
A Peek Under the Hood of iOS Malware

Laura Garcı́a
MLW.RE NPO, Spain
Email: laura@mlw.re

Ricardo J. Rodrı́guez
Seconda Università di Napoli, Caserta, Italy

University of Zaragoza, Spain
Email: rjrodriguez@ieee.org

Abstract—Malicious software specially crafted to prolif-
erate in mobile platforms are becoming a serious threat,
as reported by numerous software security vendors during
last years. Android and iOS are nowadays the leaders of
mobile OS market share. While malware targeting Android
are largely studied, few attention is paid to iOS malware.
In this paper, we fill this gap by studying and characterizing
malware targeting iOS devices. To this regard, we study
the features of iOS malware and classify samples of 36
iOS malware families discovered between 2009 and 2015.
We also show the methodology for iOS malware analysis
and provide a detailed analysis of a malware sample. Our
findings evidence that most of them are distributed out of
official markets, target jailbroken iOS devices, and very few
exploit any vulnerability.

Keywords-iOS, malware, attacks, threats, classification

I. INTRODUCTION

The popularity of smartphones as substitute of personal
computer devices – there is an estimated number of 7.22
billion mobile devices in use [1] – makes them attractive to
cybercriminals. Malicious software (malware) specifically
crafted targeting these devices are becoming a serious
threat as numerous security vendors reported [2]–[5].

As stated in Q2 2015 market reports [6], Android
dominated the smartphone Operating System (OS) market
share with a 82.8%, clearly beating others platforms
that had a 13.9% (iOS), 2.6% (Windows Phone), and
0.3% (Blackberry OS). This trend is followed by mobile
malware threats: almost 5000 new Android malware files
were found every day in 2015 [2]. Similarly, Android
malware have been largely studied in the literature [7]–
[11] (to name a few), but few attention has been focused
on iOS (or other) platforms [11]. This paper tries to fill
this gap by grabbing attention into iOS malware.

This lack of attention may be caused by several reasons.
For instance, by the own market share: the higher the
number of devices, the greater the probability of success
of infection – and thus, the greater revenues. Thus, cyber-
criminals prefer Android instead of iOS as deployment
platforms. Furthermore, the differences between Android
and iOS security models are noticeable [12], [13]: both
follow permission-based approaches (with different gran-
ularity) and incorporate platform protection mechanisms
to prevent execution of arbitrary code at runtime; but
unlike iOS, Android mainly relies on platform protection
mechanisms rather than on market protection [11].

The market protection of iOS is based on a review/vet-
ting conducted by Apple for any application to be pub-
lished on their official app markets. Contrary to popular

belief, this vetting process is insufficient to effectively
block malware from entering the official markets, as
recently happened with XcodeGhost malware family,
which infected at least 39 apps published in Apple’s
official app market during last year. Other families used
different attack vectors, such as enterprise/ad-hoc provi-
sioning, abusing private APIs, or compromised iCloud
accounts that enable to reach potential targets through
official channels.

In this paper, we propose a classification of iOS mal-
ware regarding diverse features, such as affected devices,
distribution channel, infection, attack goals, and attack
vector used, using a similar approach to [11]. In particular,
we classify samples of 36 iOS malware families from
2009 to 2015. We also show the methodology followed
to iOS malware analysis and a detailed analysis of a
real malware sample. Based on our results, we conclude
that most of iOS malware are distributed out of official
markets, target jailbroken iOS devices, and require user
interaction to infect devices.

This paper is organized as follows. Section II reviews
the related work. Then, Section III introduces the iOS
security model. iOS malware features are described in
Section IV. Section V presents the iOS malware families
classification and discussion. A case study and method-
ology for iOS malware analysis are introduced in Sec-
tion VI. Finally, Section VII concludes the paper.

II. RELATED WORK

Malware targeting mobile platforms have been largely
studied, specially focused on Android platforms [7]–[10].
In [7], a smartphone malware detection taxonomy was
proposed that focuses on reference behavior, analysis ap-
proach, and malware behavior. Android malware behaviors
were further studied in [8], where a tool is proposed to
dynamically detect malicious activities in Android apps.
In [9], a set of 46 mobile malware samples collected from
January 2009 to June 2011 was analyzed, focused on cur-
rent and future incentives. The set included 4 samples of
iOS malware families that are also covered in our study. A
large set of Android malware was collected in [10], where
more than 1200 samples are analyzed and characterized
according to attack type and installation method. It is
worth also mentioning [14], where a mechanism to bypass
Apple vetting based on using private API callings and
trampoline functions was shown.

An extensive survey of mobile malware is found in [11].
A classification scheme was proposed based on attack

1

laura@mlw.re
rjrodriguez@ieee.org


Software

Apple Root CA

Boot ROM

Low-Level Bootloader

iBoot iOS Kernel

File System

OS Partition

User Partition

App Sandbox

Data
Protection Class

Hardware
&

Firmware

Figure 1. iOS security model.

goals and malware behavior, distribution and infection,
and privilege acquisition. They classified 9 mobile mal-
ware samples that target iOS devices. In this paper, we
follow a similar classification scheme, but with some
differences. In particular, distribution and infection are
divided into two different features since we distinguish
how the malware are spreading and how the infection
is performed. We also consider attack vectors used by
malware as classification feature. Furthermore, we make
a broader study of iOS malware families considering
samples of malware families discovered from January
2009 to December 2015.

Regarding tools and methods to prevent attacks in iOS,
it is worth mentioning the following. PiOS [15] uses a
static analysis approach to detect sensitive information
exfiltration. XiOS [16] is an application sandboxing that
mitigates attacks such as lazy bindings or abuse of private
APIs. iRiS [17] is an application vetting system that uses
static and dynamic analysis to detect malicious activities,
such as abuse of private APIs. Finally, the abuse of iOS
sandboxing using different attack vectors and techniques
for identifying apps vulnerable to these threats are pro-
posed in [18].

III. BACKGROUND

iOS combines software, hardware, and services work-
ing together to offer maximum security. These main ele-
ments (iOS 9.x onward) are sketched in Figure 1.

The iOS secure boot chain guarantees the lowest levels
of software remain unmodified and the execution upon an
Apple’s valid device. Hence, an iOS device immediately
executes when turned on an immutable code (known as
hardware root of trust, setting up during chip fabrication)
from the Boot ROM. This code contains the Apple Root
CA public key, used to verify that the Low-Level Boot-
loader (LLB) is signed by Apple before loading. Next,
the LLB verifies and executes the next-stage bootloader,
named iBoot, which in turn verifies and executes the iOS

kernel. The latter finally verifies and executes the full iOS
OS, loading the OS partition and the user partition, where
all applications are located.

Since hardware and firmware are digitally signed and
verified prior execution in iOS devices, applications
(apps) are among the most critical elements. Thus, iOS
provides different protection layers to ensure that apps are
signed, verified, and even isolated to protect user data. In
the sequel, we briefly describe these layers.

• Apple-issued certificate. iOS enforces to all ex-
ecutable code and third-party apps to be signed
using an Apple-issued certificate to ensure that they
come from a known and verified source. Hence, iOS
developers must verify their identity through the iOS
Developer Program to obtain these certificates. Then,
they can submit their apps to the official iOS app
market, where as final verification they are reviewed
to ensure to operate as intended and do not contain
obvious flaws or other problems.

• App sandbox. Any third-party app is executed in an
isolated way, thus preventing an app from gathering
or modifying information stored by other app. They
are executed as the non-privileged user “mobile” and
the entire OS partition is mounted as read-only.

• Data Protection. When enabled (by setting up a
device passcode), each data file is associated with
a specific class that protects data based on when it
needs to be accessed, supporting different levels of
accessibility.

• Other security mechanisms. iOS incorporates well-
known security mechanisms in OS level, such as
Address Space Layout Randomization to prevent
exploitation of memory corruption errors; and in
hardware level, such as Data Execution Prevention,
which enforces memory pages as writable but non-
executable to prevent execution of injected code.

Any app deployed through official Apple app market
(known as App Store) must comply with App Review
Guidelines. The Apple review/vetting process ensures all
applications are reliable, perform as expected, and are free
of offensive material. This process encompasses a set of
over 100 rules separated in different categories, covering
diverse aspects such as functionality, meta-data, location,
advertising, violence, privacy, and religion, among others.

A submitted app can be rejected by several reasons, such
as execution crashing, inclusion of undocumented/hidden
features, use of non-public APIs, data read or write outside
its container area, or downloading external code. Note that,
however, this process does not effectively block malware
distribution (e.g., XcodeGhost and Youmi Ad SDK).
Weaknesses, such as unofficial redistribution of Apple’s
official SDK (Xcode), obfuscation of private API calls,
or abuse of inter-app interaction services were proved to
bypass this vetting process.

IV. CHARACTERIZATION OF iOS MALWARE

This section introduces the characterization of iOS
malware carried out in this paper. We collected samples

2



of iOS malware families after reviewing security-related
reports and papers (a subset of them along their description
is available in [19]). Table I summarizes their names
and discovery date, separated by discovery year. These
malware families are categorized by types, depending on
who are targeting individuals [19]:

• On-sale malware. This category includes software
available for sale to the public to target individuals.
Note that this software is not malicious in nature,
but it can be used for malicious purposes. For in-
stance, mSpy is a monitoring software that collects
information from the target device (such as text mes-
sages, call information, or GPS coordinates). Parents
worried by their children safety, or an employee
interested in improving their workers productivity
may use this software legitimately and with explicit
consent.

• State-sponsored malware. This type of malware
covers tools used by governments (and similar) to tar-
get individuals. Well-known examples are Hacking
Team tools. State intelligence agencies may use
these malware to spy on other states, activists, or
journalists, for example.

• Underground malware. This category comprises
specially crafted software used by cybercriminals to
target individuals with malicious intention. As the
personal computer malware, they aim at obtaining
banking information, at stealing email/social media
login credentials, or at profiling the user, among other
goals.

We classify each malware family according to different
features, as depicted in Figure 2. In the following, we
describe these features in detail.

Affected Devices: We distinguished between non-
jailbroken (NJ) and jailbroken devices (JD). iOS jail-
breaking consists of removing software restrictions im-
posed by Apple’s OS. Thus, using software exploits, a
user can jailbreak any Apple’s device. A jailbroken device
permits root access to the file system (and hence, to
download and install any application regardless its origin)
and enables extra features such as SSH service. Let us
remark that jailbreaking is a security problem itself, since
enables also other applications to dispose of root access
to the device. Furthermore, to jailbreak a device removes
the intrinsic security mechanisms of Apple, such as code
signing or kernel patch protection. Let us also note that
iOS vulnerabilities that allow to jailbreak the device,
allow malware to coexist. In fact, a malware may secretly
jailbreak a non-jailbroken device as part of the infection
process.

Distribution: Distribution describes from where a
piece of malware is downloaded to the iOS device. We
distinguish three sources of distribution: official market
(OM), when the malware are distributed in App Store;
alternative market (AM), when they used non-official mar-
kets, such as Cydia, AppCake, or Frozen installer; or
unknown sources (US), when the download is done from
untrusted places such as Internet websites.

Malware family name(s) Discovery date
ON-SALE MALWARE
Trapsms Jun 2009
MobileSpy Jul 2009
OwnSpy Feb 2010
MobiStealth Oct 2010
FlexiSpy Dec 2010
iKeyGuard April 2011
Copy9 Jul 2011
StealthGenie Nov 2011
mSpy Oct 2011
iKeyMonitor Mar 2012
SpyKey Apr 2012
Copy10 Aug 2012
InnovaSPY Sept 2012
1mole Jan 2013
Spy App Oct 2014
STATE-SPONSORED MALWARE
FinSpy Mobile Aug 2012
Hacking Team tools Jun 2014
Inception/Cloud Atlas Dec 2014
XAgent/PawnStorm Feb 2015
UNDERGROUND MALWARE
Ikee/Eeki and Duh Nov 2009
LBTM Sept 2010
Find and Call Jul 2012
Nobitazzz (packages) Aug 2012
AdThief/Spad Mar 2014
SSLCreds/Unflod Baby Panda Apr 2014
AppBuyer Sept 2014
WireLurker Nov 2014
Xsser mRAT Dec 2014
Lock Saver Free Jul 2015
KeyRaider Aug 2015
XcodeGhost Sept 2015
YiSpecter Oct 2015
Muda/AdLord Oct 2015
Youmi Ad SDK Oct 2015
TinyV Oct 2015
SantaAPT Dec 2015

Table I
SUMMARY OF iOS MALWARE FAMILIES INCLUDED IN THIS PAPER

(ORDERED BY DISCOVERY DATE, FROM 2009 TO 2015).

Infection: Malware may infect iOS devices because
the user installs (and thus explicitly allows) the malicious
app to execute (AS) or because they exploit a vulner-
ability (EV). To this regard, we studied the vulnerabil-
ities that affect non-jailbroken devices and surprisingly,
although the number of vulnerabilities in iOS from 2007
to 2015 is appreciable (more than 8700), less than a
0.11% were used by the malware considered in this paper.
In particular, these vulnerabilities affected to iOS ver-
sion 9.X (CVE-2015-5837, CVE-2015-5880, CVE-2015-
5876, CVE-2015-5839, and CVE-2015-5867), version 8.X
(CVE-2015-5770, CVE-2015-3722, CVE-2015-3725, and
CVE-2014-4494), and version 7.X (CVE-2014-1276).

Attack Goals: Malware are deployed by cybercrim-
inals to obtain revenue in different ways. As attack goals,
we discriminate among the following, according to [11]:
spamming (SM), when compromised devices receive un-
wanted messages (via SMS, via dial, or via pop-ups)
offering unsolicited services or iOS apps promoted; data
theft (DT), when the goal is to exfiltrate sensitive data
from the device (e.g., bank credentials, iCloud account, or
intellectual property); fraud (FR), when a compromised
device sends premium SMS, calls to premium numbers,

3



attack vector

compromised credentials (CC)

bypassed vetting process (BV)

Cydia Substrate (CS)

trojanized official SDK (TO)

private APIs (PA)

bundle ID forged (BF)

Apple-issued
enterprise/developer certificates (DC)

attack goals

spying (SP)

fraud (FR)

data theft (DT)

ransom (RS)

spamming (SM)

infection
exploit any vulnerability (EV)

allowed by the user (AS)

distribution

unknown sources (US)

alternative market (AM)

official market (OM)

devices
jailbroken (JD)

non-jailbroken (NJ)

Figure 2. Features of iOS malware considered in this paper.

or even makes unsolicited in-app purchases; and spying
(SP), when malware are specifically designed to spy on
users and steal personal data such as pictures, contacts, or
messages, among others.

Although we have not identified malware that hi-
jack iOS devices, it is worth mentioning the Find my
Phone exploit case (May 2014) [20]. Featured by Apple
to seek missing iOS devices, cybercriminals abused it
to block iOS devices remotely and demand money to
unblock after hundreds of iCloud accounts were compro-
mised. However, nowadays no malware are found designed
to hijack iOS devices.

Attack Vector: Attack vector defines how the mal-
ware gain access to a device to perform their malicious
outcome. We distinguished seven attack vectors: Apple-
issued enterprise/developer certificates (DC), when mal-
ware misuse legitimate certificates then allowing the in-
stallation within non-jailbroken iOS devices out of official
market distribution; bundle ID forged (BF) (termed as
masque attack by FireEye, discovered in July, 2014), when
malware forge the same bundle identifier as an existing,
legitimate app thus replacing and posing it after installing
on a compromised device. For instance, WireLurker
uses this attack vector by means of a compromised host
that connects via iTunes with a device, then allowing to
access to shared keychain between the impersonated app
and other apps; private APIs (PA), when malware abuse
undocumented APIs of the iOS framework to provide
access to device resources (such as camera, Bluetooth, or

On-sale State-sponsored Underground

0

10

2

4

6

8

12

14

16

18

Malware categories

N
o
. 

o
f 

m
a
lw

a
re

 f
a
m

ili
e
s

2009

2010

2011

2012

2013

2014

2015

Figure 3. Evolution of malware families per malware category and year.

WiFi connectivity) or to sensitive device information (such
as serial number, device ID); trojanized official SDK (TO),
when malware are built with an unofficial Xcode that is
in fact trojanized; Cydia Substrate (CS), when malware
abuse this developer framework for hooking functions,
for loading malicious third-party dynamic libraries, or
for performing other tweaks with malicious purposes;
bypassed vetting process (BV), when malware bypass the
App Store vetting process and are deployed in the official
market; and compromised credentials (CC), when malware
use compromised iCloud or SSH service credentials to
gain access to a device.

V. EVOLUTION, CLASSIFICATION, AND DISCUSSION

In this section, we classified samples of 36 malware
families in Table II according to the aforementioned
features as well as discuss our findings.

First, we analyze distribution of malware families per
category and year, as depicted in Figure 3. On-sale mal-
ware are almost equally distributed from 2009 to 2012.
In 2013 and up to 2014, few families were discovered.
State-sponsored malware emerged in 2012, 2014, and
2015, having few families almost equally distributed. On
the contrary, underground malware show an interesting
evolution. First families dated from 2009 and 2010. A few
families were reported also in 2012. But from 2014, the
number of malware family rapidly increased. In particular,
the number of malware families related to underground
malware in 2015 is greater than any other in all categories.
In the sequel, we discuss our findings for each feature
considered in this paper.

Devices: The devices affected per malware category
are depicted in Figure 4. All malware families target
to jailbroken devices, and 30.5% affect non-jailbroken
devices. These results clearly indicate that jailbreaking
increases the likelihood to be infected by malicious soft-
ware. Interestingly, only 8.3% of malware exploit iOS
vulnerabilities (5.5% in non-jailbroken devices). Thus, as
usual, user awareness is highly recommended: to have
a non-jailbroken iOS device and to be aware about

4



Malware Devices Distribution Infection Attack goals Attack vector
family NJ JD OM AM US AS EV SM RS DT FR SP DC BF PA TO CS BV CC

ON-SALE MALWARE
Trapsms – • – • – • – – – – – • – – – – • – –
MobileSpy – • – • – • – – – – – • – – – – • – –
OwnSpy – • – • – • – – – – – • – – – – • – –

MobiStealth • • – • – • – – – – – • – – – – • – •
FlexiSpy – • – • – • – – – • – • – – – – • – –
iKeyGuard – • – • – • – – – • – • – – – – • – –

Copy9 – • – • – • – – – • – • – – – – • – –
StealthGenie – • – • – • – – – – – • – – – – • – –

mSpy • • – • – • – – – – – • – – – – • – •
iKeyMonitor – • – • – • – – – • – • – – – – • – –

SpyKey – • – • – • – – – • – • – – – – • – –
Copy10 – • – • – • – – – – – • – – – – • – –

InnovaSPY – • – • – • – – – – – • – – – – • – –
1mole – • – • – • – – – • – • – – – – • – –

Spy App – • – • – • – – – • – • – – – – • – –
STATE-SPONSORED MALWARE
FinSpy Mobile – • – – • • – – – – – • • – – – – – –
Hacking Team • • – – • • • – – • – • • • – – • – –
Inception – • – – • • – – – • – • – – – – • – –
XAgent • • – – • • – – – – – • • – – – – – –

UNDERGROUND MALWARE
Ikee – • – – • – • – – • – – – – – – – – •
LBTM • • • – – • – • – – • – – – – – – • –

Find and Call • • • – – • – • – – – – – – – – – • –
Nobitazzz – • – • – • – • – – • – – – – – • – –
AdThief – • – • – • – • – – • – – – – – • – –
SSLCreds – • – • – • – – – • – – – – – – • – –
AppBuyer – • – • – • – – – • • – – – – – • – –
WireLurker • • – • – • • – – • – • • • – – • – –
Xsser mRAT – • – • – • – – – • – • – – – – • – –

Lock Saver Free – • – • – • – • – – • – – – – – • – –
KeyRaider – • – • – • – – – • • – – – – – • – –
XcodeGhost • • • – – • – – – • – – – – – • – • –
YiSpecter • • – • – • – • • – – • – • – – – –
Muda/AdLord – • – • – • – • – – – – – – – – • – –
Youmi Ad SDK • • • – – • – • – • – – – – • – – • –

TinyV – • – • – • – – – • – – – – • – – – –
SantaAPT • • • – – • – – – – – • – – – – – • –

Table II
iOS MALWARE SAMPLES CLASSIFICATION.

On-sale State-sponsored Underground

0

20

10

2

4

6

8

12

14

16

18

22

Malware categories

N
o
. 

o
f 

m
a
lw

a
re

 f
a
m

ili
e
s

Non-jailbroken devices

Jailbroken devices

Figure 4. Affected devices per malware category.

apps to install or permissions granted are good defense
mechanisms against threats in iOS landscape.

The number of infected devices per malware family is
almost unknown. Few industrial security reports reckoned
them. For instance, reports on AdThief estimated a total
of 75000 devices infected. KeyRaider is known to have
successfully stolen over 225000 valid iCloud accounts, as

well as thousands of certificates, private keys, and purchas-
ing receipts. As we commented previously, 39 apps were
found in the App Store developed with XcodeGhost.
Similarly, 256 apps infected with Youmi Ad SDK were
found in the App Store, with an estimated number of
downloads near to 1 million. SantaAPT, an underground
malware family recently discovered, was reported to have
infected almost 8000 mobile devices [21].

Distribution: On-sale and state-sponsored malware
are distributed evenly over alternative markets and un-
known sources, respectively, because the Apple review
process rejects any app that transmits user’s sensitive data
without prior permission. On the contrary, underground
malware vary their distribution channels. Namely, 13.9%
of malware are distributed in AppStore, i.e., they bypassed
the Apple vetting process (see Section III). The rest of
underground malware, but Ikee, are distributed over
alternative markets (such as Cydia repositories). Note that
the presence in these markets is not odd, because no
vetting process is followed to prevent malicious apps to
appear. Lastly, Ikee has a worm behavior since scans
the network seeking jailbroken devices with default SSH
password.

Infection: Almost all malware families depend on

5



the user to perform their malicious activity. Surprisingly,
only 8.3% of malware (one family of state-sponsored, two
underground) exploit vulnerabilities in iOS devices. These
vulnerabilities range from unchanged default password
of jailbroken devices to compromised enterprise/ad-hoc
certificates and masque attack, respectively.

Attack goals: On-sale and state-sponsored malware
are focused on spying and data theft, as expected with their
intended behaviors. In underground malware, attack goals
are sparse: 52.9% perform some kind of data theft; 23.5%
spam the compromised devices; 35.3% are fraudsters; and
only 17.6% carry out spying activities. Note that malware
families normally spread their attack goals; but 35.3% of
them present solely a single goal.

Attack vector: Attack vectors are distributed almost
evenly over Cydia Substrate in on-sale and state-sponsored
malware. These results match with the affected devices,
since Cydia is the main market place used by jailbroken
devices. Two on-sale malware families use compromised
credentials as attack vector to target non-jailbroken de-
vices. State-sponsored malware use also other vectors,
such as bundle ID forged (masque attack; related vul-
nerabilities are CVE-2015-3722 and CVE-2015-3725), or
misuse of enterprise/developer certificates. The latter is
mainly used to target non-jailbroken devices. Underground
malware present a major diversity: 52.9% use also CS;
29.4% bypassed Apple review process and thus target non-
jailbroken devices through official distribution channels;
11.8% use private APIs; 11.8% misuse enterprise/devel-
oper certificates; while compromised credentials, bundle
ID forged, and trojanized official SDK are each one used
by a single family (5.9%).

Based on our findings and regarding iOS devices, we
strongly encourage to not jailbreak them, since they are
prone to be successfully attacked. Let us also remark that
malware may first jailbreak the device, then continue with
process of infection. Thus, we recommend to keep iOS
updated to the latest version, to install only applications
from trusted sources, and to use native iOS mechanisms
to grant or revoke application permissions individually.

Regarding malware families, new families and variants
of those considered in this paper will appear before long
that target non-jailbroken devices using undiscovered ways
to bypass Apple vetting process, as well as new ways to
escape from app sandbox and access to other application
data.

VI. CASE STUDY: ANALYZING A MALWARE SAMPLE

In this section, we first describe how reverse engineering
for iOS app is followed over a set of selected samples, and
then we show a detail analysis of a sample. In particular,
the samples analyzed are summarized in Table III, grouped
by malware family. Note that there exist missing families
with respect to the ones we previously categorized. For
those, we reviewed and collected security reports from
anti-malware vendors since we were unable to retrieve

Malware Family MD5 hash(es)
ON-SALE MALWARE

SpyKey ba91eee0a3cc8c54c69162f37eb0f95a
STATE-SPONSORED MALWARE
Hacking Team 35c4f9f242aae60edbd1fe150bc952d5
Inception 4e037e1e945e9ad4772430272512831c
XAgent 823dcbd2fca465fabae71098bbb81e1e

UNDERGROUND MALWARE
KeyRaider 8985ecbc80d257e02c1e30b0268d91e7
YiSpecter 0b98ee74843809493b0661c679a3c90c

fbf92317ca8a7d5c243ab62624701050
29e147675af38ece406b6227f3ccd76b
97210a234417954c7bbe87bfe685eaae
6e907716dc1aa6b9c490ce58aaae0d53
62c6f0e3615b0771c0d189d3a7c50477

Muda/AdLord 8b76337397a00337d1cd7104a8b3cae4
TinyV 06036a5ce6927e75c774fc9669259105

8187fb5f41be95d54931695fba465d7b
724329f5be3cea4cf5ad51a1c8558638
ccc9c5207b432cdb60e154a52c796ac1

SantaAPT 790035c9485d8061ae79587cf8d63a64
a2ea4ebc168384e1d3b2879eeea21421
5533e893642264930100b314014ccbb0
adc8cd33f6c676797ac949bcd79a9d36
e8d7eccfa480147bdf588f63accb9319
884a988a6cdb7584b1d5128e54b53f60

Table III
SPECIFIC MALWARE SAMPLES ANALYZED IN THIS PAPER.

specific samples of these families. Samples considered in
this paper are freely available to download1.

A. Methodology for iOS Malware Analysis

The methodology to analyze an iOS malware sample is
shown as an activity diagram in Figure 5. It is comprised
of three different stages.

In Pre-analysis stage, we aim at obtaining the deci-
phered code of the malware sample. Note that we need to
have the unencrypted binary code to analyze the malicious
payload. A malware sample available in the Apple Store
can be downloaded as an IPA file, which is ciphered by
Apple and thus, we need to decipher it. Otherwise, when
the malicious sample is a dylib, package.deb, or
an application distributed through Enterprise Provisioning,
the binary file is not ciphered and thus we can pass
over this stage. The otool tool (with option “-l”) is
used to verify whether the sample is encrypted, indicated
by the cryptid value of the LC_ENCRYPTION_INFO
command (a zero value indicates unencrypted). When the
sample is encrypted, dumpdecrypted tool is used to
obtain the unencrypted code.

Then, Analysis stage begins. In this stage, we perform a
static and dynamic analysis in a similar way as in desktop
malware analysis [22]. In static analysis, disassembler
tools such as IDA, Hopper, or radare2 can be used.
During dynamic analysis, numerous tools can be used
to reveal the behavior of the sample, to trace execution
flow, HTTP/HTTPS connections, and monitoring access
to the file system. Examples of these tools are Reveal,
snoop-it, or introspy, among others. Debugger
tools as LLDB are also employed in this stage. Similarly,
network sniffing and other network-related tools are used
to analyze the communication performed by the sample.

1See http://webdiis.unizar.es/∼ricardo/software-tools/supplementary-
research-material/ios-malware-samples for details.

6

http://webdiis.unizar.es/~ricardo/software-tools/supplementary-research-material/ios-malware-samples
http://webdiis.unizar.es/~ricardo/software-tools/supplementary-research-material/ios-malware-samples


Obtain malware
sample

Decipher
sample

Obtain sample
deciphered code

Perform static
analysis

Perform dynamic
analysis

Collect analysis results
and draw conclusions

is it ciphered?

no

yes Analysis DocumentationPre-analysis

Figure 5. Methodology followed for analyzing an iOS malware sample.

Figure 6. Snippet of KeyRaider sample strings.

Finally, in Documentation stage all analysis results are
collected and analyzed in detail to draw conclusions about
the sample under analysis. The following issues shall be
addressed: 1) how the sample infects the device; 2) what
malicious activity is performed; 3) how it can be removed;
and 4) mechanisms to prevent the infection.

B. Example: KeyRaider Analysis

Herein, we analyze the sample of KeyRaider malware
family to illustrate the process followed (MD5 hash is
shown in Table III). KeyRaider is a trojan malware pre-
sumably developed in China that spread by the Weiphone
Cydia repositories targeting jailbroken devices.

We first verify whether the sample is encrypted by
analyzing the output of otool. Specifically, it returns the
following:

Load command 10
cmd LC_ENCRYPTION_INFO

cmdsize 20
cryptoff 16384

cryptsize 835584
cryptid 0

Thus, the malware sample is uncrypted. We proceed to
perform a static analysis using Hopper. First, we review
the printable strings of the sample and find interesting
strings related to parts of a HTTP GET request, as well as
the reference to a domain, www.wushidou.cn, as depicted
in Figure 6. Thus, we suspect this domain is the command-
and-control (C&C) server used by KeyRaider. Accord-
ing to http://whois.domaintools.com/ server, the domain is
registered in China and surprisingly resolves to localhost
address (127.0.0.1), which means it is currently unavail-
able for connecting.

Through Mobile Substrate Framework, this sam-
ple hooks SSLRead and SSLWrite functions in the
itunesstored process, which is a system daemon that
handles any app download or installation via the official
Apple market, and also handles payments and purchases
made from the own iOS device. The process of SSLWrite
hooking is depicted in Figure 7(a). The App Store login

information is sent to the App Store server through an
SSL encrypted session. When called, the hooking function
installed by KeyRaider looks for this login session,
using specific patterns to find the Apple account’s user-
name, password, and device GUID in the data to transfer.
Once retrieved, in the hooking function of SSLRead these
credentials are encrypted using AES algorithm with an
static key present in the binary code and then sent to the
KeyRaider C&C server.

In addition, this sample presents binary code able to
make forgeable purchases in the Apple Store with accounts
retrieved from the own C&C server and to emulate the
App Store login protocol. Figure 7 (b,c) shows these code
snippets. Since the C&C domain is currently down, we
do not perform dynamic analysis as interaction with C&C
cannot be further analyzed. Furthermore, static analysis
provided enough knowledge about its malicious behavior.

As conclusions, this sample infects jailbroken devices
and use the Cydia Substrate to hook the system process in
charge of interacting with the Apple official market. Once
hooked, this sample accesses to the AppleID account of
the compromised user and performs illegal app purchases.

VII. CONCLUSIONS AND FUTURE WORK

Mobile malware are rapidly emerging as a serious
threat. Although most of malware target Android plat-
forms, malware targeting other platforms, such as iOS,
are starting to appear. iOS incorporates a strong security
architecture and a vetting process for deployment of new
apps. However, these mechanisms are still ineffective since
nowadays malware bypass them by different means.

In this work, we selected samples of 36 iOS malware
families from 2009 to 2015 and classified them according
to affected devices, distribution channels, infection, attack
goals, and attack vector. We found that few of them tar-
get non-jailbroken devices or exploit iOS vulnerabilities,
while data theft and spying are common goals. We also
showed a methodology for iOS malware analysis and
analyzed a real sample in detail. We expect to discover be-
fore long more malware families targeting non-jailbroken
devices, as well as spreading their attack goals.

As future work, we aim at thoroughly analyzing these
samples to better identify the underlying attack concepts
and thus develop a framework for iOS malware detection.

ACKNOWLEDGMENTS

We thank MLW.RE NPO for providing us with dif-
ferent iOS malware samples. The research of Ricardo
J. Rodrı́guez was partially supported by the Spanish
MINECO project CyCriSec (TIN2014-58457-R).

7

www.wushidou.cn
http://whois.domaintools.com/


(a) SSLWrite hooking

(b) Emulation of App Store login

(c) Emulation of App Store purchases

Figure 7. Code snippets of interest of KeyRaider malware sample analyzed as case study.

8



REFERENCES

[1] A. M. Memon and A. Anwar, “Colluding Apps: Tomor-
row’s Mobile Malware Threat,” IEEE Security & Privacy,
vol. 13, no. 6, pp. 77–81, Nov 2015.

[2] D. Emm, M. Garnaeva, A. Ivanov, D. Makrushin, and
R. Unuchek, “IT Threat Evolution in Q2 2015,” Kaspersky
Lab, Tech. Rep., Jul. 2015.

[3] McAfee, “McAfee Labs Threats Report,” Tech. Rep., Aug.
2015.

[4] FireEye, “Out of Pocket: A Comprehensive Mobile Threat
Assessment of 7 Million iOS and Android Apps,” Tech.
Rep., Feb. 2015. [Online]. Available: https://www2.fireeye.
com/rs/fireye/images/rpt-mobile-threat-assessment.pdf

[5] Blue Coat, “Blue Coat Systems 2015 Mobile Malware
Report,” Tech. Rep., 2015.

[6] IDC, “Smartphone OS Market Share, 2015 Q2,” [Online],
Aug. 2015, http://www.idc.com/prodserv/smartphone-os-
market-share.jsp.

[7] A. Amamra, C. Talhi, and J. Robert, “Smartphone Malware
Detection: From a Survey Towards Taxonomy,” in Procs.
of the 7th International Conference on Malicious and
Unwanted Software (MALWARE), 2012, pp. 79–86.

[8] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum,
Y. Fratantonio, V. van der Veen, and C. Platzer, “ANDRU-
BIS - 1,000,000 Apps Later: A View on Current Android
Malware Behaviors,” in Procs. of the 3rd Int. Workshop
on Building Analysis Datasets and Gathering Experience
Returns for Security, 2014.

[9] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner,
“A Survey of Mobile Malware in the Wild,” in Procs. of the
1st ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices. ACM, 2011, pp. 3–14.

[10] Y. Zhou and X. Jiang, “Dissecting Android Malware:
Characterization and Evolution,” in Procs. of the IEEE
Symposium on Security and Privacy, 2012, pp. 95–109.

[11] G. Suarez-Tangil, J. Tapiador, P. Peris-Lopez, and A. Rib-
agorda, “Evolution, Detection and Analysis of Malware for
Smart Devices,” IEEE Communications Surveys Tutorials,
vol. 16, no. 2, pp. 961–987, 2014.

[12] C. Miller, “Mobile Attacks and Defense,” IEEE Security &
Privacy, vol. 9, no. 4, pp. 68–70, July 2011.

[13] S. Mansfield-Devine, “Android malware and mitigations,”
Network Security, vol. 2012, no. 11, pp. 12–20, 2012.

[14] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee, “Jekyll on
iOS: When Benign Apps Become Evil,” in Procs. USENIX
SEC’13, ser. SEC’13. Berkeley, CA, USA: USENIX
Association, 2013, pp. 559–572.

[15] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS:
Detecting Privacy Leaks in iOS Applications,” in Procs.
of NDSS 2011. The Internet Society, 2011.

[16] M. Bucicoiu, L. Davi, R. Deaconescu, and A.-R. Sadeghi,
“XiOS: Extended Application Sandboxing on iOS,” in
Procs. of the 10th ACM Symposium on Information, Com-
puter and Communications Security. ACM, 2015, pp. 43–
54.

[17] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “iRiS:
Vetting Private API Abuse in iOS Applications,” in Procs.
of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2015, pp. 44–56.

[18] L. Xing, X. Bai, T. Li, X. Wang, K. Chen, X. Liao, S.-
M. Hu, and X. Han, “Cracking App Isolation on Apple:
Unauthorized Cross-App Resource Access on MAC OS X
and iOS,” in Procs. of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM,
2015, pp. 31–43.

[19] The iPhone Wiki, “Malware for iOS,” [Online], https:
//www.theiphonewiki.com/wiki/Malware for iOS.

[20] T. Warren, “Apple’s Find my iPhone feature exploited
to hold devices hostage,” [Online], May 2014,
http://www.theverge.com/2014/5/27/5753726/find-my-
iphone-hack-australia-ransom.

[21] CloudSek Info Security Pvt. Ltd., “APT Malware Masquer-
ade as Santa Claus and Christmas Apps,” [Online], Dec.
2015, https://www.cloudsek.com/announcements/blog/apt-
malware-masquerade-as-christmas-apps-and-santa-claus/.

[22] K. Liu, H. B. K. Tan, and X. Chen, “Binary Code Analysis,”
Computer, vol. 46, no. 8, pp. 60–68, 2013.

9

https://www2.fireeye.com/rs/fireye/images/rpt-mobile-threat-assessment.pdf
https://www2.fireeye.com/rs/fireye/images/rpt-mobile-threat-assessment.pdf
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://www.theiphonewiki.com/wiki/Malware_for_iOS
https://www.theiphonewiki.com/wiki/Malware_for_iOS
http://www.theverge.com/2014/5/27/5753726/find-my-iphone-hack-australia-ransom
http://www.theverge.com/2014/5/27/5753726/find-my-iphone-hack-australia-ransom
https://www.cloudsek.com/announcements/blog/apt-malware-masquerade-as-christmas-apps-and-santa-claus/
https://www.cloudsek.com/announcements/blog/apt-malware-masquerade-as-christmas-apps-and-santa-claus/

	Introduction
	Related Work
	Background
	Characterization of iOS Malware
	Evolution, Classification, and Discussion
	Case Study: Analyzing a Malware Sample
	Methodology for iOS Malware Analysis
	Example: KeyRaider Analysis

	Conclusions and Future Work
	References

