Adaptive User Interfaces Based on Mobile Agents: Monitoring
the Behavior of Users in a Wireless Environment*

Nikola Mitrovié¢
IIS Department

University of Zaragoza
Maria de Luna 1
50018 Zaragoza, Spain

mitrovic@prometeo.cps.unizar.es

Abstract

Adapting user interfaces to meet users’ context
and preferences is one of the most challenging
questions of mobile computing. In the mobile
world, every application must be aware of the
different user devices, application platforms
and contexts where it should execute; the al-
ternative is reimplementing the same user in-
terface to meet different device capabilities.
This paper presents a proposal based on mo-
bile agents that transparently adapts user in-
terfaces to the corresponding device capabili-
ties and monitors the user behavior using an
indirect user interface generation mechanism.
User behavior patterns are used to predict
users’ next most probable action. We apply
this approach to a software retrieval service to
show its feasibility.
Keywords: Adaptive user interfaces, mobile
computing, mobile agents and multiagent sys-
tems

1 Introduction

Adapting graphical user interfaces (GUIs) to
the user device capabilities is one of the most
challenging issues in mobile computing as de-
vices have different processing power and GUI
capabilities. Another important challenge is to
adapt the GUI to the user preferences, which

*Supported by the CICYT project TIN2004-
07999-C02.

University of Zaragoza
Maria de Luna 1
50018 Zaragoza, Spain

joalroyo@unizar.es

Jose Alberto Royo Eduardo Mena

IEC Department

IIS Department
University of Zaragoza
Maria de Luna 1
50018 Zaragoza, Spain

emenaQunizar.es

requires user behavior analysis and reuse of
knowledge.

In order to create adaptive user interfaces,
researchers use an abstract user interface def-
inition language as a common ground. There
are many abstract user interface definition
languages: XUL [3], UIML [1], XIML [6],
XForms [20], etc. These languages are de-
signed to provide an abstraction layer that
would provide a basis for contemporary user
interfaces.

From the architectural perspective, some re-
searchers use a client-server architecture [7]
for generating user interfaces, some provide
tools that create separate interfaces for differ-
ent platforms [15] and some focus on mobile
agent technology [13, 10].

In this paper we present the ADaptive User
Interface System (ADUS), a system designed
for indirect generation of user interfaces. We
have adopted a mobile agent architecture and
an abstract user interface definition language —
XUL (eXtensible User interface definition Lan-
guage [3]). The developed prototype adapts a
user interface definition to Java AWT, Java
Swing, HTML and WML clients and supports
limited plasticity [19]. In addition, our ar-
chitecture monitors user behavior to acquire
knowledge about the user and reuse it in future
execution. When creating the user interface,
our system considers user preferences, contex-
tual information, monitors user behavior and
abstracts device properties. Next most proba-

ble user action is derived from behavioral data
and this is advertised to the user.

The rest of this paper is as follows. In Sec-
tion 2 we give an overview of the technology
behind our proposal. In Section 3 we detail
our solution to generate adaptive GUIs and
monitor the user behavior. In Section 4 we
show the feasibility of our proposal by apply-
ing it to a multiagent system. Section 5 gives
an overview of the related work. Finally con-
clusions and future work are presented in Sec-
tion 6.

2 Generating User Interfaces with
Mobile Agents

In our prototype we use XUL and mobile
agents in order to specify user interfaces. We
have adopted this approach [14] as it enables
the description of a flexible user interface that
is able to adapt and move through the net-
work; it also enables the analysis of the user
behavior.

2.1 XUL: eXtensible User-interface Lan-
guage

The eXtensible User interface Language [3, 9]
is designed for cross-platform user interface
definition. This language is part of the Mozilla
project [16].

XUL lacks the abstraction layer of interface
definition, and is restricted to window-based
user interface. It is capable of referencing Cas-
cading Style Sheets (CSS) to define the layout
of elements. User actions, property access and
functionality can be stored in JavaScript (EC-
MAscript) [5] files. Although there are several
similar UI definition languages, we found XUL
to be a suitable open source solution for our
purpose.

2.2 Mobile Agents

A mobile agent is a program that executes au-
tonomously on a set of network hosts on be-
half of an individual or organization [12]. Mo-
bile agents execute in contexts denominated
places. A mobile agent is able to pause its ex-

ecution, travel from one place to another, and
once there it resumes its execution.

We assume a mobile agent architecture be-
cause software agents can easily adapt their
behavior to different contexts. Mobile agents
are able to arrive at the user device and show
their GUIs to the user in order to interact with
her/him. Mobile agents can be hosted by plat-
forms that support different models of user in-
terfaces or have different processing capabili-
ties. Agents are autonomous, and can handle
network errors (unreachable hosts, etc.) inde-
pendently. Also, they can move to the target
device instead of accessing such a target de-
vice remotely. Agents can be sent to a home
computer supporting Java. Also, an agent can
play the role of a proxy server for a wireless
device, such as mobile telephone or a web ter-
minal; in that case it should produce the ade-
quate GUI (WML or HTML, respectively, for
the previously cited devices).

In general, agents do not, by themselves,
constitute a complete application. Instead,
they form one by collaborating with other
agents.

2.3 Predicting the User Behavior

Predicting the user behavior is a difficult
task. There are several approaches such as:
1) WebTango[8], that collects user interface
metrics for a web site; 2) Predictions of the
user behavior based on Markov chains [4]; and
3) Longest Repeating Subsequence (LRS) [17]
and Information Scent [2] that perform data
mining seeking to analyze navigation path
based on server logs, similarity of pages, link-
ing structure and user goals.

In our approach the user agent (see Sec-
tion 3.1) monitors the user behavior and could
make use of any of the above approaches to
predict the user behavior.

3 ADUS: ADaptive User interface
System

The architecture of the system (shown in
Figure 1) is based on the use of the
Client/Intercept/Server model [18] and the in-

corporation of modules and agents both at the
wireless devices and at intermediary elements
(also called prozies) located at the fixed net-
work.

User Device Proxy Brox
& User Agent Brox
ﬁiu/—\g;u— ———— i j‘?
Visitor Agent-yireless Network Wired Network

Figure 1: Motivating architecture.

ADUS is our proposal to create adaptive
user interfaces for wisiting agents using user
agents to customize such user interfaces ac-
cording to user preferences and device capa-
bilities, and allow the monitoring of user in-
teractions.

From the point of view of GUI generation,
user interface rendering is a complex task. De-
velopment of contextual GUIs for mobile ap-
plications has the following problems:

e Adaptation of user interfaces: The visitor
agent must adapt the creation of the user
interface to the user preferences and user
device capabilities. For example, the user
can prefer thumbnails rather than full size
images. Visitor agents are not aware of
users’ context, device capabilities, plastic-
ity [19], etc. In addition, user preferences
could change during the execution of the
application.

e Monitoring user interfaces: If the user be-
havior is monitored, the user agent could
use the data of previous executions to
automatically assign initial values to the
GUI of future visitor agents that request
the same information [14].

3.1 Indirect User Interface Generation

In [14] we can find a comparison of the differ-
ent approaches to perform an indirect user in-
terface generation. In the following we explain
the multiagent solution used in our system (see
Figure 2):

o The wisitor agent: It is a mobile agent
that brings a service requested by the user

to the user device. This agent is able to
generate a XUL [9] specification of the
GUI that it needs to interact with the
user. Such a XUL specification is sent to
the user agent on the user device.

USER DEVICE

aous @7

e

Visitor Agent) Wireless Network

Figure 2: Indirect generation of GUIs

e The user agent: It is a highly specialized
personalization agent that is responsible
for storing as much information about
the user computer, and the user her-
self/himself, as possible. For example,
it knows the look and feel preferences of
the user, the kind of GUI preferred by
the user or imposed by the user device
or the operating system. The main goals
of this agent are: 1) To proxy the genera-
tion of user interfaces, 2) To help the user
to use the services of the visitor agent,
3) To modify the GUI specification of the
visitor agent according to the user prefer-
ences and device capabilities, 4) To create
an ADUS agent initialized with the GUI
specification, and 5) To monitor user in-
teractions by receiving such an informa-
tion from the ADUS agent.

e The ADUS agent: The main features of
this agent are: 1) To adapt the user in-
terface to the user preferences and device
capabilities, following the user agent sug-
gestions, 2) To generate GUIs for different
devices according to XUL specifications,
and 3) To handle the GUI events and to
communicate them to the visitor agent as
well as to the user agent.

In Section 4.2 we show an example of coop-
eration among the above agents. Thus, appli-

cation developers define user interfaces using
XUL only once and this specification is ren-
dered transparently on various platforms.

3.2 The Learning Process

We would like to stress the relevance for the
system of monitoring the user interaction with
visitor agents. By knowing the user reactions
and data entered to those services, the user
agent can store such data locally and apply
different artificial intelligence techniques to ex-
tract knowledge about the user behavior. For
example, in the context of a currency con-
verter service that executes on the user device,
the user agent could set (in the XUL speci-
fication of the visitor agent) US Dollars and
Euros as the initial and target currencies, re-
spectively, if that was the selection of the user
during the last execution of that service. Even
if the user selects now another configuration,
the user agent could learn and improve its be-
havior for the next time. Thus, the customiza-
tion of GUIs can become really useful for the
user, as the user agent is able to monitor, store
and analyze her/his interactions with all the
GUIs/applications.

4 Empirical Evaluation

In this section we adapt a multiagent applica-
tion, the Software Retrieval Service (SRS) [11]
and compare its performance with and with-
out using the ADUS approach. The SRS tries
to solve some of the most frequent tasks of a
computer user: to search, download and in-
stall a new software.

We first explain the agents that take place
in the SRS architecture, second we describe
how the ADUS approach is applied to the SRS,
and then we show the empirical results of our
comparison tests.

4.1 The Software Retrieval Service: Mul-
tiagent Architecture

In this section we briefly present the SRS [11].
This service is situated on a concrete server

of the wired network that we call prozy’.
The SRS incorporates one agent place on the
user device called the User place, and another
on the proxy, called the Software place (see
Fig. 3). In the following we summarized the
main steps of the SRS functionality:

PROXY

Browser

Software —_— i‘
Manager

SOFTWARE PLACE

| %’ Mobile agent |

USER DEVICE

Figure 3: Main architecture for the SRS

1. The user communicates with Alfred the
need of getting a new piece of software.
The Alfred agent is an efficient major-
domo that serves the user and is on charge
of storing as much information about the
user computer, and the user her/himself,
as possible. Alfred communicates with
the Software Manager agent, at the proxy
providing the user device with coverage.

2. The Software Manager is capable to
obtain customized metadata about the
needed software, according to the needs
expressed by Alfred (on behalf of the
user), by consulting a software ontology
(SoftOnt). Then the Software Manager
creates and provides the Browser agent
with a catalog of the available software
that fulfil the specified requirements.

3. The Browser travels to the user device
and presents its customized software cat-
alog to the user in order to interact with
him. As result of this interaction process,

It provides connectivity and services to wireless
users.

a piece of software will be selected by the
user, and later it will be downloaded and
installed.

Working in this way, the Browser agent di-
rectly generates its GUI on the user device
without knowing the user preferences and the
user device capabilities.

4.2 Using ADUS with the Software Re-
trieval Service

By applying the definitions of Section 3.1, in
the SRS Alfred plays the role of user agent and
the Browser agent behaves as a visitor agent
that arrives to the user device with the pur-
pose of creating a GUIL. Then an ADUS agent
is needed to intermediate in the GUI genera-
tion. The ADUS agent interacts with the SRS
as follows:

1. Instead of generating the GUI by itself,
the Browser agent sends to Alfred the
XUL specification of the GUI it needs.

2. Alfred modifies the XUL specification of
the GUI according to the user preferences
and user device capabilities. In the exam-
ple, the size and location of “split panes"
is set by Alfred (see Figure 4).

3. Alfred delegates the generation of the
GUI on the ADUS agent, who creates
the GUI needed by the Browser to inter-
act with the user and listens to the GUI
events. In the example, the ADUS agent
generates a Java Swing GUI supported by
the PDA of the user (see Fig. 5).

4. GUI events and data received by the
ADUS agent as result of user interac-
tion are communicated to Alfred and the
Browser agent for further processing. Al-
fred stores such data to predict future
user actions, and the Browser reacts to
the selections or data entered by the user
by generating a new GUI according to
such user’s actions.

In our prototype, in order to avoid that
visitor agents creates GUIs directly, only the
ADUS agent has the necessary (Java) permis-
sions to create windows and widgets.

<panel name="panelPrincipal" columns="1" weightx="1"
scrollable="false'">
<splitpane name="splitPanell"
orientation="horizontal" divider="200"
weightx="1">
<panel scrollable='"true'">
<label name="graphPanel" icon="/GUIs/browsing.gif"
action="click(X,Y,clickCount,popupTrigger,id)"
weightx="1" weighty="1"/>
</panel>
<panel name='"panelPrograms" columns="1" gap="0"
weightx="1" weighty="1">
<splitpane name="splitPanel2" orientation="vertical"
divider="50" weightx="1" weighty="1">
<tree name='"programs" selection='"single" weightx="1">
</tree>
<splitpane name="splitPanel3" orientation='"vertical"
divider="50" weightx="1" weighty="1">
<textarea name='"programDescription" wrap="true" text=
weightx="1" weighty="1"/>
<list name="programAttributes" selection="multiple"
weightx="1">
</list>
</splitpane>
</splitpane>
<label name="download"/>
</panel>
</splitpane>
</panel>

Figure 4: (Partial) XUL description of the GUT of
the Browser agent

Figure 5: The Browser agent GUI

4.2.1 The learning process in the SRS

Behavior analysis and learning are provided by
the user agent, Alfred, which treats user pref-
erences and predicts the user behavior follow-
ing the patterns stored (e.g. when expanding
the nodes of the software catalog). This agent
makes the necessary decisions that are later
reflected on the user interface.

In our prototype Alfred uses the Longest Re-
peating Subsequence (LRS) model [17] to pre-
dict the user behavior. The application needs

to be trained, as predictions are based on past
execution of the service. Once users start us-
ing the application, Alfred collects the neces-
sary data (the system monitors the actions ex-
ecuted by the user) to try to predict the next
hop, i.e., Alfred stores which are the methods
that have been triggered on each widget. In
addition, Alfred is able to establish relation-
ships among the initial set of keywords entered
by the user and the piece of software finally se-
lected, so it can show these pieces of software
in a toolbar allowing a direct download; usu-
ally the pieces of software that appears in the
toolbar are software upgrades or software that
the user installed some time ago. The reason
to show this software is to provide help in up-
grading software and compatibility with older
versions.

However, learning is not just limited to data
collected by Alfred from a single user: it col-
lects the usage data (for the same application)
and creates one unique usage log that is sent
to the proxy as default knowledge. This is
the knowledge of Alfred in the first execu-
tion of a service by a new user. This pro-
cess could lead to less efficient initial predic-
tions, because each user can follow different
browsing pattern. However, this also helps in
increasing overall user expertise, since users
with more expertise could influence predic-
tions by supplying better sequences to naive
users. Therefore, Alfred provides better pre-
dictions for users with less expertise and show
them how to use application more efficiently.

4.3 Performance Evaluation

In this section we present some performance
results that explain the advantages of using
the Adaptive User Interface System architec-
ture. Testing users retrieved several pieces
of software, first with the SRS that generates
GUT’s directly and then with the version that
uses ADUS. Data were obtained after testing
both methods by different kinds of end-users
(46 users in total).

In Figure 6 we show that the communi-
cation cost due to the indirect GUI genera-
tion is very low in comparison with the time
consumed by the browsing and data transfer

tasks: only the UI operations have been in-
creased slightly. However, the advantage of
the ADUS approach is that the system au-
tomatically adapts the GUI of visitor agents
to the user preferences and device capabilities
and allows Alfred to monitor the user behav-
ior.

ODsta Transfer mReading Catalog Ul operations

& & F g & &
& S o
& o S & &
o &
o
o

0 Dat= Transter B Reading Catalog @ Ul operations

&

2 i
R & éiff‘ e Q@\!\ a@@\ﬁ* p a‘p\\ R & &
& ¢ &
& A
5 o

(b)

Figure 6: Time-consuming tasks for SRS (a) with-
out and (b) with ADUS

In Figure 7 we show how the prediction fea-
tures of the SRS + ADUS help expert and
naive users to find the wanted software. We
detail the percentage of predictions that are
just not followed by the user (prediction ig-
nored), those that guide the user in a wrong
direction (wrong prediction) and those that do
show the user a quick way to find the wanted
software (right prediction). Notice that the
percentage of right predictions obtained in the
tests is significant.

100%
A% —

A% +— —

7% +— 60% —
0%
E0% +— 8% —

% —

40% —| _
30% 1T — BT
20% 8 -
30%

10% 1—{ 20% iy

%

GUl interactions

T
Expert dsers Nalve Wasers Al Qsers

O Prediction ighored O Wrohg prediction O Right prediction

Figure 7: Predicting the user behavior

5 Related work

In this section we present several approaches
that are related with the work presented in
this paper.

5.1 Adaptive user interfaces

Various approaches to adapting user interfaces
to device capabilities are present. Generally,
the approaches are grouped into two cate-
gories: web applications and classic desktop
applications.

In the context of web application, they are
mostly oriented on how to transform web con-
tents to various other formats that can be used
on mobile devices —cHTML, WML, etc. How-
ever, different approaches exist. Microsoft in
its .NET platform offers Mobile Web Forms.
These forms are based on restricted set of
intelligent components that, to our knowl-
edge, cannot be extended with additional wid-
gets. IBM’s Transcoding Publisher [7] ac-
tually transforms web contents to variety of
other formats, giving the user possibility of
customization of the transformation parame-
ters. However, the drawback of the approach
is its ability to transform only web contents,
and in a centralized fashion.

In the context of classic desktop appli-
cations, we would like to stress the ap-
proaches followed by adaptable XMUL-defined

interfaces [1, 6, 3]. Without providing de-
tails, we mention some approaches: language-
based, grammar-based, e.g., BNF, event-
based, constraint-based, UAN (User Action
Notation, in particular for direct manipula-
tion) and widget-based. However, the XML-
based efforts are the most interesting for us,
since they provide flexibility and easy manip-
ulation. Our architecture adopts a similar ap-
proach, but this transformation is done on-the-
fly, transparently to the user.

5.2 Predicting User Behavior

Measuring user interfaces and predicting user
behavior is based on several concepts. The ba-
sic idea is to collect user interface metrics for a
web site [8]. Usually, collected data are used to
perform traffic-based analysis (e.g., pages-per-
visitor, visitors-per-page), time-based analy-
sis (e.g., page view durations, click paths) or
number of links and graphics on the web pages.
Some approaches [8] tend to empirically vali-
date metrics against expert ratings (e.g. PC
Magazine TOP 100 web sites). This approach
allows to monitor web interfaces, however our
approach allows to monitor web interfaces and
desktop applications, or any other kind of
GUIL

Several approaches provide concrete meth-
ods to predict and simulate user behavior,
the majority of them are based on Markov
chains [4]. Predictions are based on the
data from the usage logs. More advanced
models, like Longest Repeating Subsequence
(LRS) [17] or Information Scent [2] perform
data mining seeking to analyze navigation
path based on server logs, similarity of pages,
linking structure and user goals. Our approach
can follow any of these prediction methods: in
our prototype LRS is used in order to work
with any GUI generated by the ADUS agent.

6 Conclusions and Future Work

This paper presents an architecture for adap-
tive user interface generation on wireless de-
vices. We showed the enhancements that
our system brings in contexts of mobility and

adaptability without requiring any additional
effort from the application developers. As
summary, the main advantages of our ap-
proach are:

e Transparent adaptation of GUIs to dif-

ferent wireless device capabilities, contex-
tual data and user preferences.

Automatic monitoring of user interac-
tions, which enables 1) the learning of
user behavior patterns by using behav-
ioral data mining/analysis, and 2) the de-
velopment of intelligent user agents that
anticipate future user actions.

A non-trivial multiagent application was
used as sample testbed to show the advantages
and feasibility of our approach.

As future work, we are improving the ex-
ploitation of user interaction data stored by
the user agents.

References

(1]

2]

(3]
[4]

(5]

ABRAMs, M., Puanouriou, C., BATONG-
BacAaL, A., WILLIAM, S., AND SHUSTER, J.
Uiml: An appliance-independent xml user in-
terface language. In WWW8 / Computer
Networks 81(11-16): 1695-1708 (1999).
Cui, E., PirorLry, P., , anp Pirkow, J.
The scent of a site: A system for analyzing
and predicting information scent, usage, and
usability of a web site. In ACM CHI 00 Con-
ference on Human Factors in Computing Sys-
tems (2000).

DeakIN, N. XUL tutorial, 2002.
http://www.xulplanet.com/tutorials/xultu/.
DEesHPANDE, M., anD KaRrypPis, G. Selec-
tive markov models for predicting web-page
accesses. Tech. rep., University of Minnesota
Technical Report 00-056, 2000.

ECMA. Ecmascript language specifica-
tion, December 1999. http://www.ec-
ma.ch/ecmal/stand/ecma-262.htm.
(eXTENSIBLE INTERFACE MARKUP
GUAGE), X., November
http://www.ximl.org/.

IBM. Ibm websphere
ing publisher, 2001.

LaN-
1999.

transcod-
http://www-

3.ibm.com/software/webservers/transcoding/.

Ivory, M., SinHA, R., , AND HEARST, M.
Empirically validated web page design met-
rics. In SIGCHT (2001).

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

JXUL, 2002. http://jxul.sourceforge.net.

Liu, H., LiEBERMAN, H., AND SELKER, T.
A model of textual affect sensing using real-
world knowledge. In 2003 International Con-
ference on Intelligent User Interfaces (Jan-
uary 2003).

Mena, E., Rovo, J., ILLARRAMENDI, A.,
AND NI, A. G. An agent-based approach for
helping users of hand-held devices to browse
software catalogs. In Cooperative Informa-
tion Agents VI, 6th International Workshop
CIA 2002 (September 2002), Springer-Verlag
LNAI, pp. 51-65.

MivroJicic, D. Mobile agent applications.
IEEE Concurrency 7(3) (1999), 80-90.

Mitrovic, N., anp MEena, E. Adaptive
user interface for mobile devices. In Interac-
tive Systems. Design, Specification, and Ver-
ification. 9th International Workshop DSV-
IS 2002, Rostock (Germany) (June 2002),
Springer Verlag LNCS, pp. 47-61.

Mitrovic, N., Rovo, J., axpD MENa, E.
Adus: Indirect generation of user interfaces
on wireless devices. In Seventh Interna-
tional Workshop Mobility in Databases and
Distributed Systems (MDDS’2004), Zaragoza
(Spain) (Sept. 2004), IEEE CS.

Morina, J., MEegLia, S., AND PASTOR,
O. Just-ui: A user interface specification
model. In 4th International Conference on
Computer-Aided Design of User Interfaces
CADUI 2002 (2002), C. Kolski and J. V.
(ed.), Eds., Kluwer Academics Publisher,
pp. 63-74.

MozILLA. The morzilla project, 2000.
http://www.mozilla.org.
Pitkow, J., anp Pirorri, P. Mining

longest repeatable subsequences to predict
world wide web surfing. In 2nd Useniz Sym-
posium on Internet Technologies and Systems
(USITS) (1999).

Pitoura, E., anD Samaras, G. Data
Management for Mobile Computing, vol. 10.
Kluwer Academic Publishers, 1998.

TuHeEVENIN, D., aNnD CouTtaz, J. Plastic-
ity of user interfaces: Frame-work and re-
search agenda. In Proc of IFIP TC 13 Int.
Conf. on Human-Computer Interaction IN-
TERACT’99, Edinburgh (August 1999).

W3C. Xforms, 2000. www.xforms.org.

