Incorporating Manhattan and Piecewise Planar Priors in RGB Monocular SLAM

Javier Civera Work done jointly with Alejo Concha, Wajahat Hussain and Luis Montano

instituto de investigación en ingeniería de Aragón

PTAM: Parallel Tracking and Mapping

Klein, G., Murray, D., Parallel tracking and mapping for small ar workspaces. In Proc. of ISMAR 2007, pp. 225–234, 2007

PMVS: Patch-based Multi-View Stereo

	High Texture			Low Texture		
	Accuracy	Density	Cost	Accuracy	Density	Cost
PMVS			*	\checkmark	*	×

PMVS: Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):13621376, 2010.

DTAM: Dense Tracking and Mapping

DTAM: Dense Tracking and Mapping

DTAM: Dense Tracking and Mapping

SLAM++: SLAM at the level of objects

	High Texture			Low Texture		
	Accuracy	Density	Cost	Accuracy	Density	Cost
SLAM ++		*			*	

SLAM++ : Renato F Salas-Moreno, Richard A Newcombe, Hauke Strasdat, Paul HJ Kelly, and Andrew J Davison. Slam++: Simultaneous localisation and mapping at the level of objects. In CVPR, 2013.

Layout understanding

Varsha Hedau, Derek Hoiem, and David Forsyth. Recovering the spatial layout of cluttered rooms. ICCV 2009

Superpixels

* Assuming planarity** Assuming GPU

Pedro F Felzenszwalb and Daniel P Huttenlocher. Ecient graph-based image segmentation. International Journal of Computer Vision, 59(2):167181, 2004.

- State-of-the-art methods are limited in large untextured areas.
- We propose to use mid-level features (superpixels) and high-level features (layout) to overcome such limitations.
- The only assumption is a priori over some areas to be planar.
- Our results show that the median error is reduced in a factor 5x

Video (input)

PMVS

Superpixels

PMVS + Superpixels

DTAM + Superpixels

DTAM SOLUTION

PMVS SOLUTION

	High Texture			Low Texture		
	Accuracy	Density	Cost	Accuracy	Density	Cost
PMVS			×		*	×

PMVS: Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):13621376, 2010.

SUPERPIXELS SOLUTION

	High Texture			Low Texture		
	Accuracy	Density	Cost	Accuracy	Density	Cost
Superpixels	×		×			

SUPERPIXELS SOLUTION

Homography: $h(n,d) \rightarrow$

$$\mathbf{f}_{s_{k,c}^{h}} = ||\mathbf{u}_{s_{k,c}^{h}}^{l} - \mathbf{h}\left(\mathbf{u}_{s_{k,c}^{h}}^{j}, \mathbf{s}_{k}, \mathbf{c}_{j}, \mathbf{c}_{l}
ight)||$$

- Montecarlo approach to initialize using a robust cost function.
- Contours overlapping.
- Levenberg-Marquardt to optimize using a robust cost function

SUPERPIXELS SOLUTION

Homography: $h(n,d) \rightarrow$

$$\mathbf{f}_{s_{k,c}^{h}} = ||\mathbf{u}_{s_{k,c}^{h}}^{l} - \mathbf{h}\left(\mathbf{u}_{s_{k,c}^{h}}^{j}, \mathbf{s}_{k}, \mathbf{c}_{j}, \mathbf{c}_{l}
ight)||$$

- Montecarlo approach to initialize using a robust cost function.
- Contours overlapping.
- Levenberg-Marquardt to optimize using a robust cost function

SUPERPIXELS SOLUTION

$$\epsilon_{s_{k,c}^{h}} = ||\mathbf{u}_{s_{k,c}^{h}}^{l} - \mathbf{h}\left(\mathbf{u}_{s_{k,c}^{h}}^{j}, \mathbf{s}_{k}, \mathbf{c}_{j}, \mathbf{c}_{l}\right)||$$

- Montecarlo approach to initialize using a robust cost function.
- Contours overlapping.
- Levenberg-Marquardt to optimize using a robust cost function

SUPERPIXELS SOLUTION

$$\mathbf{E}_{s_{k,c}^h} = ||\mathbf{u}_{s_{k,c}^h}^l - \mathbf{h}\left(\mathbf{u}_{s_{k,c}^h}^j, \mathbf{s}_k, \mathbf{c}_j, \mathbf{c}_l
ight)||$$

- Montecarlo approach to initialize using a robust cost function.
- Contours overlapping.
- Levenberg-Marquardt to optimize using a robust cost function

SUPERPIXELS SOLUTION

Alejo Concha and Javier Civera. Using Superpixels in Monocular SLAM. ICRA 2014

Using Superpixels in Monocular SLAM

Using Superpixels in Monocular SLAM

Alejo Concha email: alejocb@unizar.es Javier Civera email: jcivera@unizar.es

de Ingeniería de Aragón Universidad Zaragoza

Alejo Concha and Javier Civera. Using Superpixels in Monocular SLAM. ICRA 2014

DTAM + Superpixels/Layout

SOLUTION USING SUPERPIXELS AND DTAM

Alejo Concha, Wajahat Hussain, Luis Montano and Javier Civera. Manhattan and Piece-Wise Planar Regularization for Dense Mapping with a Monocular Camera. RSS 2014

DTAM + Superpixels

PMVS

Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):13621376, 2010.

DTAM

Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. Dtam: Dense tracking and mapping in real-time. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 23202327. IEEE, 2011.

PMVS + Superpixels

DTAM + Superpixels

Alejo Concha, Wajahat Hussain, Luis Montano and Javier Civera. Manhattan and Piece-Wise Planar Regularization for Dense Mapping with a Monocular Camera. RSS 2014

Superpixels Alejo Concha and Javier Civera. Using Superpixels in Monocular SLAM. ICRA 2014

Video (input)

DTAM + Layout

Alejo Concha, Wajahat Hussain, Luis Montano and Javier Civera. Manhattan and Piece-Wise Planar Regularization for Dense Mapping with a Monocular Camera. RSS 2014

Conclusions

- Low-level features (salient points and lines) are unable to reconstruct large and and textureless areas.
- Mid-level features (superpixels) and high-level understanding (layout) allow to model such areas; but might be less accurate than low-level features in textured ones.
- We fuse standard low-level point features with mid-level ones and scene understanding improve the accuracy of dense 3D maps from RGB cameras (in our experiments, the median error is reduced 5x).
- We are the first in using such features in dense RGB mapping; and we believe it is a promising line of research.

Robust Loop Closing Over Time

Yasir Latif

joint work with Cesar Cadena and Jose Neira

Place Recognition / Detecting Loop Closures

Feature space Sensor space

Laser [FLIRT Points] [Correlative Scan Matching] Vision [DBoW] [FAP-MAP]

Perceptual Aliasing

In sensor space, different places might look the same

Perceptual Aliasing

Graph SLAM

Least Squares formulation of SLAM

input odometry and loop closures
output best guess of robot locations
outliers a disaster!

Robust Loop Closing

Place recognition algorithms are not perfect

perceptual aliasing leads to false positives map corruption rather than improvement

Robust loop closing

Utilize global information Ideally, never make a mistake Recover from mistakes

Main Idea

Odometry is reliable

Loop closures should agree with odometry and among themselves (consistency) Consistency determined via chi-square tests

χ^2 -test (Chi-squared test)

$$D_l^2(\mathbf{x}) = r_{ij}(\mathbf{x})^T \Omega_{ij} r_{ij}(\mathbf{x}) < \chi^2_{\alpha, d_l}, \ (i, j) \in R_i$$

Parameters

α: confidence level (usually 95%)d: degrees of freedom

Simply put: with a confident a, we can say that this residual comes from a distribution with the given covariance.

Realizing Reversing Recovering [RRR]

Reason on clusters

Intra- and Inter-cluster consistency

Intracluster Consistency

Inter-cluster consistency

RRR

Robust Loop Closing over Time for Pose Graph SLAM

 Instituto de Investigación en Ingeniería de Aragón (I3A)
 Volgenau School of Engineering George Mason University

 Yasir Latif: ylatif@unizar.es José Neira: jneira@unizar.es
 César Cadena: ccadenal@gmu.edu

 This work was supported by Spanish by DGA-FSE (group ToH), and by the US Army Research Office (WPIINF-1IL0476)

 Algorithm 3 RRR Input: poses, slinks, \mathcal{R} set of clusters containing rlinks **Output:** goodSet of rlinks add poses, slinks to PoseGraph $goodSet \leftarrow \{\}$ $rejectSet \leftarrow \{\}$ loop $PoseGraphPR \leftarrow PoseGraph$ $currentSet \leftarrow R \setminus \{goodSet \cup rejectSet\}$ candidateSet \leftarrow {} add currentSet to PoseGraphPR optimize PoseGraphPR for each $cluster_i \in currentSet$ do if $\exists D_l^2 < \chi^2_{\alpha,d_l} \mid rlink_j \in cluster_i$ then $candidateSet \leftarrow \{candidateSet, cluster_i\}$ end if end for if isempty(candidateSet) then STOP else s = qoodSet.size $(goodSet, rSet) \leftarrow$ Inter_Cluster_Consistency(goodSet, candidateSet) if goodSet.size > s then $rejectSet \leftarrow \{\}$ else $rejectSet \leftarrow \{rejectSet, rSet\}$ end if end if end loop

Results

a correct set of loop closures leads to an acceptable solution of the pose-graph

More results

Competing approaches

Dynamic Covariance Scaling[DCS]

Adaptively updates the covariance matrix Switchable Constraints[sc]

Regularization based on residual error

Max-Mixtures[MM]

Enable/Disable loop closures based on a prior error distribution

References

[Flirt Points] : Tipaldi, Gian Diego, and Kai Oliver Arras. "FLIRT-interest regions for 2D range data." Robotics and Automation (ICRA), IEEE International Conference on, 2010.

[Correlative scan matching] : Olson, Edwin B. "Real-time correlative scan matching." Robotics and Automation, IEEE International Conference on, 2009.

[DBow]: Galvez-Lopez, Dorian, and Juan D. Tardos. "Bags of binary words for fast place recognition in image sequences." Robotics, IEEE Transactions on 28.5 (2012): 1188-1197.

[FAB-MAP]: Cummins, Mark, and Paul Newman. "FAB-MAP: Probabilistic localization and mapping in the space of appearance." The International Journal of Robotics Research 27.6 (2008): 647-665.

[RRR]: Yasir Latif, César Cadena, and José Neira. "Robust loop closing over time for pose graph SLAM." The International Journal of Robotics Research 32.14 (2013): 1611-1626.

[DCS]: Agarwal, Pratik, et al. "Robust map optimization using dynamic covariance scaling." Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, 2013.

[MM]: Olson, Edwin, and Pratik Agarwal. "Inference on networks of mixtures for robust robot mapping." The International Journal of Robotics Research 32.7 (2013): 826-840.

[SC]: Sunderhauf, N., and Peter Protzel. "Switchable constraints for robust pose graph slam." Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012.

Scary formulas

$$D^{2}(\mathbf{x}) = \sum_{(i,j)\in S} d_{ij}(\mathbf{x})^{2} + \sum_{(i,j)\in R} d_{ij}(\mathbf{x})^{2}$$
$$D^{2}_{G}(\mathbf{x}) = \sum_{(i,j)\in R_{i}} r_{ij}(\mathbf{x})^{T} \Omega_{ij} r_{ij}(\mathbf{x}) + \sum_{(i,j)\in S} d_{ij}(\mathbf{x})^{2} < \chi^{2}_{\alpha,d_{G}}$$
$$D^{2}_{l}(\mathbf{x}) = r_{ij}(\mathbf{x})^{T} \Omega_{ij} r_{ij}(\mathbf{x}) < \chi^{2}_{\alpha,d_{l}}, \quad (i,j) \in R_{i}$$
$$D^{2}_{C}(\mathbf{x}) = \sum_{c=1}^{|C|} \sum_{(i,j)\in R_{c}} r_{ij}(\mathbf{x})^{T} \Omega_{ij} r_{ij}(\mathbf{x}) < \chi^{2}_{\alpha,d_{C}}$$
$$D^{2}_{G}(\mathbf{x}) = D^{2}_{C}(\mathbf{x}) + \sum_{(i,j)\in S} r_{ij}(\mathbf{x})^{T} \Omega_{ij} r_{ij}(\mathbf{x}) < \chi^{2}_{\alpha,d_{G}}$$

Active SLAM : autonomously constructing and refining the environment representation with mobile robots

Henry Carrillo

Universidad Zaragoza

Acknowledgment

Joint work with (chronological order):

- Prof. José A. Castellanos University of Zaragoza
- Prof. lan Reid University of Oxford / Adelaide
- Prof. José Neira University of Zaragoza
 - Yasir Latif
- Prof. Udo Frese DFKI / Univ. Bremen
 - Oliver Birbach
- Prof.Vijay Kumar University of Pennsylvania
 - Philip Dames

"IF I HAVE JEEN FURTHER, IT IJ BY JTANDING ON THE JHOULDERJ OF GIANTJ."

OF GIANTS."

Funding:

 This work has been supported by the MINECO-FEDER projects DPI2009-13710 and DPI2012-36070, research grants BES-2010-033116 and EEBB-2011-44287, and also by DGA-FSE (grupo T04).

Motivation(I) :: How mobile robotics can be at your service?

- Mobile robots can <u>replace humans</u> in repetitive, hazardous or boring task, freeing them to enjoy life!
- In factories ::

Boring tasks ::

In hazardous environments ::

Motivation(II) :: Mobile robots need to be autonomous

- Three <u>necessary but not sufficient</u> ingredients for robot's autonomy are ::
 - Mapping (How does the *world* look like?)
 - Localization (Where "in the world" am I?)
 - Path and trajectory planning (How do I get there?)
- Providing the robots with (i) the ability to learn maps of environments and (ii) enable them to use the maps.
 - Mapping+Localization == SLAM
 - Is SLAM solved?
 - Mapping+Localization+Path == Active SLAM
 - Not solved....yet!

king a covariance matrix based view. Sebastian Thrun is now distinguished

(norticle filter) and

idered the pold-standard for data-as-

andited the special issue on Vis-

in 2008 Ioné Neir

SLAM of the IEEE Transactions on Rol

- SLAM does not define the path the robot has to follow.
 - Usually: random or predefined.
- Active SLAM => To integrate path planning into a SLAM process.
 - To <u>explore</u> more area or <u>refine</u> existing one.
 - Reduce uncertainty.
 - Navigate safely.
- First algorithms ::
 - I° Alg. [Feder, Leonard](99)
 - Refining the map
 - Active perception [Bajacksy](86)
 - [Makarenko](02)
 - Entropy for exploration
 - [Huang, Dissanayake](05,06)
 - Control theory and MPC
 - Coined the term

3

General Active SLAM Pseudo-code:

Require: A priori partially known map.

- Select a set of trajectories π^{s}
- Assign a score to each trajectory

$$\mathcal{J} = \sum_{i} \alpha_{i} \mathcal{U}_{i} + \sum_{i} \beta_{i} \mathcal{T}_{i}$$

- Uncertainty map+robot: u_i
- Trajectory cost: ${\cal T}_i$
- Execute the trajectory with the optimum \mathcal{J} .

General Active SLAM Pseudo-code:

Require: A priori partially known map.

- Select a set of trajectories π^{s}
- Assign a score to each trajectory

$$\mathcal{J} = \sum_{i} \alpha_{i} \mathcal{U}_{i} + \sum_{i} \beta_{i} \mathcal{T}_{i}$$

- Uncertainty map+robot: u_i
- Trajectory cost: ${\cal T}_i$
- Execute the trajectory with the optimum J.

General Active SLAM Pseudo-code:

Require: A priori partially known map.

- Select a set of trajectories π^{s}
- Assign a score to each trajectory

$$\mathcal{J} = \sum_{i} \alpha_{i} \mathcal{U}_{i} + \sum_{i} \beta_{i} \mathcal{T}_{i}$$

- Uncertainty <u>map+robot</u>: u_i
- Trajectory cost: ${\cal T}_i$
- Execute the trajectory with the optimum *J*.

General Active SLAM Pseudo-code:

Require: A priori partially known map.

- Select a set of trajectories π^{s}
- Assign a score to each trajectory

$$\mathcal{J} = \sum_{i} \alpha_{i} \mathcal{U}_{i} + \sum_{i} \beta_{i} \mathcal{T}_{i}$$

Uncertainty map+robot: u_i

• Trajectory cost: ${\cal T}_i$

Execute the trajectory with the optimum ${\cal J}.$

Uncertainty Criteria for Active SLAM (I)

- A key part of an active SLAM algorithm is to measure the <u>uncertainty map+robot</u> U_i associated to a trajectory π_i .
- Measurement of Uncertainty =>
 Theory of Optimal Experiment Design (TOED). A framework.
- The idea is to quantify the uncertainty associated to a trajectory: $\phi: Cov(\pi_i) \to \mathbb{R}$
 - Easy way to compare designs (i.e. π_1).
 - This function is the so-called uncertainty criterion.

$$det(\Sigma) = \prod_{k=1,...,l} \lambda_k$$

$$det(\Sigma) = \prod_{k=1,...,l} \lambda_k$$

$$det(\Sigma) = \sum_{k=1,...,l} \lambda_k$$

$$Trace (A-opt)$$

$$det(\Sigma) = \sum_{k=1,...,l} \lambda_k$$

Uncertainty Criteria for Active SLAM (II)

- Previous works ([Sim and Roy, 2005], [Mihaylova, 2003]) report
 <u>A-opt</u> as the best criterion and that <u>D-opt gives null values</u>.
 - A-opt, widely used, as 2012: [Kollar2008] [Martinez-Cantin2008] [Meger2008] [Leung2006].
 - Although D-opt is commonly used in the TOED because it is optimal...also implicitly in Shannon's Entropy

$$det(\Sigma) = \prod_{k=1,...,l} \lambda_k$$

$$det(\Sigma) = \sum_{k=1,...,l} \lambda_k$$

$$det(\Sigma) = \sum_{k=1,...,l} \lambda_k$$

$$max(\lambda_1, ..., \lambda_k)$$

$$max(\lambda_1, ..., \lambda_k)$$

$$max(L-opt)$$

Uncertainty Criteria for Active SLAM (II)

- Previous works ([Sim and Roy, 2005], [Mihaylova, 2003]) report
 <u>A-opt</u> as the best criterion and that <u>D-opt gives null values</u>.
 - A-opt, widely used, as 2012: [Kollar2008] [Martinez-Cantin2008] [Meger2008] [Leung2006].
 - Although D-opt is commonly used in the TOED because it is optimal...also implicitly in Shannon's Entropy

$$det(\Sigma, \lambda_k)$$

$$det($$

Determinant

- An associated value of a squared matrix.
 - Map a matrix to a scalar.
- Properties for a <u>n x n</u> matrix:
 - Geometrically: The hyper-volume of the parallelepiped defined in the n-dimensional space.
 - homogeneous of grade n.

• If, $f: u \rightarrow v$

$$f(\alpha u) = \alpha^n f(v)$$

Uncertainty Criteria for Active SLAM (III)

- It is indeed possible to use D-opt in the Active SLAM context:
 - The structure of the problem needs to be taken into account (i.e. The covariance matrix varies with time).
 - It is not informative to compare the determinant of a matrix I x I with a m x m. => <u>det(I x I) is homogeneous of grade I.</u>
 - The computation of the determinant of a highly correlated matrix (e.g. SLAM) is prone to round-off errors. Processing it in the logarithm space

 Proposed D-opt for a l x l covariance matrix: $\exp(\log([\det(\Sigma(\pi))]^{1/l})) = \exp\left(l^{-1}\sum_{k=1}^{l}\log(\lambda_k)\right)$ Stems from [Kiefer, 1974]: $\phi_p(\xi) = [l^{-1}\operatorname{trace}(\Sigma^p(\xi))]^{1/p}$

First experiment

First experiment: <u>on the computation</u>

- Is it possible to compute D-opt from a robot doing SLAM?
- Execute a SLAM algorithm (e.g. EKF-SLAM, Graph SLAM).
- Compute in each step: A-opt, E-opt and D-opt,.

- Simulated Robot indoor environment : MRPT/C++
- Real Robot indoor environment : Pioneer 3 DX Ad-hoc
- Real Robot indoor environment : DLR dataset
- Real Robot outdoor environment : Victoria Park dataset

Scenario:

- Area of 25x25 m
 - 2D EKF-SLAM

 Gaussian errors:
- Sensor: Odometry + Camera Odometry + Camera (360° 3m range)

180 landmarks - DA Known.

1E-Simulated Robot indoor environment (II) Qualitative results

(a)-(f) A-opt, E-opt, D-opt, determinant, entropy and MI.

1E-Real Robot indoor environment @ DLR

Scenario:

- Area 60x40 m
- Sensor:

Odometry + Camera

- > 2D EKF-SLAM
- ▶ 576 landmarks –

DA known.

1E-Real Robot indoor environment @ DLR Qualitative results

(a)-(f) A-opt, E-opt, D-opt, determinant, entropy and MI.

First experiment – Quantitative analysis

• Average correlation between the uncertainty criteria:

	A-opt	E-opt	D-opt
A-opt	I	0,9872	0,6003
E-opt	0,9872	I	0,5903
D-opt	0,6003	0,5903	I

- Variance: A-E (0,0002) / A-D (0,0540) / D-E (0,0481).
- A-opt y E-opt => High correlation.
 - E-opt is guided by a single eigenvalue.
- A-opt y D-opt => Medium correlation.
 - D-opt take into account more components than A-opt.

Second Experiment

- Second experiment: Active SLAM
 - What is the effect of the uncertainty criteria in active SLAM?
 - Active SLAM => Unitary horizon (greedy).
 - Uncertainty criteria => A-opt, D-opt and Entropy.
 - Effect => MSE y χ^2 .

• Simulated Robot with unitary horizon: MRPT / C++

Scenario:

 Area of 20x20m and 30x30m
 2D EKF-SLAM
 Sensor: Odometry + Camera (360° - 3m range)
 Gaussian errors: Odometry + sensors.
 Path planner: Discrete (A*) and continuous (Attract-Repel).

Zaragoza

2E-Simulated Robot indoor environment (II)

Qualitative analysis

Resulting paths for each uncertainty criterion: (a) *D-opt*, (b)
 A-opt y (c) Entropy. Each colour represents an executed
 path. 20 x 20 m map. VIDEO

2E-Simulated Robot indoor environment (III)

• Qualitative analysis.

Resulting trajectories for 10000 steps active SLAM simulation. (a). Initial trajectory. (b) A-opt. (c). D-opt.

2E – Quantitative Analysis 30x30 m

Zaragoza

19 Take home message

- D-opt is the optimum criterion to measure uncertainty according to the TOED (*i.e.* better than A-opt (Trace)).
- It is possible to obtain useful information regarding the uncertainty of a SLAM process with D-opt.
- D-opt shows better performance than A-opt in our simulated experiments of active SLAM.
- To compute D-opt in the context of a SLAM process => use the formulation presented here.

Fast Minimum Uncertainty Search on a Graph Map Representation

Henry Carrillo

Universidad Zaragoza

What is the minimum uncertainty path in a roadmap? (I)

Task : Go safely from A [A] to B []

- Obstacles
- Robot 6 D.O.F
- Localization with <u>noisy sensors</u>
- Beacons [+]

What is the minimum uncertainty path in a roadmap? (I)

Task : Go safely from A [A] to B []

- Obstacles
- Robot 6 D.O.F
- Localization with <u>noisy sensors</u>
- Beacons [+]
- A solution: Sampling-based path planning
 - PRM
 - Configuration space (\mathcal{C})
 - Known environment
 - Shortest path in the roadmap

What is the minimum uncertainty path in a roadmap? (I)

Task : Go safely from A [A] to B []

- Obstacles
- Robot 6 D.O.F
- Localization with <u>noisy sensors</u>
- Beacons [+]
- A solution: Sampling-based path planning
 - PRM

- Configuration space (\mathcal{C})
- Known environment
- Shortest path in the roadmap

BUT IT IS NOT SAFE

Uncertainty in the localization

What is the minimum uncertainty path in a roadmap? (II)

A safer solution: Belief space+Sampling-based path planning

- BRM (Belief RoadMap) [Prentice and Roy 2008]
- ▶ Belief space (𝔅)
 - Known environment
 - Minimum uncertainty path
- BUT
 - Known environment
 - Slow ("Curse of history")

"Curse of history" in the belief space

D

Fast Minimum Uncertainty Search on a Graph Map Representation

We propose FaMUS :

- Concurrently build the map and search
 - Using graph based SLAM (e.g., iSAM, RSLAM, g2o)
 - Related work: "Path planning in belief space with Pose SLAM" [Valencia et al. 2011]
- Fast planning by reducing the search space.

Algorithm 1 FaMUS algorithm

Require:

- A pose graph map of the environment G
- A initial pose n_s and a goal pose n_g .

Ensure:

- The path with the minimum accumulated uncertainty cost from the pose n_s to the pose n_g .
- 1: $\forall n_i \in \mathbf{G} : \text{calculate } D\text{-}opt$
- 2: $\forall n_i \in \mathbf{G}$: find reachable neighbours and add edges
- 3: $\mathbf{G_d} \leftarrow \text{ReduceGraph}(\mathbf{G})$
- 4: $minPath_d \leftarrow DijsktraSearch(n_s, n_g, G_d)$
- 5: return ReconstructPath $(minPath_d, G_d)$

Algorithm 1 FaMUS algorithm

Require:

- · A pose graph map of the environment G
- A initial pose n_s and a goal pose n_g.

Ensure:

- The path with the minimum accumulated uncertainty cost from the pose n_s to the pose n_g.
- \rightarrow 1: $\forall n_i \in \mathbf{G}$: calculate *D-opt*
 - 2: $\forall n_i \in \mathbf{G}$: find reachable neighbours and add edges
 - 3: $\mathbf{G_d} \leftarrow \text{ReduceGraph}(\mathbf{G})$
 - 4: $minPath_d \leftarrow DijsktraSearch(n_s, n_g, G_d)$
 - 5: return ReconstructPath $(minPath_d, G_d)$

- We measure the uncertainty at each node using D-opt.
 - A-opt [Prentice2008]
 - Entropy [Valencia2011]
- "On the Comparison of Uncertainty Criteria for Active SLAM" ICRA'12

SUMMARY OF UNCERTAINTY CRITERIA

Criterion	Classical Formulation	Modern Formulation
A-opt	$\operatorname{trace}(\Sigma) = \sum_{k=1}^{l} \lambda_k$	l^{-1} trace (Σ)
D-opt	$\det(\mathbf{\Sigma}) = \prod_{k=1}^l \lambda_k$	$\exp\left(l^{-1}\sum_{k=1}^{l}\log(\lambda_k) ight)$
E-opt	$max(\lambda_k)$	$max(\lambda_k)$

Algorithm 1 FaMUS algorithm

Require:

- · A pose graph map of the environment G
- A initial pose n_s and a goal pose n_g .

Ensure:

- The path with the minimum accumulated uncertainty cost from the pose n_s to the pose n_g .
- 1: $\forall n_i \in \mathbf{G}$: calculate *D-opt*
- → 2: $\forall n_i \in \mathbf{G}$: find reachable neighbours and add edges
 - 3: $\mathbf{G_d} \leftarrow \text{ReduceGraph}(\mathbf{G})$
 - 4: $minPath_d \leftarrow DijsktraSearch(n_s, n_g, G_d)$
 - 5: return ReconstructPath $(minPath_d, \mathbf{G_d})$

- We increase the traversability by connecting near vertices.
- The roadmap is sparse mainly because of missed loopclosures.

Algorithm 1 FaMUS algorithm

Require:

- · A pose graph map of the environment G
- A initial pose n_s and a goal pose n_g .

Ensure:

- The path with the minimum accumulated uncertainty cost from the pose n_s to the pose n_g.
- 1: $\forall n_i \in \mathbf{G}$: calculate *D-opt*
- 2: $\forall n_i \in \mathbf{G}$: find reachable neighbours and add edges
- \rightarrow 3: $\mathbf{G_d} \leftarrow \text{ReduceGraph} (\mathbf{G})$
 - 4: $minPath_d \leftarrow DijsktraSearch(n_s, n_g, G_d)$
 - 5: return ReconstructPath $(minPath_d, G_d)$

 We reduce the size of the roadmap by approximating it to a <u>decision graph</u>.

Decision graph

- Reduce the roadmap to a graph of "decision points"
- Properties
 - Form from vertices:
 - Initial and goal pose
 - Loop-closure
 - With connectivity more than 3

("Hard-to-buy") Assumptions

- Static environment => no changes in sensors
- Uncertainty is accumulated using worst case scenario
- Under the assumptions the decision graph is provable equivalent to the full graph for path planning under uncertainty
- Need to re-plan fast == SLAM in the background

Algorithm 1 FaMUS algorithm

Require:

- A pose graph map of the environment G
- A initial pose n_s and a goal pose n_q .

Ensure:

- The path with the minimum accumulated uncertainty cost from the pose n_s to the pose n_q .
- 1: $\forall n_i \in \mathbf{G}$: calculate *D*-opt
- 2: $\forall n_i \in \mathbf{G}$: find reachable neighbours and add edges
- 3: $G_d \leftarrow \text{ReduceGraph}(G)$
- 4: $minPath_d \leftarrow DijsktraSearch(n_s, n_q, G_d)$
 - 5: return ReconstructPath($minPath_d$, G_d)

- Search over the decision • graph.
- Reconstruct the path over the • roadmap.

40

1542

x(m)

60

80

100

Experiments

• Objective of the experiments:

- Comparison of the <u>minimum uncertainty path</u> and the <u>shortest path</u>.
- Computational properties of the <u>minimum uncertainty</u> <u>path</u>
- Scenarios:
 - g2o with Gauss-Newton solver.
 - Simulated environment : <u>Manhattan dataset</u>
 - Real outdoor environment : Biccoca dataset
 - Real indoor environment : Intel dataset
 - Real outdoor environment : <u>New college dataset</u>

Experiment I – Comparison (I)

- Experiment: Are the <u>minimum uncertainty path</u> and the <u>shortest path</u> necessarily equal?
 - Select two points A and B, and compare the final accumulated uncertainty.
 - I 000 times x 4 datasets. (Biccoca, Intel, New College and Manhattan).

 TABLE III

 GENERATED BY THE FAMUS ALGORITHM VS THE SHORTEST

 Dataset
 = paths
 != paths
 % overlap

 Bicocca
 261
 51
 87.35%

Intel	170	74	62.59%
Manhattan	146	37	70.22%
New College	215	21	87.79%

Experiment I – Comparison (II)

Examples of paths : <u>ACTIVE SLAM BEHAVIOUR</u>

Experiment II – Computational (I)

Reduction in vertices and edges:

TABLE II

PERCENTAGE REDUCTION OF VERTICES AND EDGES BY THE FAMUS ALGORITHM

Dataset	Vertices	Edges	Vertices	Edges
(name)	(Full/Redu.)	(Full/Redu.)	Reduction	Reduction
Bicocca	8358/980	8513/6936	88.27%	18.52%
Intel	943/623	1837/1527	33.93%	16.87%
Manhattan	3500/2469	5598/4863	29.45%	13.12%
New College	12816/1055	13171/2624	91.76%	80.07%

- Asymptotic time complexity:
 - O [|edges| + |vertices| log(|vertices|)]
 - New College: Vertices 12816 to 1055 (91.76%)

Edges 13171 to 2624 (80.07%)

Experiment II – Computational (II)

Timing performance

- Average of 1000 trials en each dataset
- C++, Intel Core 2 Duo@ 2.8Ghz 8GB

TABLE IV TIMING PERFORMANCE OF THE FAMUS ALGORITHM

Dataset	# Vertices	# Edges	Time (ms)
Bicocca	835 <mark>8</mark>	8513	1397.2
Intel	943	1837	215.180
Manhattan	3500	5598	839.97
New College	12816	13171	2143.2

 Improvement of <u>50%</u> in timing with respect to the state-ofthe-art. [Valencia et al. 2011]

Take home message

- We proposed FaMUS for obtaining the minimum uncertainty path given a reduced representation of the environment and according to D-opt.
- We validated the algorithm in four dataset and report and improvement of the computation time with respect to the state-of-the-art.
- Further experiments with real robots are needed to generalize the safety of the generate paths under the assumptions.
- Code available in <u>http://www.hcarrillo.com/</u> and repository at <u>https://github.com/hcarrillo/FaMUS</u>

Active SLAM : autonomously constructing and refining the environment representation with mobile robots

Thanks!!!

hcarri@unizar.es

http://webdiis.unizar.es/~hcarri http://www.hcarrillo.com

