digital
Assistant (PDA) era [3]. However, there does not exist yet a
standard UIDL that is widely used by software developers, let
alone by mobile apps developers.

In this paper, we review main User Interface Description
Languages (UIDLs) that can be used currently to specify
GUIs in mainstream mobile platforms. While there is a
large number of research-based UIDLs (such as UIML [2],
UsiXML [4], or Maria XML [5], to name a few), these UIDLs
have limited support and implementation code outside their
respective research institutions, and, thus, we will focus on
the mainstream UIDLs that have strong adoption in at least
one of the significant technology ecosystems.

Previous UIDL reviews [6][7][8] focused on theoretical
UIDLs, devices and platforms of the time, and their usefulness
for Human-Computer Interaction adaptation in general, as
opposed for mobile application suitability. These prior reviews
did not analyze modern, industry accepted, UIDLs such as

Android XML [9] or XAML [10], and did not consider
today’s mainstream mobile devices and their market uptake.
We analyze the features of mainstream UIDL languages, and
evaluate them from the point of view of being used by
mobile applications to allow a dynamic adaptation of such
specifications to heterogeneous modern mobile devices. We
focus on their ease of use, and the availability of visual
tools, among other parameters. We consider the following
two categories of UIDLs, based on their relationship with the
mobile platforms and Web browsers:

1) UIDLs specific for mobile devices. These UIDLs are
specifically developed for a particular mobile platform,
e.g., Android or iOS devices.

2) UIDLs associated with Web browsers. These UIDLs are
linked to one or more Web browsers, and can be used
for mobile application development.

Finally, for the purpose of this review, we use as an
example a simple currency converter, which converts numeric
amounts between three currencies. This example application
was developed for each UIDL that is reviewed in this paper
in order to evaluate the usefulness of the provided tools, and
its applicability to multi-device and multi-platform use. Full
specifications of the example application in different UIDLs
can be found in [11].

The remainder of this paper is structured as follows. Sec-
tion II presents the UIDLs used in popular mobile platforms.
In Section III, we review UIDLs that are associated with Web
browsers. In Section IV, we analyze and compare the above
approaches. Finally, Section V gives some conclusions and
future work.

II. UIDLS SPECIFIC FOR MOBILE DEVICES

In this section, we review the UIDLs used in the market
leading mobile platforms, namely, Android XML (Android)
and Storyboards (iOS); both platforms together reach a 92%
of market share [12]. We also include other relevant UIDLs
for mobile devices such as XAML (Windows 10), and QML
(Ubuntu OS).

A. Android XML

Android is the most widely used operating systems when it
comes to mobile devices (i.e., smartphones and tablets): An-

droid market share is estimated at 60.99%. It is a Linux-
based operating system whose middleware, libraries, and APIs
are written in C. Android supports Java code as it uses a
Java-like virtual machine called Dalvik (substituted by ART
from Android 5.x onward). In Fig. 1, we show an excerpt
of the Android XML code of our example application and a
screenshot rendered in an Android N emulator.

<LinearLayout
...
<TextView android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:text="Currency Converter"

android:id="@+id/textView" />
<LinearLayout android:orientation="horizontal" ... >

<TextView ... android:id="@+id/textView2"
android:text="Quantity:" />

<EditText ... android:id="@+id/Qty" .../>
</LinearLayout>
<LinearLayout android:orientation="horizontal" ... >
<TextView ... android:id="@+id/textView3"

android:text="From:" />
<RadioGroup ... android:id="@+id/From">

<RadioButton ... android:id="@+id/eurFrom"
android:text="Euros" ... />

<RadioButton ... android:id="@+id/usdFrom"
android:text="US Dollars" ... />

<RadioButton ... android:id="@+id/gbpFrom"
android:text="British Pounds" ... />

</RadioGroup>
<TextView ...

android:id="@+id/textView4"
android:text="To:" />

...
</LinearLayout>
<LinearLayout android:orientation="horizontal" ...

<TextView ... android:id="@+id/textView5"
android:text="Result:" />

<TextView ... android:id="@+id/output" />
</LinearLayout>
<Button ... android:id="@+id/convert"
android:text="Convert" />

</LinearLayout>

Fig. 1. Excerpt of the Android XML specification and rendering for the
sample app.

Android applications are built using Activities, which can
be regarded as windows in a usual desktop environment,
and Services, which are background processes without GUI.
Graphical User Interfaces are defined using a XML-based
notation named Android XML [13][9].

Given the heterogeneity of Android devices, support for
GUI adaptation to different devices is provided using layout
elements and visual behavior policies. Android also provides
further mechanisms to deal with different device display

capabilities and adapt the interface, but it is the developer
who is in charge of developing the application in a responsive
and plastic way [14].

The developer can specify behavioral aspects in Android
XML in different ways, such as event handling. Moreover,
within the Android XML document, the application developer
can state implicit navigation via the definition of Intents,
objects which represent the intention of the application, and
allows development of applications in a service oriented way.
This service oriented model allows applications to use activi-
ties from other applications using a built-in broker mechanism.

GUI and UIDL development can be performed using the
Android Studio SDK’s visual editor. Android XML is suffi-
ciently developer-friendly and can be edited manually when
required, e.g., to refine GUI behavior.

B. Storyboards (iOS)

Similarly to Android, Apple’s iOS also adopts a XML-
driven interface via Storyboards [15]. Apple’s approach goes
further than Android: Storyboards use views (similar to An-
droid’s activities), but they can also explicitly include naviga-
tion aspects of user interaction in the GUI specification. Thus,
a storyboard provides a comprehensive view of the whole
application and the workflow of interactions.

The set of elements provided by iOS to define UIs does not
contain some common visual elements such as radio and check
button widgets (although the platform allows custom widgets
to be developed if required). In Fig. 2, we present a screenshot
of our example application rendered in iOS emulator; note that
choices are made using switches, not radio or check buttons.
We have not included the iOS storyboard code due to space
limitation (the full code is available in [11]).

Fig. 2. Sample app as rendered in iOS emulator from its storyboard
specification.

The model adopted by iOS devices is more closed than
the one adopted by Android. When developing applications
for iOS, the developer has lower heterogeneity of devices
than Android, but the interface guidelines are more strictly
dictated by the environment. The definition of the application
appearance is done via a visual editor integrated in Apple’s
Xcode environment. While in Android (and other used UIDLs)
the interface definition can be easily defined (or at least
edited) by the developer without visual help, storyboard XML
language is clearly designed to be machine-generated and not

edited manually. The application logic in iOS can be developed
using Objective-C or Swift programming languages.

C. XAML: eXtensible Application Markup Language

XAML [10] is the UIDL developed by Microsoft and has
been used in several of their technologies (e.g., .NET 4.0, Sil-
verlight). XAML is also used to specify GUIs for the Windows
10 platform. This makes XAML available not only on fixed
Windows computers but also on mobile devices. See Fig. 3
for an excerpt of the XAML code of our example application
developed as an UWP application, and its rendering on a
Windows 10 Desktop.

<Page x:Class="Converter.Converter" ... ">
<StackPanel >

<StackPanel >
<TextBlock> Currency Converter</TextBlock>
<StackPanel Orientation="Horizontal">

<TextBlock Text="Quantity:"/>
<TextBox Text="0.00" x:Name="Qty"/>

</StackPanel>
<StackPanel Orientation="Horizontal">

<TextBlock Text="From:"/>
<StackPanel>

<RadioButton x:Name="EurFrom"
GroupName="From">Euros</RadioButton>

<RadioButton x:Name="UsdFrom"
GroupName="From">US Dollars</RadioButton>

<RadioButton x:Name="GbpFrom"
GroupName="From">British Pounds

</RadioButton>
</StackPanel>
...

</StackPanel>
</StackPanel>
<StackPanel Orientation="Horizontal">

<TextBlock Text="Result:"/>
<TextBlock x:Name="Output" Text=""/>

</StackPanel>
<Button x:Name="Convert">Convert</Button>

</StackPanel>
</Page>

Fig. 3. Example of the XAML specification and rendering for the sample
app.

Microsoft made an important effort to unify development
of applications for different Microsoft platforms under the
Universal Windows Platform (UWP) programme [10]. UWP
applications share a basic API and GUI elements which are
then extended and specialized for specific device families. As
long as the developer restricts its application to the use of the
basic API and XAML elements the application will run on all
devices that are compatible with UWP.

Although XAML is used only in Windows-based devices,
there is still a need to adapt GUIs to different devices. This

adaptation is quite similar to Android: developers need to
provide layout elements and policies in order to adapt (to a
certain extent) automatically the GUI to the specific device.

D. QML

QML is an UIDL associated to Qtgraphical libraries [16]
and it has been adopted as UIDL for Ubuntu OS applications.
QML is a JSON-like language, where graphical elements are
grouped in libraries which can be imported as needed (thus
providing an extension mechanism). Fig. 4 shows an QML
code excerpt for our example application and a screenshot of
the GUI as rendered by Qt Designer (Ubuntu Mate Desktop).

import QtQuick 2.1 ...
ApplicationWindow {

id: applicationWindow1
title: qsTr("Converter")
ColumnLayout {

id: columnLayout1
anchors.rightMargin: 0
anchors.bottomMargin: 0
...
Label {
id: label1
...
text: qsTr("Currency Converter")

}
RowLayout { /* From Radio button */

id: rowLayout2
...
Label {

id: label3
...
text: qsTr("From:") }

ColumnLayout { /* inside RowLayout */
id: columnLayout3
...
ExclusiveGroup {id:from}
RadioButton {

id: eurFrom
...
text: qsTr("Euros")
checked: true
exclusiveGroup: from }

RadioButton {
id: usdFrom
...
text: qsTr("US Dollars")
exclusiveGroup: from }

RadioButton {
id: gbpFrom
...
text: qsTr("British Pounds")
exclusiveGroup: from}
}...}...}...}

Fig. 4. Example of the QML specification and rendering for the sample app.

Being a general purpose UIDL language, QML (since
Qt 5.1) also provides layout mechanisms in order to support

device adaptation. Previously, Qt Quick support for windows
resizing (not device adaptation) was limited to the use of
positioners for items, and anchors to layout children GUI
elements. Qt provides bindings to multiple programming lan-
guages and platforms, which makes the adoption of QML a
feasible solution for multiplatform development. Moreover, as
with Android XML and XAML, the specification is developer-
friendly and can be edited using visual tools or manually.

III. UIDLS ASSOCIATED WITH WEB BROWSERS

Apart from developing ad hoc apps for each of the mobile
platforms, the development of applications using Web tech-
nologies has increased as Web browsers are broadly available
for fixed and mobile devices. These applications use the Web
browser (or its engine) as a kind of runtime middleware,
where an application can be deployed independently of the
underlying mobile platform (with some limitations). This
section reviews two UIDLs that are used by Web browsers:
HTML5, the most widely used UIDL as it is supported by both
mobile and desktop computers, and eXtensible User Interface
Definition Language (XUL), used by the Mozilla Foundation.

A. HTML5

HTML5 [17] is a the new version of HyperText Markup
Language, the language for structuring and presenting content
on the Web. While HTML5 can be considered to be mainly
content-oriented, it offers several form tags to interact with
the user, which makes it also suitable to define user interfaces.
For our review, we are considering plain HTML5, without any
JavaScript library extensions.

Fig. 5 shows an excerpt of the HTML5 specification for the
sample app and a screenshot of its rendering in Firefox. Note
that plain-HTML tag <table role="presentation">
was used to specify the layout of the GUI. The use of this tag
has been discouraged by the W3C HTML5 Recommendation
Document and use of CSS [17] is advised instead. This
requires GUI developers have to manage both HTML5 and
CSS descriptions to specify the required GUI layout.

HTML5 introduces new tags to include different types
of content that are now directly supported by browsers
(e.g., <video>, <audio>, <canvas>, . . .). Several new
control forms [17] are introduced too (e.g., date, color, search,
etc.). Moreover, some tags have been included to define
a basic web document layout (e.g., <header>, <nav>,
<footer>, . . .). However, responsiveness and layout adap-
tion is delegated to CSS (usually combined with JavaScript).

The technology stack HTML5+CSS+JavaScript has gained
momentum in mobile applications thanks to: 1) ubiquity of
Web browsers, 2) the usefulness of client-server model to al-
low frequent content updates (rather than providing application
updates), and 3) the introduction of cross-platform HTML5
code engines, such as Apache Cordova [18] or Crosswalk [19].
Firefox OS [20] and Ubuntu OS applications can also be
implemented using this technology stack. While multiplatform
applications can be developed using HTML5 and Cordova

<html> ... <body>
<table role="presentation">
<tr> <td> Currency Converter </td> </tr>
<tr> <td>
<table>
<tr> <td>
<table role="presentation">
<tr> <td> Quantity </td>
<td>
<input type="text"
id="Qty" value="0.00"/> </td> </tr>

</table> </td> </tr>
<tr> <td>
<table role="presentation">
<tr> <td> From: </td>
<td>
<input type="radio" name="From"
value="eurFrom"> Euros

<input type="radio" name="From"
value="usdFrom"> US Dollars

<input type="radio" name="From"
value="gbpFrom"> British Pounds </td>

...
</table> </td> </tr>

<tr> <td>
<table role="presentation">
<tr> <td> Result: </td>
<td id="output"> </td> </tr>

</table> </td> </tr>
<tr> <td>
<table role="presentation">
<tr> <td>

<input type="button" name="Convert"
value="Convert">

</td> </tr>
</table> ...

...
</body> </html>

Fig. 5. Example of the HTML5 specification and rendering for the sample
app.

or Crosswalk, such applications need to be installed on each
computer in the same way as regular applications (to run, some
of them have to be bundled along with a particular runtime).

B. XUL: eXtensible User interface definition Language

XUL [21] is the UIDL developed and supported by Mozilla
in its Gecko engine. XUL allows development of multiplat-
form interfaces by providing a GUI specification that is very
abstract and not related to any specific devices or platforms.
In Fig. 6, we present an excerpt of the XUL specification of
our sample app and its rendering in Firefox.

In order to provide adaption to the different capabilities
of the devices, XUL relies both on predefined layouts, and
customization via CSS and JavaScript. While it is mainly
oriented to window-based GUIs, the widgets and basic layouts

provide developers with a higher level abstraction than other
similar languages (e.g., HTML5).

...
<window title="Converter" xmlns=" ... /there.is.only.xul">
<vbox>

<label control="lblAll" value="Currency Converter"/>
<hbox>

<label control="lblQty" value="Quantity:"/>
<textbox value="0.00" id="Qty"/>

</hbox>
<hbox>

<label control="lblFrom" value="From: "/>
<radiogroup orient="vertical" id="From" ...>

<radio id="EurFrom" label="Euros"/>
<radio id="UsdFrom" label="US Dollars"/>
<radio id="GbpFrom" label="British Pounds"/>

</radiogroup>
...

</hbox>
<hbox>

<label control="lblOutput" value="Result: "/>
<label id="Output" control="Output" value=""/>

</hbox>
<hbox>

<button id="Cnv" label="Convert" oncommand="convert()"/>
</hbox>

</vbox>
</window>

Fig. 6. Example of the XUL specification and rendering for the sample app.

XUL has been adopted as the UIDL for developing ex-
tensions for Firefox Web browser, but this use might be
discontinued in favor of adopting WebExtensions (mainly due
to security reasons). In fact, Firefox OS apps are developed
using the full Web technology stack (HTML5, CSS, and
JavaScript). The application logic for XUL applications using
Gecko engine is mainly developed using JavaScript.

IV. COMPARISON

After defining our sample Currency Converter application
in all the reviewed UIDLs to grasp the philosophy of each
language, we analyze the pros and cons of each of them
from the point of view of using them to develop the GUI
of applications that must run on very different fixed or mobile
computers. Thus, in Table I, we can see different appealing
characteristics related to multiplatform development, namely:

• Multi-device: It refers to whether the UIDL takes into
consideration devices with different characteristics (e.g.,
screen size).

• Multi-OS: Considers if the UIDL can be used outside the
boundaries of a particular OS (or mobile platform).

• Multi-language: It refers to whether the UIDL can be
used with different programming languages to develop
the application logic.

• Visual Editor: Considers existence of tools that allow de-
velopers to design UIDL-based GUIs in a visual manner,
abstracting developers from UIDL’s syntax.

• Friendly Markup: Considers, regardless the existence of
a visual editor, whether the UIDL specification can be
edited manually by the developer easily or, alternatively,
is the UIDL too difficult to edit manually due to e.g.,
complexity and number of UIDL elements.

• Layout Support: It refers to whether the UIDL allows
developers to select predefined GUI layouts.

Regarding multi-device support, all the analyzed languages
can be used in a multi-device target environment. However, it
has to be noted that both HTML5 and XUL require a Web
browser (or an engine) to be available for each device. Re-
garding operating systems support for UIDLs, Android XML
and Storyboard are tightly bounded with Android and iOS,
respectively. Moreover, note that XAML, while is suitable to
develop GUIs for several platforms, is restricted to work within
Windows devices.

Concerning supported programming languages, the logic
of the applications developed with Android XML is, at first,
restricted to Java. In iOS (Storyboards), the developer can use
Objective-C or Swift. XAML can be used by different pro-
gramming languages that are available under the .Net platform
(e.g., Java, C#, etc.). For QML, JavaScript is recommended
for developing apps in Ubuntu OS, but many other languages
can be used when used alongside Qt libraries (if appropriate
language bindings are available). The application logic of
applications in HTML5 needs to be developed in JavaScript.
Last but not least, there are some efforts to use XUL with
different languages (such as Java) but they seem discontinued.

The existence of a friendly visual editor is not a problem
for any analyzed language but for XUL. However, XUL has a
really friendly markup which can be easily used to define the
UIs. On the other side, in practice, iOS Storyboards require a
visual editor due to the verbosity of its GUI specifications.

Finally, all languages but HTML5 support layout elements
(and mechanisms) that help the developer to describe the
interfaces in an adaptive way, which is a very important feature
for multidevice application development. The case of HTML5
is special as layout is delegated almost completely to the use
of complementary CSS (there are tags that are used to serve
as entry points for this, i.e., <div>).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have reviewed several popular User Inter-
face Definition Languages (UIDLs) from the point of view of
their use in the context of mobile applications. The objective
of our evaluation was to understand usefulness, benefits, and
drawbacks of UIDLs when adapting to multiple mobile devices
or different user contexts. We defined an example application
in each UIDL to help the evaluation.

TABLE I
COMPARISON OF THE REVIEWED UIDLS.

Feature Android XML Storyboard XAML QML HTML5 XUL

Multi-device X X X X X2 X2

Multi-OS × × X1 X X2 X2

Multi-language × X X X3 × X

Visual Editor X X X X X ×
Friendly Markup X × X X X X

Layout Support X X X X × X
1 Provided that all devices are Windows-based.

2 Provided a suitable engine (e.g., Web browser or app engine) is available.
3 Provided there is a binding of Qt libraries to such a language.

As summary, all reviewed UIDLs can be used in mobile
applications and adapted to multiple devices. However, we
found that the most popular languages have strong dependency
on their underlying platform and vendor (Android XML,
XAML, Storyboards). These UIDLs are used only on Android,
Apple, or Microsoft devices and do not have any support
on other platforms. QML, whilst being less vendor-specific,
requires language and platform bindings which may not be
available or are difficult to use. On the other side, HTML5 is
widely accepted as UIDL but requires several technologies to
be combined in order to deliver GUIs (i.e., CSS, JavaScript,
Web Browser). This makes the development of applications
more complex and potentially less portable between different
device-platform combinations. Mozilla’s XUL, on the other
hand, appears to be combining the features of other UIDLs
and allows applications to be developed outside the Mozilla
platform (i.e., without having a Web Browser).

We have shown that currently there does not exist a good
multi-OS oriented UIDL which can be broadly adopted for
developing applications whose GUI is correctly presented on
very different mobile devices. Whenever an application needs
to be delivered on multiple platform-device combinations, the
user interface is not likely to be reused unless in vendor-
specific situations (e.g., XAML for Microsoft environments,
or Android XML for Android). HTML5, as stated before, re-
quires several technologies to deliver a functional GUI descrip-
tion. Finally, XUL may offer the best chance of redeploying
the user interface given that there are some implementations
outside Mozilla’s Web browser engine, albeit some of these
appear to be discontinued.

As future work we plan to test different UIDLs by im-
plementing more complex applications in multiple devices
and user contexts. Furthermore, we will analyse performance
implications of choosing a specific UIDLs, and their usefulness
for advanced GUIs.

ACKNOWLEDGMENT

This work was supported by the CICYT project TIN2013-
46238-C4-4-R and DGA-FSE.

REFERENCES

[1] N. Mitrović, E. Mena, and J. A. Royo, Chapter XIX - Adaptive
Interfaces in Mobile Environments: An Approach Based on Mobile

Agents. Information Science Reference, 2007, pp. 302–317.
[2] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and

J. E. Shuster, “UIML: an appliance-independent XML user interface
language,” Computer Networks, vol. 31, no. 1116, pp. 1695–1708, 1999.

[3] N. Mitrović and E. Mena, “Adaptive user interface for mobile devices,”
in Proceedings of the 9th International Workshop on Interactive Systems.
Design, Specification, and Verification (DSV-IS’02), vol. 2545. Springer
LNCS, June 2002, pp. 47–61.

[4] J. Gonzalez-Calleros, J.-P. Osterloh, R. Feil, and A. Ldtke, “Automated
UI evaluation based on a cognitive architecture and UsiXML,” Science
of Computer Programming, vol. 86, pp. 43–57, 2014.

[5] F. Paterno, C. Santoro, and D. S. Lucio, “MARIA: a universal, declara-
tive, multiple abstraction-level language for service-oriented applications
in ubiquitous environments,” ACM Transactions on Computer-Human
Interaction, vol. 16, no. 4, pp. 219–224, 2009.

[6] J. Guerrero-Garcia, J. M. Gonzalez-Calleros, J. Vanderdonckt, and
J. Muoz-Arteaga, “A theoretical survey of user interface description
languages: Preliminary results,” Latin American Web Congress, pp. 36–
43, 2009.

[7] N. Souchon and J. Vanderdonckt, “A review of xml-compliant user
interface description languages,” in Proceedings of the 10th International
Workshop on Interactive Systems. Design, Specification, and Verification
(DSV-IS’03), vol. 2844. Springer LNCS, 2003, pp. 377–391.

[8] J. Engel, C. Herdin, and M. Christian, “Review of user interface
definition languages,” in Proceedings of the 6th Forum Medientechnik.
VWH, 2014, pp. 183–198.

[9] J. Morris, Android User Interface Development. Packt Publishing, 2011.
[10] A. Nathan, Building Windows 10 Applications with XAML and C#

Unleashed (2nd Edition). Sams, 2016.
[11] N. Mitrovic, C. Bobed, and E. Mena, ADUS: Full UIDL code and

samples at http://sid.cps.unizar.es/projects/ADUS/UIDLs, last accessed
30th Aug 2016.

[12] MarketShare, http://www.netmarketshare.com/, last accessed 30th Aug
2016.

[13] R. Rogers, J. Lombardo, and M. Blake, Android Application Develop-
ment. O’Reilly, 2009.

[14] A. Demeure, G. Calvary, J. Coutaz, and J. Vanderdonckt, “The comets
inspector: Towards run time plasticity control based on semantic net-
work,” in Proceedings of 5th International Workshop on Task Models
and Diagrams for UI Design (TAMODIA’06), vol. 4385. Springer
LNCS, October 2006, pp. 324–338.

[15] M. Neuburg, Progamming iOS 9. O’Reilly, 2015.
[16] R. Rischpater, Application Development with Qt Creator (2nd Edition).

Packt Publishing, 2014.
[17] W3C, HTML5 W3C Recommendation, http://www.w3.org/TR/html/,

last accessed 30th Aug 2016.
[18] J. M. Wargo, Apache Cordova 4 Programming. Addison Wesley, 2015.
[19] Crosswalk-Project, http://www.crosswalk-project.org, last accessed 30th

Aug 2016.
[20] T. Pant, Learning Firefox OS Application Development. Packt Publish-

ing, 2015.
[21] V. Bullard, K. T. Smith, and M. C. Daconta, Essential XUL Program-
ming. Wiley, 2001.

