
Performance Analysis of an Adaptive User Interface
System Based on Mobile Agents

Nikola Mitrović, Jose A. Royo, and Eduardo Mena

IIS Department, University of Zaragoza, Maria de Luna 1, 50018 Zaragoza, Spain
1 mitrovic@prometeo.cps.unizar.es, http://www.cps.unizar.es/~mitrovic

2 joalroyo@unizar.es, http://www.cps.unizar.es/~jaroyo
3 emena@unizar.es, http://www.cps.unizar.es/~mena

Abstract. Adapting graphical user interfaces for various user devices is one of
the most interesting topics in today's mobile computation. In this paper we
present a system based on mobile agents that transparently adapts user interface
specifications to the user device' capabilities and monitors user interaction.
Specialized agents manage GUI specification according to the specific context
and user preferences. We show how the user behavior can be monitored at run-
time in a transparent way and how learning methods are applied to anticipate
future user actions and to adapt the user interface accordingly. The feasibility
and performance of our approach are shown by applying our approach to a non-
trivial application and by performing tests with real users.

1 Introduction

Adapting graphical user interfaces (GUIs) to different devices and user preferences is
one of the most challenging questions in mobile computing and GUI design. User
devices have different capabilities, from small text-based screens and limited
processing capabilities to laptops and high-end workstations. Another important
challenge is to adapt user interfaces to user preferences, context, and GUI actions to
be performed. Some of these parameters, user preferences, depends on the specific
user while others, user’s context or actions, do not. However all these parameters vary
over time which makes them more difficult to manage.

Mobile environments are particularly challenging: mobile devices require
applications with small footprints, written for specific proprietary platform that can
execute on devices with very limited capabilities and resources. Mobile devices
connect to other devices by using wireless networks which are more expensive1,
unreliable, and slower, than their wired counterparts. Handling these problems is very
difficult and applications are frequently written to accommodate specific devices and
environment. Developing such applications requires a significant effort and expertise
therefore portability across different user devices is a must.

To create user interfaces that can adapt to different devices and situations
researchers use abstract user interface definition languages as a common ground. The

1 In the case of wireless WAN’s.

2 Nikola Mitrović, Jose A. Royo, and Eduardo Mena

abstract definition (usually specified in XML-based notation) is later rendered into a
concrete (physical) user interface. Many abstract GUI definition languages exist:
XUL [30], UIML [1], XIML [34], XForms [32], usiXML [31], just to name few. To
adapt an abstract GUI definition to a real GUI researchers use client-server
architectures [8], specialized tools to create separate GUIs for different platforms [22],
and other take advantage of agent technology [18, 14].

Current GUI design methods lead to the re-design and re-implementation of
applications for different devices. In addition, direct generation of user interfaces do
not allow the system to monitor the user interaction which can be useful for adaptive
systems. Our proposal to generate and manage adaptive GUIs is ADUS (ADaptive
User Interface System) [18] which is based on an abstract graphical user interface
definition language and a mobile agent architecture. Thus, while abstract a GUI
definition language gives flexibility when describing a user interface, mobile agents
allow flexible rendering of such a GUI definition and provide abstraction from other
application layers (e.g., platform, connectivity problems, etc). Thus we adopt this
approach as it enables the creation of flexible user interfaces that are able to adapt and
move through the network. The ADUS system also enables adaptation to user
preferences, context, and actions by monitoring and analyzing the user behavior [21];
such a collected knowledge is reused in future program executions to anticipate the
user’s actions.

In this paper we present the advantages of using ADUS in mobile computing
applications, specifically, we show how learning from user actions on the generated
GUI improves the performance of the system. For this task, we describe how ADUS
has been used in a software retrieval service and the results of testing both versions
(with and without ADUS) with real users.

The rest of this paper is as follows. In Section 2 we describe the main features of
ADUS. Section 3 describes how ADUS learns from the user behavior and anticipates
future user actions. In Section 4 we apply ADUS to a non-trivial sample application.
Performance and usability evaluations of such a system are presented in Section 5.
Section 6 gives an overview of the state of the art and the related work. Finally,
conclusions and future work are presented in Section 7.

2 ADUS: Adaptive User Interface System

The ADaptive User interface System (ADUS) is an approach based on mobile agents
that generates user interfaces adapted for different devices at run-time [18]. To
provide this functionality, agents manage abstract descriptions of graphical user
interfaces to be deployed. While abstract UI definition languages give flexibility in
describing user interface, mobile agents allow flexible rendering of the UI definition
and provide abstraction of other application layers (e.g., platform, connectivity
problems, etc). We adopt this approach as it enables the creation of a flexible user
interface capable of adapting and moving through the network. ADUS is part of the
ANTARCTICA system [15] that provides users with different wireless data services
aiming to enhance the capabilities of their mobile devices.

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 3

As GUI definition language we use XUL (eXtensible User interface definition
Language) [30]. The GUI is specified in XUL and then transformed on the fly by
mobile agents to a concrete user interface. Some of the GUI properties, such as
window size, colors, and widgets used, are adapted on the fly. In addition, GUI
sections and elements can be modified by mobile agents at the run time (see
Section 3.4). The developed prototype can adapt such user interface descriptions to
Java AWT, Java Swing, HTML, and WML clients, and supports limited
plasticity [29]. GUI widgets are mapped to the concrete UI using CC/PP [4] and
different transformation engines; further plasticity improvements are planned as
future work.

The mobile agent technology eases automatic system adaptation to its execution
environment. A mobile agent is a program that executes autonomously on a set of
network hosts on behalf of an individual or organization [16, 17]. Mobile agents can
bring computation wherever needed and minimize the network traffic, especially in
wireless networks (expensive, slow, and unstable), without decreasing the
performance of the system [33]. In our context, mobile agents are able to arrive at the
user device and show their GUIs to the user in order to interact with her/him [18]. The
deployment of mobile agents is automatic and has little performance overheads [33].
In our prototype we use the mobile agent system Voyager [9]; however any other
mobile agent system could be used to implement our approach.

Our system uses indirect user interface generation [21] which is a method where
several agents collaborate in order to transparently produce user interfaces adapted to
users and devices. The main steps are (see Figure 1):

Fig. 1. Indirect generation of GUIs

1. A visitor agent arrives at the user device to interact with the user.
2. The visitor agent, instead of generating a GUI directly, generates a XUL [30]

specification of the needed GUI, which is sent to the user agent who applies user-
specific information to the GUI specification. This modification is based on user’s
preferences, context, or collected knowledge. For example, the user agent could
use data from previous executions to automatically assign the values that were
entered by the user to past visitor agents requesting the same information [15, 21]

3. The user agent creates an ADUS agent initialized with the new GUI specification.
4. The ADUS agent generates the GUI which will include the specific features for

that user and for that user device.

4 Nikola Mitrović, Jose A. Royo, and Eduardo Mena

5. The user interacts with the GUI.
6. The ADUS agent handles and propagates the GUI events to 1) the visitor agent,

who should react to such events, and 2) the user agent, which in this way monitors
and learns from such user actions.

The additional benefit of such a transparent user interface generation is the

simplicity of software development – using our approach only one version of user
interface and application code is developed (in XUL) but the corresponding GUIs are
automatically generated for very different user devices without user or software
developer intervention.

3 User Interaction Monitoring and Application: The Learning
Process

One of the key features of our prototype is the ability to monitor and collect user
interaction information at the run time [21]. The prototype monitors both GUI
interaction and interaction between the visitor agent and the user using the indirect
user interface generation model, as explained before. Such data can be used to
examine user’s behavior and apply the collected knowledge on the subsequently
generated user interfaces. The monitoring mechanism does not depend on the type of
application or platform. It is important to notice that, as the monitoring mechanism is
based on mobile agents, it is distributed, mobile, and can be extended with security
frameworks for mobile agents [20].

Our prototype uses data mining techniques to anticipate user’s actions. In addition,
our prototype utilizes task models as training data for data mining techniques. In the
following paragraphs we present the techniques used in our prototype.

3.1 Predicting User Behavior

Predicting the user behavior is a difficult task: a common methodology to predict
users’ behavior is predictive statistical models. These models are based on linear
models, TFIDF (Term Frequency Inverse Document Frequency), Markov Models,
Neural Methods, Classification, Rule Induction, or Bayesian Networks [35].
Evaluation of predictive statistical models is difficult -some perform better than other
in specific contexts but are weaker in other contexts [35].

We advocate using Markov-based models as they behave better for our goal while
retain satisfying prediction rates [24, 6, 19]. Specifically, in our prototype we use the
Longest Repeating Subsequence (LRS) method [24]. A longest repeating subsequence
is the longest repeating sequence of items (e.g. user tasks) where the number of
consecutive items repeats more than some threshold T (T usually equals one).

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 5

3.2 Task Models

Statistical models such as LRS can be beneficial for predicting user actions. However,
there are two major drawbacks to such models: 1) in order to predict next actions,
training data must be supplied before the first use, and 2) poor quality training data
can potentially divert users from using preferred application paths.

Contrary to statistical models which are created at run-time, task models are
created during the design phase of an application. Task models are often defined as a
description of an interactive task to be performed by the user of an application
through the user interface of the application [13]. A task model represents the static
information on users and application tasks and their relationships.

Many different approaches to defining task models have been developed [13]:
Hierarchical Task Analysis (HTA) [26], ConcurTaskTrees (CTT) [23], Diane+ [2],
MUSE [12], to name few. We use CTT, developed by Patterno [23], as it provides well
developed tools for defining concurrent task trees.

Task models successfully describe static, pre-designed interaction with the users.
However, it is very difficult (if not impossible) to describe with sufficient accuracy
(for user behavior predictions) user-application interaction in case application tasks
change dynamically. For example, if the application changes its tasks dynamically
based on the information downloaded from the Internet, the task model of such an
application would be a high-level description; task models would not be able to model
precisely the dynamic tasks created as per downloaded information. This is because
information used to create tasks from the Internet is not known to the software
developer at the design time, and some generic task or interaction description would
have to be used in the task model.

In our prototype we use specially crafted CTT models as pre-loaded training data
to statistical learning modules. CTT models used are very basic and do not follow
closely CTT standard notation; models are specifically customized for our use.

3.3 Learning Models in ADUS

Behavior analysis and learning in our system are provided by two separate knowledge
modules. The first module treats user preferences and simple patterns (e.g. modifying
the menus or font size). The second module is specialized in LRS-based behavior
analysis. Both knowledge modules help the user agent make the necessary decisions
that are later reflected on the user interface [21].

To improve LRS predictions we have developed a specialized converter utility that
can convert specifically crafted CTT definition into LRS paths database. The
converter utility is very basic – the CTT diagrams must be specifically prepared to
accommodate our converter tool which involves supplying object tags as per our
specification and designing trees with LRS in mind. In the current version of the
prototype CTT diagrams are very basic and do not follow closely CTT task types.
Previously prepared information from CTT can be then loaded into the LRS module
as the default knowledge with a configurable weight (i.e. path preference). This has
been designed to: 1) ensure existence of the initial training data (before the first use),
and 2) to ensure that the paths supplied by the GUI designer have certain initial

6 Nikola Mitrović, Jose A. Royo, and Eduardo Mena

priority (weight) over dynamically collected paths. Such measures could improve
overall user experience and could improve quality of dynamically collected data.

However, the learning mechanism implemented in ADUS is agnostic - different
learning techniques can be implemented at the same time. Learning process is not
limited to tasks, but can be extended (with different learning techniques) to any other
type of learning.

3.4 Applications of Learning Features to the User Interface

Gathered knowledge (e.g., default values, color preferences, or previous actions and
selections) is applied by the user agent to the GUI specification. The LRS method is
more closely linked to tasks and user interaction paths and has been visually
implemented as a predictive toolbar (see Section 4.3 and Figure 4). The user agent
automatically inserts this toolbar in the application window (unless otherwise
specified) and it shows a configurable number of next-most-probable actions [19].

In cases when software developers anticipate that predictive toolbar would not be
useful for the user (e.g. applications where the toolbar would not be visible, or where
tasks are not executed through buttons), the LRS module could be used by the visitor
agent through the user agent. Section 4.3 presents in detail usage modalities of the
LRS module.

4 Using ADUS in a Sample Application

To show the benefits of learning techniques to GUI and complex GUI transformations
we have applied the ADUS approach to a multi-agent application –the Software
Retrieval Service (SRS) [15]. The Software Retrieval Service tries to solve one of the
most frequent tasks for an average computer user: to search, download, and install
new software.

In the following we briefly introduce the agents that participate in the SRS and
then we describe how the ADUS approach is applied. The resulting system is tested
by real users in Section 5.

4.1 The Software Retrieval Service (SRS)

The Software Retrieval Service [15] is an application that helps naive users to find,
download, and install new software on their devices. The SRS is distributed between
the user’s device (also known as user place) and a proxy location (known as software
place), as illustrated in Figure 2.

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 7

Fig. 2. Main architecture for the Software Retrieval Service

In the following paragraphs we briefly describe the main agents of the SRS (more
details about this system can be found in [15]):

1. The Alfred agent. It is a user agent that serves the user and is in charge of storing as

much information about the user equipment, preferences, and context as possible.
Mobile agent technology allows that mobile agents can learn (e.g. using
information from the Web) about previously unknown contexts.

2. The Software Manager agent. It creates and provides the Browser agent with a
catalog of the available software, according to the requirements supplied by Alfred
(on behalf of the user, step 1 in Figure 2), i.e., it is capable to obtain customized
metadata about the underlying software.

3. The Browser agent. It travels to the user device (step 4) with aim to interact with
the user (see Figure 3) in order to help her/him browse the software catalog (step
5).

Working in this way – without ADUS – the Browser agent directly generates its

GUI on the user device without knowing user preferences and user device
capabilities.

4.2 Using ADUS with the Software Retrieval Service

When applying the ADUS approach to the SRS application, Alfred plays the role of
user agent and the Browser agent behaves as a visitor agent that arrives to the user

8 Nikola Mitrović, Jose A. Royo, and Eduardo Mena

device with the purpose of creating a GUI. An ADUS agent will be required to
facilitate indirect user interface generation. The ADUS agent interacts with the SRS
agents as follows:
1. The Browser agent (as depicted in Figure 2) sends the XUL specification of the

GUI to Alfred.
2. Alfred amends the XUL specification according to the user preferences, context,

and device capabilities. In this example, size and location of “split panes” are set
by Alfred.

3. Alfred delegates the generation of the GUI to an ADUS agent, who renders the
GUI, interacts with the user, and feeds interaction data to Alfred (the user agent)
and the Browser (the visitor agent). Figure 3 shows the Java GUI generated by the
ADUS agent for a Pocket PC PDA.

Fig. 3. Java Swing Browser GUI created indirectly on a PDA

4. GUI events and data received by the ADUS agent are communicated to Alfred and
the Browser agent for further processing. Alfred stores and analyses such data to
predict future user actions, and the Browser agent reacts to the selections or data
entered by the user by generating new or updating the existing GUI.

The above process is repeated until the Browser (the visitor agent) finishes its tasks

on the user device.

4.3 The Learning Process in the SRS

As described earlier, behavior analysis and learning are provided by the user agent
(Alfred in the case of the SRS), which treats user preferences and predicts the user
behavior following the stored patterns.

Once users start using the application, Alfred collects the necessary data by
monitoring user-executed actions in an effort to predict the next task. In the current
version of our prototype, the user agent Alfred monitors task execution only through
button widgets. As the SRS Browser agent uses a customized interaction model, the
visitor agent (the Browser agent in the example) can use the LRS module via the user

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 9

agent (Alfred) to benefit from the learning features of the system (as described in
Section 3.4).

The Browser agent uses the LRS module described earlier via Alfred to
automatically expand or collapse browsing nodes (see Figure 3). The user agent will
then expand the nodes that are identified as the next most probable nodes to be
opened by the user2 .

In addition to the SRS Browser agent GUI, Alfred has its own GUI that is designed
for configuration of user preferences, service options, and execution of other services.
This GUI features the predictive toolbar automatically generated by Alfred as
described in Section 3.4 and depicted in Figure 4. To improve the quality of training
data, and to provide initial training data to the LRS module in Alfred’s GUI, we have
developed a CTT task model (see Figure 5). The task paths are extracted from the
model using a converter utility and path weight is assigned to the paths.

Fig. 4. Alfred’s GUI – predictive toolbar

5 Performance Evaluation

In this Section we present results of the performance tests and analyze differences in
performance between using SRS with and without ADUS approach.

Fig. 5. CTT model for Alfred’s GUI

2 The main task of the Browser agent is to help the user the user to browse a software catalogue
to find a certain software.

10 Nikola Mitrović, Jose A. Royo, and Eduardo Mena

In our test, users3 were asked to retrieve several pieces of software using the SRS
application. The first half of the participating users used the SRS application without
the ADUS architecture (direct GUI generation). The second half used the SRS
application with ADUS (indirect generation of GUIs). 50 users with mixed levels of
skill participated in this test.

In the first test we compare how the learning features of ADUS improve the system
from the point of view of time-consuming tasks. Measured times have been divided
into three categories:
− Data transfer: this is the time spent by the system 1) to send the different software

catalogs to the user device, 2) to move an agent across the network, and 3) to
invoke remote procedure calls4 .

− Reading catalog: this category represents the time spent by the user to read/browse
the software catalog shown on the device screen; this time includes to open/close a
catalog node to read its information.

− UI operations: This measure quantifies the time spent by the system on GUI
generation (and monitoring, when ADUS is used).

In [21] we showed that just using ADUS (without any prediction) improved the

performance of the SRS despite the small overhead due to the indirect GUI generation
and monitoring. From Figures 7 and 8 we can observe that the use of the LRS method
reduce the total time spent by users to find the software and even the time spent by the
system to generate GUIs: when estimations of user behavior are correct, users save
several GUI interactions (and the system saves the corresponding (indirect) GUI
generations). Figure 6 depicts times spent on the SRS application without ADUS.

0

2

4

6

8

10

12

14

16

18

au
dio

 m
ixe

r

Divx
 play

er

Sola
r s

ys
tem

 si
mula

tor

DBMS

Gam
eb

oy
 em

ula
tor

fire
wall

IC
Q fo

r li
nux

CAD to
ol

e-m
ail

 cl
ient

Stock
 qu

ote
s

PDF/PS re
ad

er

Data Transfer Reading Catalog UI Operations

Fig. 6. Time-consuming tasks for SRS without ADUS

3 The authors would like to express their gratitude to all persons participating in this study.
4 Intelligent (mobile) agents in the SRS decide between whether to use remote procedure call or

movement approach depending on the execution environment.

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 11

When the predictive features are used ADUS utilizes the data obtained from

monitoring interaction between the user and the Browser agent to predict the users’
next most probable action (see Section 3). The SRS application then expands and
collapses browsing nodes according to the next most probable action. This way, the
user interface is generated fewer times: multiple nodes are expanded or collapsed at
the same time with only one processing of UI. In the previous version, without
predictive features, nodes are expanded by the user manually which triggered
additional UI operations.

The second test gives indication of whether predictive features were used and if
they were useful. In Figure 9 we present usage of predictive features and the ratio of
correct predictions. “Right” represents the percentage of correct predictions that have
been followed by users. “Wrong” represents misleading predictions that have not
been followed by users. “Ignored” represents percentage of correct predictions that
were ignored by the users (they follow a non-optimal path).

Figure 9 shows that the predictive features had a good ratio of successful
predictions (on average 90.25%). The average percentage of wrong predictions was
9.74%. 69.74% (on average) of requests followed the correct prediction which implies
that predictive features have been seen as useful by most of the users. A certain
percentage of requests (20.51%) however did not see the features as useful or felt that
the predictions are erroneous.

In the next test we can observe that due to the predictive features the SRS Browser
agent loads a better sample of data leading to lower network utilization (cost saving if
wireless networks are used) which also results in better processing of the information
from the network as more relevant data are downloaded.

Fig. 7. Time-consuming tasks for SRS + ADUS without predictive features

12 Nikola Mitrović, Jose A. Royo, and Eduardo Mena

0

2

4

6

8

10

12

14

16

18

au
dio

 m
ixe

r

Divx
 play

er

Sola
r s

ys
tem

 si
mula

tor

DBMS

Gam
eb

oy
 em

ula
tor

fire
wall

IC
Q fo

r li
nux

CAD to
ol

e-m
ail

 cl
ient

Stock
 qu

ote
s

PDF/PS re
ad

er

Data Transfer Reading Catalog UI Operations

Fig. 8. Time-consuming tasks for SRS + ADUS with predictive features

This measurement is defined as Browser (agent) intelligence [15] and represents
efficiency in refining software catalogs shown to the user.

Figure 10 shows a comparison among two versions of the Browser agent

intelligence; the higher percentage, the better network and processing usage. On
average the improvement due to ADUS with predictive features ranged from -2% to
23% (average of averages was 7%). To conclude, time to find the requested
application using the SRS application with ADUS and predictive features has been
improved through lower UI operations, network consumption and information
processing due to correct predictions made by the system.

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 13

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

au
dio

 m
ixe

r

Divx
 pl

ay
er

Sola
r s

ys
tem

 si
mula

tor

DBMS

Gam
eb

oy
 em

ula
tor

fire
wall

IC
Q fo

r li
nu

x

CAD to
ol

e-
mail

 cl
ien

t

Stoc
k q

uo
tes

PDF/
PS

 re
ad

er

Ave
ra

ge

Ignored Wrong Right

Fig. 9. Usage of Predictive Features

audio mixer

Divx p
layer

Solar sy
stem sim

ulator

DBMS

Gameboy emulator

fire
wall

ICQ for lin
ux

CAD tool

e-mail client

Stock quotes

PDF/PS reader

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SRS w ithout ADUS SRS w ith ADUS

Fig. 10. Browser (agent) intelligence with and without predictive features

In addition to the measurable indicators we asked users to express the usefulness of
the predictive features in the SRS application. Usability was measured in a relative
way; users were asked to compare the SRS application without ADUS to the SRS
application with ADUS with predictive features and the usability of predictive
features in comparison with the original SRS without ADUS: scores range from 0 (not
useful) to 10 (very useful). The score above 5 signifies that the ADUS versions of

14 Nikola Mitrović, Jose A. Royo, and Eduardo Mena

program are more preferred. Figure 11 shows the usability of 1) SRS with and without
ADUS predictive features and 2) usability of predictive features alone in SRS with
ADUS in comparison to the SRS without ADUS. The usability rating was surveyed
for every task in order to understand better usability of predictive features relating to a
particular task.

0
1
2
3
4
5
6
7
8
9

10

au
dio

 m
ixe

r

Divx
 pl

ay
er

Sola
r s

ys
tem

 si
mula

tor

DBMS

Gam
eb

oy
 em

ula
tor

fire
wall

IC
Q fo

r li
nux

CAD to
ol

e-m
ail c

lie
nt

Stock
 qu

ote
s

PDF/PS re
ad

er

Ave
rag

e

Application usability Predictive features usability

Fig. 11. Average usability of two SRS versions and predictive features

On average, the SRS version with ADUS and predictive features was seen as more
usable than the version of SRS without ADUS. Similar results were obtained for the
usability of predictive features. However, in some cases usability of predictive
features has a much lower score than the application usability – this was typically a
result of an erroneous prediction that confused users. In total, both the improved
application and predictive features scored almost 3 points above the old system
versions which shows that the improvements to the system have been seen as usable.

Results Summary

Tests were conducted with 50 users to demonstrate quantifiable difference between
two versions of the SRS application: without and with ADUS and predictive features.
It has been demonstrated that, although general GUI processing is increased when
following ADUS approach, the actual processing time decreases due to the
application of predictive features. In addition, information processing and network
operations are reduced, which lowers the operational and usage cost of mobile
applications on wireless networks.

Tests were also designed to measure usability of the system improvements through
time to download, usage ratio of predictive features and number of correct predictions
by the system. All tests concluded that improvements to the original application were

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 15

made; a good percentage of predictions were correct and the predictive features have
been used by the testers.

Furthermore we have examined some subjective factors: relative usability of two
applications and relative usability of predictive features. The survey showed that both
the improved application and predictive features were seen more usable than the
original versions.

6 State of the Art and Related Work

In this section we present several approaches related to the work presented in this
paper. Various approaches to adapting user interfaces to different devices are present.
The approaches can be grouped into two categories: web applications and classic
applications. While the first category [5, 8] treats only web content and
transformations of web content in order to be usable on other (mostly mobile)
devices, the second category treats the problems of universally defining the user
interface, so it can be later reproduced by various program implementations [1, 27, 11,
32, 22] —or middleware— on various platforms. Solutions are usually designed as
client-server and are developed for specific platforms.

Some researchers use software agents (or software entities) [14, 7, 25] which should
not be confused for mobile agents. Software agents are software programs that rarely
offer any interoperability or mobility and are frequently specifically written for a
particular case or application. Lumiere [7] system gives user behavior anticipation
through the use of Bayesian models but does not offer any mobility and can be used
only in Microsoft Office applications and with use of user profiles. Seo et al. [25]
investigate software entities that are standalone, desktop applications. Such entities
monitor use of the particular web browser application and provide some anticipation
of interaction. The Eager system [28] anticipates user actions but does not offer any
mobility and is written for specific operating system/application set. Execution of
such system relies on generation of macro scripts within the used application set.

Improving user interface usability is a complex area and many approaches to
improving usability exist. We will focus on three main approaches to improve user
interface usability: user interface metrics, data mining – user behavior prediction, and
task models. The basic concept is to collect user interface metrics for a web site [10].
Usually, collected data are used to perform traffic-based analysis (e.g., pages-per-
visitor, visitors-per-page), time-based analysis (e.g., page view durations, click paths)
or number of links and graphics on the web pages. These methods fail to give
prediction of user behavior, and results can be influenced by many factors. In
addition, such analysis is usually used during the UI design (and not in run-time) to
improve existing or create new interfaces.

Many models that treat to predict user behavior are based on Markov chains [6].
Predictions are made based on the data from usage logs. More advanced models, like
Longest Repeating Subsequence (LRS) [24] or Information Scent [3] perform data
mining seeking to analyze navigation path based on server logs, similarity of pages,
linking structure and user goals. These models incorporate parts of Markov models in
order to give better results. Our prototype uses LRS model as described in Section 3.

16 Nikola Mitrović, Jose A. Royo, and Eduardo Mena

Task models are often defined as a description of an interactive task to be
performed by the user of an application through the application’s user interface [13].
Task model is defined during the application design and gives information on user
and application tasks and their relationships. Many different approaches to defining
task models have been developed [13]: Hierarchical Task Analysis (HTA) [26],
ConcurTaskTrees (CTT) [23], Diane+ [2], MUSE [12], to name few. Task models are
typically used to help define and design user interface, and sometimes also to help
create user interfaces during the design. In our prototype we use task models as source
of training information for user interaction analysis.

7 Conclusions and Future Work

This paper presents results of performance and usability studies on ADUS, our
proposal for adaptive user interface generation, which is based on mobile agents. In
addition, it allows the user behavior monitoring due to its indirect user interface
generation method. As summary, the main advantages of our approach are:

− Transparent adaptation of abstract user interface definition to concrete platforms,

in an indirect way. GUIs supplied by visitor agents are generated correctly
(according to the user preferences and device capabilities) if they are specified in
XUL by visitor agents.

− Visitor agents do not need to know how to generate GUIs in different devices. Also
the direct generation of GUIs by visitor agents can be easily avoided; direct GUI
generation could undermine platform’s efforts to improve user’s experience and
allow uncontrolled malicious behaviors such as phishing.

− User interfaces are adapted to meet the specific user’s context and preferences
without user or developer intervention.

− Any user interaction can be monitored by the system in order to help the user to
interact with future invocations of services.

− The system learns from the user behavior to anticipate future user actions, with the
goal of improving the performance and usability. The user behavior is analyzed
and next most probable action is advertised. The prediction rate of the proposed
algorithm used in our prototype is satisfactory. However, any other predictive
algorithm or model could be used in ADUS.

Finally we have presented some performance and usability tests of the system. The

performance results demonstrate that there are no significant processing overheads of
the proposed architecture and that some performance benefits could be drawn by
reducing GUI, network, and information processing operations through predicting
future states of user interaction. The results of the usability survey show that users
perceive a system more useful when it follows the ADUS architecture.

As future work we are considering some options for improving the exploitation of
user interaction data stored by user agents and expanding user agents’ ability to
automatically recognize tasks from a wider range of GUI widgets.

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 17

Acknowledgements

This work was supported by the CICYT project TIN2004-07999-C02-02.

References

1. M. Abrams, C. Phanouriou, A.L. Batongbacal, S.M. William, and J.E. Shuster.
Uiml: An appliance-independent xml user interface language. In WWW8 /
Computer Networks 31(11-16): 1695-1708, 1999.

2. M.F. Barthet and J.C. Tarby. The diane+ method. In Computer-aided design of
user interfaces (pp. 95120). Namur, Belgium, 1996.

3. E.H. Chi, P. Pirolli, , and J. Pitkow. The scent of a site: A system for analyzing and
predicting information scent, usage, and usability of a web site. In ACM CHI 00
Conference on Human Factors in Computing Systems, 2000.

4. WWW Consortium. http://www.w3.org/Mobile/CCPP/.
5. Microsoft Corp. Creating mobile web applications with mobile web forms in visual

studio .net, 2001.
http://msdn.microsoft.com/vstudio/technical/articles/mobilewebforms.asp.

6. M. Deshpande and G. Karypis. Selective markov models for predicting web-page
accesses. Technical report, University of Minnesota Tech. Report 00-056, 2000.

7. E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The lumiere
project: Bayesian user modeling for inferring the goals and needs of software
users. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, pages 256–265, Madison, WI, July 1998.

8. IBM. Ibm websphere transcoding publisher, 2001.
http://www3.ibm.com/software/webservers/transcoding/.

9. Recursion Software Inc., 2006. http://www.recursionsw.com/voyager.htm.
10.M.Y. Ivory, R.R. Sinha, , and M.A. Hearst. Empirically validated web page design

metrics. In SIGCHI, 2001.
11.K. Coninx K. Lyten. An xml runtime user interface description language for

mobile computing devices. In 8th DSV-IS Workshop. Springer Verlag, 2001.
12.K.Y. Lim and J. Long. The muse method for usability engineering. In Cambridge

University Press, Cambridge, 1994.
13.Q. Limbourg and J. Vanderdonckt. Comparing Task Models for User Interface

Design. Lawrence Erlbaum Associates, 2003.
14.H. Liu, H. Lieberman, and T. Selker. A model of textual affect sensing using real-

world knowledge. In 2003 Int. Conference on Intelligent UIs, January 2003.
15.E. Mena, A. Illarramendi, J.A. Royo, and A. Goni. A software retrieval service

based on adaptive knowledge-driven agents for wireless environments.
Transactions on Autonomous and Adaptive Systems (TAAS), 1(1), September 2006.

16.D. Milojicic. Mobile agent applications. IEEE Concurrency, 7(3):80–90, 1999.
17.D. Milojicic, M. Breugst, I. Busse,J.Campbell, S. Covaci,B.Friedman, K. Kosaka,

D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White.
MASIF, the OMG mobile agent system interoperability facility. In Proceedings of
Mobile Agents, volume 1477. LNAI, September 1998.

18 Nikola Mitrović, Jose A. Royo, and Eduardo Mena

18.N. Mitrovic and E. Mena. Adaptive user interface for mobile devices. In
Interactive Systems. Design, Specification, and Verification. 9th International
Workshop DSVIS 2002, Rostock (Germany). Springer Verlag LNCS, June 2002.

19.N. Mitrovic and E. Mena. Improving user interface usability using mobile agents.
In 10th DSV-IS Workshop, Funchal, Madeira Island (Portugal). Springer Verlag
LNCS 2844, June 2003.

20.N. Mitrovic, J.A. Royo, and E. Mena. Adus: Indirect generation of user interfaces
on wireless devices. In 15th Int. Workshop on Database and Expert Systems
Applications (DEXA’2004), 7th Int. Workshop Mobility in Databases and
Distributed Systems (MDDS’2004). IEEE Computer Society, September 2004.

21.N. Mitrovic, J.A. Royo, and E. Mena. Adaptive user interfaces based on mobile
agents: Monitoring the behavior of users in a wireless environment. In I
Symposium on Ubiquitous Computing and Ambient Intelligence, Spain. Thomson-
Paraninfo, 2005.

22.J.P. Molina, S. Melia, and O. Pastor. Just-ui: A user interface specification model.
In 4th International Conference on Computer-Aided Design of User Interfaces
CADUI 2002. Kluwer, 2002.

23.F. Paterno and C. Santoro. One model, many interfaces. In Fourth International
Conference on Computer-Aided Design of User Interfaces (CADUI 2002).Kluwer
Academics, 2002.

24.J. Pitkow and P. Pirolli. Mining longest repeatable subsequences to predict world
wide web surfing. In 2nd Usenix Symposium on Internet Technologies and Systems
(USITS), 1999.

25.Young-Woo Seo and Byoung-Tak Zhang. Learning user’s preferences by
analyzing web-browsing behaviors, Int. Conf. on Autonomous Agents 2000, 2000.

26.A. Shepherd. D. diaper (ed.) analysis and training in information technology tasks,
chicester. In Task analysis for human-computer interaction, 1989.

27.H. Stottner. A platform-independent user interface description language, Technical
Report 16, Institute for Practical Computer Science, Johannes Kepler University
Linz,, 2001.

28.Eager system, 1993. http://www.acypher.com/wwid/Chapters/09Eager.html.
29.D. Thevenin and J. Coutaz. Plasticity of user interfaces: Frame-work and research

agenda. In Proc of IFIP TC 13 Int. Conf. on Human-Computer Interaction
INTERACT’99, Edinburgh, August 1999.

30.XUL Tutorial, 2002. http://www.xulplanet.com/tutorials/xultu/.
31.usiXML, 2004. http://www.usixml.org/.
32.W3C. Xforms, 2000. http://www.xforms.org/.
33.A. Wang, C.-F. Srensen, and E. Indal. A mobile agent architecture for

heterogeneous devices. In Proc. of the Third IASTED International Conference on
Wireless and Optical Communications (WOC 2003), 2003.

34.XIML, November 1999. http://www.ximl.org/.
35.Ingrid Zukerman and David Albrecht. Predictive statistical models for user

modeling. In ed. Alfred Kobsa, editor, User Modeling and User Adapted
Interaction (UMUAI) -The Journal of Personalization Research, volume Ten
Aniversary Special Issue. Kluwer Academic Publishers, 2000.

