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*   Assuming planarity 
** Assuming GPU 
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Superpixels/Layout in low-textured areas 
• State-of-the-art methods are limited in large untextured areas. 
• We propose to use mid-level features (superpixels) and high-level features (layout) 

to overcome such limitations. 
• The only assumption is a priori over some areas to be planar. 
• Our results show that the median error is reduced in a factor 5x. 
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SUPERPIXELS SOLUTION 

Homography:   
 

Estimation of the parameters of the homography 
• Montecarlo approach to initialize using a robust cost function. 
• Contours overlapping. 
• Levenberg-Marquardt to optimize using a robust cost function 
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DTAM + Superpixels/Layout 
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Depth prior comes from 
multiview superpixels or scene 
layout understanding 
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• Low-level features (salient points and lines) are unable to 
reconstruct large and and textureless areas. 

• Mid-level features (superpixels) and high-level 
understanding (layout) allow to model such areas; but 
might be less accurate than low-level features in textured 
ones. 

• We fuse standard low-level point features with mid-level 
ones and scene understanding improve the accuracy of 
dense 3D maps from RGB cameras (in our experiments, the 
median error is reduced 5x). 

• We are the first in using such features in dense RGB 
mapping; and we believe it is a promising line of research. 

Conclusions 
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Place Recognition / Detecting Loop Closures

 Feature space 
 Sensor space

 Laser [FLIRT Points] [Correlative Scan Matching]

 Vision [DBoW] [FAP-MAP]

http://www.youtube.com/watch?v=GRTx5ovOSHo
http://www.youtube.com/watch?v=0b4vAI618eA


Perceptual Aliasing

 In sensor space, different places might look 
the same

 



Perceptual Aliasing

 
 



Graph SLAM 

 Least Squares formulation of SLAM
 input odometry and loop closures
 output best guess of robot locations
 outliers a disaster!



Robust Loop Closing 

 Place recognition algorithms are not perfect
 perceptual aliasing leads to false positives
 map corruption rather than improvement

 Robust loop closing
 Utilize global information
 Ideally, never make a mistake
 Recover from mistakes

 Main Idea
 Odometry is reliable 
 Loop closures should agree with odometry and among 

themselves (consistency)
 Consistency determined via chi-square tests

 



χ²-test (Chi-squared test)

 Parameters
 α: confidence level (usually 95%)
 d: degrees of freedom 

 Simply put: with a confident α, we can say that 
this residual comes from a distribution with 
the given covariance.



Realizing Reversing Recovering [RRR]

 Reason on clusters 



Intra- and Inter-cluster consistency



Intracluster Consistency



Inter-cluster consistency



RRR

http://www.youtube.com/watch?v=ILaE-fWhuK8


Results

 a correct set of loop closures leads to an 
acceptable solution of the pose-graph

http://www.youtube.com/watch?v=76Eq5TbkOLM
http://www.youtube.com/watch?v=zbBv3w8GiHU


More results 



Competing approaches

 Dynamic Covariance Scaling[DCS]

 Adaptively updates the covariance matrix
 Switchable Constraints[SC]

 Regularization based on residual error
 Max-Mixtures[MM]

 Enable/Disable loop closures based on a prior error 
distribution
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Scary formulas



Henry Carrillo

Active SLAM : autonomously constructing 

and refining the environment 

representation with mobile robots
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Motivation(I) ::

How mobile robotics can be at your service?

 Mobile robots can replace humans in repetitive, hazardous or 

boring task, freeing them to enjoy life!

 In factories ::

 In hazardous environments :: 

1

 Boring tasks :: 

 Freeing humans… 



Motivation(II) ::

Mobile robots need to be autonomous

 Three necessary but not sufficient ingredients for robot’s 

autonomy are ::

 Mapping – (How does the world look like? ) 

 Localization – (Where “in the world” am I?)

 Path and trajectory planning – (How do I get there?)

 Providing the robots with (i) the ability to learn maps of 

environments and (ii) enable them to use the maps.

 Mapping+Localization == SLAM

 Is SLAM solved?

 Mapping+Localization+Path == Active SLAM

 Not solved….yet!
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Active SLAM (I)
 SLAM does not define the path the robot has to follow.

 Usually: random or predefined.

 Active SLAM => To integrate path planning into a SLAM process.

 To explore more area or refine existing one.

 Reduce uncertainty.

 Navigate safely.

 First algorithms ::

 1º Alg.  [Feder, Leonard](99)

 Refining the map 

 Active perception [Bajacksy](86)

 [Makarenko](02)

 Entropy for exploration

 [Huang, Dissanayake](05,06)

 Control theory and MPC

 Coined the term
3



Active SLAM (II)

 General Active SLAM Pseudo-code: 

 Select a set of trajectories 𝝅 𝒔

 Assign a  score to each trajectory

𝓙 = 

𝒊

𝜶𝒊𝓤𝒊 + 

𝒊

𝜷𝒊𝓣𝒊

 Uncertainty map+robot: 𝓤𝒊
 Trajectory cost: 𝓣𝒊

 Execute the trajectory with

the optimum 𝓙.

4

Require:  A priori partially known map.
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Uncertainty Criteria for Active SLAM (I)

 A key part of an active SLAM algorithm is to measure the 

uncertainty map+robot 𝓤𝒊 associated to a trajectory 𝛑𝒊.

 Measurement of Uncertainty =>

 The idea is to quantify  the uncertainty associated to a trajectory:

𝝓:𝑪𝒐𝒗(𝝅𝒊) ⟶ ℝ

 Easy way to compare designs (i.e. 𝛑𝟏).

 This function is the so-called uncertainty criterion.

5

• Theory of Optimal Experiment 

Design (TOED).  A framework.

max(𝜆1, … , 𝜆𝑘)

Max (E-opt)Determinant (D-opt)

det Σ =  

𝑘=1,…,𝑙

𝜆𝑘

Trace (A-opt)

trace Σ =  

𝑘=1,…,𝑙

𝜆𝑘

Appx. of D-opt Appx. of A-opt



Uncertainty Criteria for Active SLAM (II)

 Previous works ([Sim and Roy, 2005], [Mihaylova, 2003]) report 

A-opt as the best criterion and that D-opt gives null values.

 A-opt, widely used, as 2012: [Kollar2008] [Martinez-Cantin2008] 

[Meger2008] [Leung2006].

 Although  D-opt is commonly used in the TOED 

because it is optimal…also implicitly in Shannon's 

Entropy
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Determinant

 An associated value of a squared matrix.

 Map a matrix to a scalar.

 Properties for a n x n matrix:

 Geometrically:The hyper-volume of the

parallelepiped defined in the n-dimensional

space.

 homogeneous of grade n.

 If,  𝑓: 𝑢 → 𝑣

𝑓 𝛼𝑢 = 𝛼𝑛𝑓(𝑣)
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Uncertainty Criteria for Active SLAM (III)

 It is indeed possible to use D-opt in the Active SLAM 

context:

 The structure of the problem needs to be taken into account (i.e. The 

covariance matrix varies with time).

 It is not informative to compare the determinant of a matrix l x l with a 

m x m. => det(l x l) is homogeneous of grade l.

 The computation of the determinant of a highly correlated matrix (e.g. 

SLAM) is prone to round-off errors. Processing it in the 

logarithm space

 Proposed D-opt for a l x l covariance matrix:

 Stems from [Kiefer, 1974] :

8



First experiment

 First experiment: on the computation

 Is it possible to compute D-opt from a robot doing SLAM?

 Execute a SLAM algorithm (e.g. EKF-SLAM, Graph SLAM).

 Compute in each step:  A-opt, E-opt  and D-opt,.

• Simulated Robot indoor environment : MRPT/C++

• Real Robot indoor environment : Pioneer 3 DX - Ad-hoc

• Real Robot indoor environment : DLR dataset

• Real Robot outdoor environment : Victoria Park dataset

9



1E - Simulated Robot indoor environment (I)

Scenario:

 Area of 25x25 m 

 2D EKF-SLAM

 Sensor: Odometry + Camera

(360º - 3m range)

 180 landmarks - DA Known.

 Gaussian errors:

Odometry + Camera

10



1E-Simulated Robot indoor environment (II) 

Qualitative results

(a)-(f) A-opt, E-opt, D-opt, determinant, entropy and MI.

11

A-opt E-opt

D-opt

det Σ

D-opt



1E-Real Robot indoor environment @ DLR

Scenario:

 Area 60x40 m

 Sensor:

Odometry + Camera

 2D EKF-SLAM

 576 landmarks –

DA known.

12



1E-Real Robot indoor environment @ DLR

Qualitative results

(a)-(f) A-opt, E-opt, D-opt, determinant, entropy and MI.

13

A-opt E-opt D-opt

D-opt

det Σ



First experiment – Quantitative analysis

 Average correlation between the uncertainty criteria:

 Variance:  A-E (0,0002) /  A-D (0,0540) / D-E (0,0481).

 A-opt y E-opt => High correlation.

 E-opt is guided by a single eigenvalue.

 A-opt y D-opt => Medium correlation.

 D-opt take into account more components than A-opt.

A-opt E-opt D-opt

A-opt 1 0,9872 0,6003

E-opt 0,9872 1 0,5903

D-opt 0,6003 0,5903 1
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Second Experiment

 Second experiment: Active SLAM

 What is the effect of the uncertainty criteria in active 

SLAM?

 Active SLAM => Unitary horizon (greedy).

 Uncertainty criteria => A-opt, D-opt and Entropy.

 Effect => MSE y 𝜒 2.

• Simulated Robot with unitary horizon: MRPT / C++

15



2E-Simulated Robot indoor environment (I)

Scenario:

 Area of 20x20m and 30x30m

 2D EKF-SLAM

 Sensor: Odometry + Camera 

(360º - 3m range)

 Gaussian errors:    

Odometry + sensors.

 Path planner:   Discrete   

(A*) and continuous 

(Attract-Repel).
16



2E-Simulated Robot indoor environment (II)

 Resulting paths for each uncertainty criterion: (a) D-opt, (b) 

A-opt y (c) Entropy.  Each colour represents an  executed 

path. 20 x 20 m map. VIDEO

• Qualitative analysis

17

D-opt A-opt Entropy

Ruta_det.avi
Ruta_det.avi
Ruta_trace.avi
Ruta_trace.avi
Ruta_entropy.avi
Ruta_entropy.avi


2E-Simulated Robot indoor environment (III)

 Resulting trajectories for 10000 steps active SLAM

simulation. (a). Initial trajectory. (b) A-opt. (c). D-opt.

• Qualitative analysis.

18

A-opt D-opt



2E – Quantitative Analysis 30x30 m

 Evolution of MSE ((a)-(c)) y chi2 ((d)-(f)) ratio.  Average of 10 
MC simulations. 30x30 m.

19



Take home message

 D-opt is the optimum criterion to measure uncertainty

according to the TOED (i.e. better than A-opt (Trace)).

 It is possible to obtain useful information regarding the

uncertainty of a SLAM process with D-opt.

 D-opt shows better performance than A-opt in our

simulated experiments of active SLAM.

 To compute D-opt in the context of a SLAM process =>

use the formulation presented here.
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Fast Minimum Uncertainty Search on a 

Graph Map Representation



What is the minimum uncertainty path in a 

roadmap? (I)

 Task : Go safely from A [  ] to B [  ]

 Obstacles

 Robot 6 D.O.F

 Localization with noisy sensors

 Beacons [    ]

1
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 Configuration space (C )

 Known environment

 Shortest path in the roadmap
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What is the minimum uncertainty path in a 

roadmap? (I)

 Task : Go safely from A [  ] to B [  ]

 Obstacles

 Robot 6 D.O.F

 Localization with noisy sensors

 Beacons [    ]

 A solution: Sampling-based path planning

 PRM

 Configuration space (C )

 Known environment

 Shortest path in the roadmap

 BUT IT IS NOT SAFE

 Uncertainty in the localization

1



What is the minimum uncertainty path in a 

roadmap? (II)

 A safer solution: Belief space+Sampling-based path planning

 BRM (Belief RoadMap) [Prentice and Roy 2008]

 Belief space ( B )

 Known environment

 Minimum uncertainty path

 BUT

 Known environment

 Slow (“Curse of history”)
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“Curse of history” in the belief space

b1 1b2

2b3

2b4

3b5

4b5

5b6

5b7

5b6

5b7

6b8

7b8

7b8

6b8

8b9

8b9

8b9

8b9

V1

V3

V4

V5

V6

V7

V8V2 V9



Fast Minimum Uncertainty Search on a 

Graph Map Representation

 We propose FaMUS :

 Concurrently build the map and search

 Using graph based SLAM (e.g., iSAM, RSLAM, g2o)

 Related work:  “Path planning in belief space with Pose SLAM” 

[Valencia et al. 2011]

 Fast planning by reducing the search space. 

3



FaMUS: Fast Minimum Uncertainty Search

4

Pipeline

Building map:

Graph SLAM
FaMUS

Graph 

map

Minimum 

uncertainty path

(start, goal)

Motion
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FaMUS: Fast Minimum Uncertainty Search

5

• We measure the uncertainty at 

each node using D-opt.

• A-opt [Prentice2008]

• Entropy [Valencia2011]

• “On the Comparison of Uncertainty 

Criteria for Active SLAM” ICRA’12



FaMUS: Fast Minimum Uncertainty Search
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• We increase the traversability

by connecting near vertices.

• The roadmap is sparse mainly 

because of missed loop-

closures.



FaMUS: Fast Minimum Uncertainty Search
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• We reduce the size of the 

roadmap by approximating it to 

a decision graph.



Decision graph
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 Reduce the roadmap to a graph                                    
of  “decision points”

 Properties

 Form from vertices:

 Initial and goal pose

 Loop-closure

 With connectivity more than 3

 (“Hard-to-buy”) Assumptions

 Static environment => no changes in sensors

 Uncertainty is accumulated using worst case scenario

 Under the assumptions the decision graph is provable                                      
equivalent to the full graph for path planning under uncertainty

 Need to re-plan fast == SLAM in the background



FaMUS: Fast Minimum Uncertainty Search

9

• Search over the decision 

graph.

• Reconstruct the path over the 

roadmap.



Experiments

 Objective of the experiments:

 Comparison of the minimum uncertainty path

and the shortest path.

 Computational properties of the minimum uncertainty

path

 Scenarios:

 g2o with Gauss-Newton solver.

• Simulated environment : Manhattan dataset

• Real outdoor environment : Biccoca dataset

• Real indoor environment : Intel dataset

• Real outdoor environment : New college dataset

10



Experiment I – Comparison (I)

11

 Experiment:  Are the minimum uncertainty path and the 

shortest path necessarily equal?

 Select two points A and B, and compare the final accumulated 

uncertainty.

 1000 times x 4 datasets. (Biccoca, Intel , New College and 

Manhattan).



Experiment I – Comparison (II)
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 Examples of paths :  ACTIVE SLAM BEHAVIOUR



• Asymptotic time complexity: 

• O [ |edges| + |vertices| log(|vertices|)]

• New College:  Vertices 12816 to 1055  (91.76%)

Edges    13171 to 2624  (80.07%)

Experiment II – Computational (I)

13

 Reduction in vertices and edges:



Experiment II – Computational (II)

14

 Timing performance

 Average of 1000 trials en each dataset

 C++,  Intel Core 2 Duo@ 2.8Ghz  - 8GB

• Improvement of 50% in timing with respect to the state-of-

the-art. [Valencia et al. 2011]



Take home message

 We proposed FaMUS for obtaining the minimum uncertainty
path given a reduced representation of the environment and
according to D-opt.

 We validated the algorithm in four dataset and report and
improvement of the computation time with respect to the
state-of-the-art.

 Further experiments with real robots are needed to generalize
the safety of the generate paths under the assumptions.

 Code available in http://www.hcarrillo.com/ and repository at
https://github.com/hcarrillo/FaMUS
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Active SLAM : autonomously constructing and refining 

the environment representation with mobile robots

Thanks!!!
hcarri@unizar.es

http://webdiis.unizar.es/~hcarri

http://www.hcarrillo.com
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