
ADUS: Indirect Generation of User Interfaces on Wireless Devices�

N. Mitrović
IIS Depart., Univ. of Zaragoza

Maria de Luna 1

50018 Zaragoza, Spain

Email: mitrovic@prometeo.cps.unizar.es

J. A. Royo�

IIS Depart., Univ. of Zaragoza

Maria de Luna 1

50018 Zaragoza, Spain

Email: joalroyo@unizar.es

E. Mena
IIS Depart., Univ. of Zaragoza

Maria de Luna 1

50018 Zaragoza, Spain

Email: emena@unizar.es

Abstract

Nowadays, there exists a great interest in wireless and
mobile devices. However, the development of graphical user
interfaces (GUIs) for applications in these environments
must consider new problems: 1) Different device capabil-
ities and 2) Automatic monitoring of user interfaces.

In this paper, we present an architecture that solves pre-
vious problems. We advocate the use of specifications of
GUIs and the dynamic generation of the adequate visual-
ization for a specific device without reimplementing each
GUI for different devices.

Keywords: Adaptive user interfaces, Mobile agents,
User interface management for pervasive devices

1. Introduction

Pervasive computing brings many challenges to re-
searchers. Applications built to run anywhere are de-
signed to accommodate even the most restrictive devices
and yet to retain the desired functionality. However, dif-
ferent target devices have different processing powers, or-
ganization and capabilities. In addition, mobile devices
have very restrictive user interfaces and it is very impor-
tant that they assist users to achieve their goals in the most
efficient way.

Solutions in this area mainly focus on web applica-
tions with client-server architecture, creating specialised
and centralised services that transform one type of user in-
terface into another. Some solutions propose the creation
of separate GUI solutions for each device type, that are
later dispatched according to the request type (or request

� Supported by the CICYT project TIC2001-0660, the DGA project
P084/2001, and the research institute I3A.

� Work supported by the Aragon Government and the European Social
Fund (ref B131/2002).

origin). Some authors propose XML-described user inter-
faces [13, 20] that could be later presented as Java GUI, or
that can be transformed using XSLT [19].

The goal of this paper is to facilitate user interface gener-
ation for devices with different capabilities and to monitor
the user behavior. Our prototype ADUS (ADvanced User
interface System) allows applications to create user inter-
faces and apply user preferences and context. In order to do
so we use indirect user interface generation and specialised
intermediary modules. The generation of adaptive GUIs can
be performed using a language to specify the user interface,
like XUL [9]. This interface definition is later adapted us-
ing XSL transformations to any graphical representation of
GUIs (HTML, WML [18], etc).

We assume a mobile agents architecture because soft-
ware agents [4] can easily adapt their behavior to different
contexts. Mobile agents are able to arrive at the user device
and show their GUIs to the user to interact with her/him.
Mobile agents can be hosted by platforms that support dif-
ferent models of user interfaces or have different processing
capabilities. Agents are autonomous, and can handle net-
work errors (unreachable hosts, etc.) autonomously. Also,
they can move to the target device instead of accessing such
a target device remotely. Agents can be sent to a home com-
puter supporting Java and Swing. Also, an agent can play
the role of a proxy server for a wireless device, such as mo-
bile telephone or a web terminal; in that case it should pro-
duce WML or HTML, respectively.

The rest of this paper is as follows. In Section 2 we in-
troduce our motivating example and explain the bound be-
tween mobile agents and GUIs. Section 3 introduces some
approaches to solve the problems argued in the previous
section. An explanation of the indirect GUI’s generation
method is detailed in Section 4. Section 5 gives an overview
of the state of the art and the related work on this area. Fi-
nally, Section 6 concludes the paper and discusses the fu-
ture work.



2. Motivating Example

The Adaptive User interface System (ADUS) is part of a
more global system called ANTARCTICA [6] whose goal
is to provide users with different wireless data services that
enhance the capabilities of their mobile devices.

In ANTARCTICA, the intermediary agent Alfred is re-
sponsible for personalization, service discovery and gen-
eration of GUIs. Alfred is an efficient majordomo1 that
serves the user and is on charge of storing as much informa-
tion about the user computer, and the user herself/himself,
as possible. When another agent (visitor agent) wants to
show/retrieve data to/from the user it has to communicate
with Alfred which should create the appropriate user inter-
face according to the user device capabilities and the user
preferences. Let us denote by user agent those agents (soft-
ware components) that, similarly to Alfred in ANTARC-
TICA, are the only ones that interact with the user be-
cause they manage knowledge about his/her preferences
and about the device on which they execute.

From the point of view of GUI generation, user interface
rendering is a complex task. Different devices have different
capabilities: CPU speed, screen size, capability to display
images, play sounds or movies, etc. There exist several de-
sign approaches that range from a few widgets, for example
WML GUIs, to many different widgets, like in Java Swing.
According to the device capabilities the designer must se-
lect one or another. Therefore, the development of GUIs for
applications in a context with heterogeneous devices has the
following problems:

� Adaptation of user interfaces: The visitor agent must
adapt the creation of the user interface to the user pref-
erences and user device capabilities. For example, the
user can prefer thumbnails rather than full size images.
Visitor agents are not aware of users’s context, device
capabilities, plasticity [17], etc. In addition, user pref-
erences could change during the execution of the ap-
plication.

� Monitoring user interfaces: If the user behavior is
monitored, the user agent could use the data of previ-
ous executions to automatically assign initial values to
the GUI of future visitor agents that request the same
information [10].

Therefore, the goal of this work is to create adaptive user
interfaces for visiting agents using user agents to customise
such user interfaces according to user preferences and de-
vices capabilities, and allow the monitoring of user interac-
tions.

1 Alfred is an attempt of reflecting his role similar to a majordomo in
the real world.

3. Adaptive User Interface Generation

In this section we present and discuss several alterna-
tives to generate adaptive user interface allowing the moni-
toring of the user behavior.

3.1. Option 1: The Visitor Agent Creates the GUI

The first approach is that, when the visitor agent arrives
at the user device, it queries the user agent for available re-
sources, user’s preferences and device capabilities. Then,
the visitor agent creates the GUI by itself and interacts with
the user directly.

This approach solves the generation of customised
GUI’s, however, it still has several problems:

1. The user agent cannot monitor the user behavior as the
data provided to the GUI flows directly to the visitor
agent.

2. The user agent must trust the visitor agent to render
a GUI according to user preferences and device capa-
bilities. Visitor agents could ignore the user agent de-
scriptions and show their own GUI directly.

3. All the visitor agents have to know how to process and
apply the knowledge provided by the user agent (which
implies that they all must know how to generate any
kind of GUI).

3.2. Option 2: The User Agent Creates the GUI,
the Visitor Agent Handles Events

In this approach, the visitor agent, after arriving at the
user device, provides the user agent with a specification
of the needed GUI. Then, the user agent generates a GUI
according to the user preferences, the device capabilities,
and the visitor agent requirements, and it delegates the GUI
event handling to the visitor agent.
The advantages of this approach are:

� The user agent guarantees that the GUIs of visitor
agents will be generated correctly (according to the
user preferences and the device capabilities) if they are
specified in XUL.

� Visitor agents do not need to know how to generate
GUIs in different devices.

� The user agent can deny the permission to generate
GUI’s to all visitor agents [12] in order to avoid di-
rect GUI generation.

However, following this approach, the user agent cannot
monitor the user behavior because GUI events are handled
directly by visitor agents. Therefore the user agent must
trust the visitor agent to get information about the interac-
tion with the user.



3.3. Option 3: An Intermediate Agent Creates the
GUI and Handles the Events

In this approach, first, the visitor agent sends its XUL
specification of the GUI to the user agent, second, the user
agent generates the GUI and handles all the events (it re-
ceives data from the user), and finally, it sends the user data
back to the visitor agent.

This approach has all the advantages of the approaches
presented above. Furthermore, it allows the user agent to
monitor the user behavior easily and efficiently as it han-
dles the GUI events.

Although this approach is interesting, its implementation
faces a problem: the user agent must attend the different ser-
vices executed on the user device and some tasks, like the
GUI generation, could overload it. Therefore, a better ap-
proach is that the user agent delegates the generation of
adaptive GUIs to a specialised agent (ADUS). Thus, the dis-
tribution of the service execution across three agents (the
ADUS agent, the user agent, and visitor agent) allows us to
balance and distribute the workload of the system.

4. Indirect Generation of GUI’s

In this section we describe in more detail the architecture
needed for the efficiently generation of adaptive GUIs. We
use an application sample to illustrate such a process.

As shown on Figure 1, our system contains the following
agents:

� The visitor agent: It is an mobile agent that brings a
service requested by the user to the user device. This
agent is able to generate a XUL [9] specification of
the GUIs that it needs to interact with the user. Such a
XUL specification is sent to the user agent on the user
device.

� The user agent: It is a highly specialised personaliza-
tion agent that is responsible for storing as much in-
formation about the user computer, and the user her-
self/himself, as possible. For example, it knows: the
look and feel preferences of the user, the GUI preferred
by the user or imposed by the user device or the oper-
ating system. The main goals of this agent is: 1) To
proxy the generation of user interfaces, 2) To help the
user to use the services of the visitor agent, 3) To mod-
ify the GUI specification of the visitor agent according
to the user preferences, 4) To create an ADUS agent
initialised with the static GUI features, and 5) To mon-
itor user interactions by receiving such an information
from the ADUS agent.

� The ADUS agent: The main features of this agent are:
1) To adapt the user interface to the user preferences
and user device capabilities, following the user agent

suggestions, 2) To generate GUIs for different devices
according to the XUL specification, and 3) To handle
the GUI events and to communicate them to the visi-
tor agent as well as to the user agent. Application de-
velopers define user interface using XUL only once.
This specification is rendered transparently for devel-
opers and users for various platforms. There will be
one ADUS agent per visitor agent.

User Agent

ADUS

USER DEVICE

Visitor Agent

3

4

USER

1
2

PROXY
6

5

Wireless Network

��������

Figure 1. Indirect generation of GUIs

In the following we describe the synchronization of
the above agents by using an example. In our previous
work [13], we presented a simple currency converter appli-
cation that converts currencies and displays the result of the
conversion. This application is executed by mobile agents
that travels to the user device when requested by the user.
The main steps are (see Figure 1):

1. The visitor agent travels to the user device: This step
is only for approaches that are based on mobile agents.
For example, it is equivalent to the call of a local ap-
plication (in a client-server architecture).

2. The visitor agent requests the generation of its GUI:
In this step the visitor agent sends the XUL descrip-
tion of its GUI to the user agent. In Figure 2.a we show
the XUL specification of the GUI for the currency con-
verter service.

3. The user agent processes the GUI specification. It
transforms the GUI description to adapt it to the user
preferences, and creates the corresponding ADUS
agent initialised with: 1) the transformed XUL de-
scription of the GUI to generate, and 2) the static
information for the GUI such as the device capabili-
ties: screen resolution, representation language of the
user device (WML, HTML, Java Swing, etc) among
other information.

4. The ADUS agent generates the GUI: It creates the
GUI according to the information provided by the user
agent (static GUI information and specific information
for this service). The ADUS agent is able to map any
XUL description into GUIs for devices with different



<!-- global window settings and JavaScript link -->
<window align="vertical" height="255" width="410"

title="Converter">
<script language="JavaScript" src="Handler.js"/>

<!-- title label -->
<box> <label control="lblAll"

value="Currency Converter"/> </box>
<!-- inserting the quantity edit box -->

<vbox>
<hbox>

<label control="lblQty" value="Quantity:"/>
<textbox value="0.00" id="Qty" size="20"/>

</hbox>
</vbox>

.

.
<!-- adding button -->

<box>
<button id="Convert" label="Convert"

oncommand="convert()"/>
</box>
</window>

(a) (b) (c)

Figure 2. Currency converter: a) XUL description, b) Java Swing rendering and c) WML rendering

features, e.g., a WAP device or a laptop with a Java
GUI.

In the example, if the converter application is exe-
cuted on a device with Java Swing capabilities (e.g., a
home PC or laptop) the ADUS agent would generate a
Swing GUI (see Figure 2.b). When it is executed on a
WAP mobile phone, then the GUI is based on WML,
as shown in Figure 2.c. The ADUS agent could be ex-
tended with mappings to other kind of GUI languages,
like Macromedia Flash.

5. User interaction: The user interacts with the GUI by
looking at the information presented on the device
screen and using the device peripherals (keyboard,
mouse, buttons, etc) to enter data or select among dif-
ferent options.

6. The ADUS agent handles and propagates the GUI
events: User actions trigger GUI events that are cap-
tured by the ADUS agent. This information is sent to:
1) the visitor agent, which reacts to user actions ac-
cording with the service that it executes, perhaps by
generating a new GUI (step 2), and 2) the user agent,
which can store and analyse the information provided
by the user in order to reuse it in future service execu-
tions. One of the advantages of the presented architec-
ture is that both messages can be send concurrently, so
a load balancing is performed.

Finally, we would like to stress the relevance for the user
agent to monitor the user interaction with visitor agents. By
knowing the user reactions and data entered to those ser-
vices, the user agent can store such data locally and apply
different artificial intelligence techniques to extract knowl-
edge about the user behavior [14]. In the previous example,
the next time that the currency converter service executes on
the user device, the user agent could select US Dollars and
Euros as the initial and target currencies, respectively, be-
cause that was the selection of the user during the last exe-

cution of that service. If the user selects now another config-
uration, the user agent could learn and improve its behavior
for the next time. Thus, the customization of GUIs can be-
come really useful for the user.

5. State of the Art and Related Work

In this section we present several approaches that al-
lows to generate adaptive GUI and the related works to our
knowledge about the monitoring of the user behavior.

5.1. Adaptive user interfaces

Various approaches to adapt user interfaces to various
devices are present. Basically the approaches are grouped
into two main categories: web applications and classic desk-
top applications. While the first category [11, 7] treats only
web content and transformations of web content in order
to be usable on other (mostly mobile) devices, the second
category treats the problems of universal definition of the
user interfaces, so it can be later reproduced by various pro-
gram implementations [15, 16, 20] (or middleware) on var-
ious platforms.

Without providing details, we mention some middleware
approaches: language-based, grammar-based, e.g., event-
based, constraint-based, User Action Notation and widget-
based. However, the XML-based efforts [9, 20, 1] are most
interesting for us, since they provide flexibility and easy ma-
nipulation. A similar approach is adopted by us, the XML-
based user interface definition language is transformed into
a concrete GUI, but this transformation is done transpar-
ently to the user and on the fly.

5.2. Predicting User Behavior

There are some approaches such as: 1) WebTango[8],
that collects user interface metrics for a web site; 2) Pre-



dictions of the user behavior based on Markov chains [3];
and 3) Longest Repeating Subsequence (LRS) [14, 5] and
Information Scent [2] that perform data mining seeking to
analyse navigation path based on server logs, similarity of
pages, linking structure and user goals.

In our approach the user agent monitors the user behav-
ior and could make use of all of the above approaches to
predict the user behavior.

6. Conclusions and Future Work

We have presented an architecture for the adaptive gen-
eration of GUIs in mobile devices, following an indirect ap-
proach that allows the monitoring of user interactions. The
solution presented in this paper is useful for the majority of
the systems that can be executed in different devices with
different capabilities. However, we have applied it to an ar-
chitecture based on mobile agents because they make devel-
opment of applications in a wireless environment easy.

The main advantages of our approach are the following:

� GUIs of visitor agents will be generated correctly (ac-
cording to the user preferences and the device capabil-
ities) if they are specified in XUL.

� Visitor agents do not need to know how to generate
GUIs in different devices.

� The generation of GUIs by visitor agents can be easily
rejected to avoid direct GUI generation.

� Any user interaction can be monitored by the system
in order to help the user to interact with future invoca-
tions of services.

As future work, we consider to increase the number of
transformations managed by the system to be able to gener-
ate GUIs for new devices with different languages for GUI
generation. We are also studying different techniques to im-
prove the exploitation of the data stored by the user agent
about the user interactions.

References

[1] M. Abrams, C. Phanouriou, A. Batongbacal, S. William, and
J. Shuster. Uiml: An appliance-independent xml user inter-
face language. In WWW8 / Computer Networks 31(11-16):
1695-1708, 1999.

[2] E. Chi, P. Pirolli, , and J. Pitkow. The scent of a site: A sys-
tem for analyzing and predicting information scent, usage,
and usability of a web site. In ACM CHI 00 Conference on
Human Factors in Computing Systems, 2000.

[3] M. Deshpande and G. Karypis. Selective markov models for
predicting web-page accesses. Technical report, University
of Minnesota Technical Report 00-056, 2000.

[4] D. M. et al. MASIF, the OMG mobile agent system interop-
erability facility. In Proceedings of Mobile Agents’98, 1998.

[5] J. P. et al. Mining longest repeatable subsequences to pre-
dict world wide web surfing. In 2nd Usenix Symposium on
Internet Technologies and Systems (USITS), 1999.

[6] A. Goñi, A. Illarramendi, E. Mena, Y. Villate, and J. Ro-
driguez. ANTARCTICA: A multiagent system for inter-
net data services in a wireless computing framework. In
NSF Workshop on an Infrastructure for Mobile and Wireless
Systems, Scottsdale, Arizona (USA), pages 119–135. LNCS
2538 2002, October 2001.

[7] IBM. Ibm websphere transcoding publisher, 2001.
http://www-3.ibm.com/software/webservers/transcoding/.

[8] M. Ivory, R. Sinha, , and M. Hearst. Empirically validated
web page design metrics. In SIGCHI, 2001.

[9] jXUL, 2002. http://jxul.sourceforge.net.
[10] E. Mena, A. Illarramendi, and A. Goñi. A Software Retrieval

Service based on Knowledge-driven Agents. In Fith IFCIS
International Conference on Cooperative Information Sys-
tems (CoopIS’2000), pages 174–185, September 2000.

[11] Microsoft Corp. Creating Mobile Web Applications
with Mobile Web Forms in Visual Studio .NET, 2001.
http://msdn.microsoft.com/vstudio/technical/articles/mo-
bilewebforms.asp.

[12] N. Mitrović and U. Arronategui. Mobile agent security us-
ing proxy-agents and trusted domains. In Second Interna-
tional Workshop on Security of Mobile Multiagent Systems,
German AI Research Center Research Report, July 2002.

[13] N. Mitrović and E. Mena. Adaptive user interface for mo-
bile devices. In Interactive Systems. Design, Specification,
and Verification. 9th International Workshop DSV-IS 2002,
Rostock (Germany), pages 47–61. Springer Verlag Lecture
Notes in Computer Science LNCS, June 2002.

[14] N. Mitrović and E. Mena. Improving user interface usability
using mobile agents. In Interactive Systems. Design, Spec-
ification, and Verification. 10th DSV-IS Workshop, Funchal,
Madeira Island (Portugal), pages 273–287. Springer Verlag
Lecture Notes in Computer Science LNCS 2844, June 2003.

[15] P. Molina, J. Belenguer, and O. Pastor. Describing just-
ui concepts using a task notation. In Interactive Systems.
Design, Specification, and Verification. 10th International
Workshop DSV-IS 2003, Funchal, (Portugal), Springer Ver-
lag Lecture Notes in Computer Science LNCS, I, July 2003.

[16] H. Stottner. A platform-independent user interface descrip-
tion language. Technical report, Technical Report 16, Insti-
tute for Practical Computer Science, Johannes Kepler Uni-
versity Linz,, 2001.

[17] D. Thevenin and J. Coutaz. Plasticity of user interfaces:
Frame-work and research agenda. In Proc of IFIP TC 13 Int.
Conf. on Human-Computer Interaction INTERACT’99, Ed-
inburgh, August 1999.

[18] W. F. WAP-WML Specification Version 1.1, 16 Jun 1999,
1999. http://www.wapforum.org/.

[19] World Wide Web Consortium. XSL Transformations
Version 1.0, W3C Recommendation 16, November 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116.

[20] XIML (eXtensible Interface Markup Language), November
1999. http://www.ximl.org/.


