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Abstract As a preliminary overview, this work provides first a broad tutorial on
the fluidization of discrete event dynamic models, an efficient technique for dealing
with the classical state explosion problem. Even if named as continuous or fluid, the
relaxed models obtained are frequently hybrid in a technical sense. Thus, there is
plenty of room for using discrete, hybrid and continuous model techniques for logical
verification, performance evaluation and control studies. Moreover, the possibilities
for transferring concepts and techniques from one modeling paradigm to others are
very significant, so there is much space for synergy. As a central modeling paradigm
for parallel and synchronized discrete event systems, Petri nets (PNs) are then
considered in much more detail. In this sense, this paper is somewhat complementary
to David and Alla (2010). Our presentation of fluid views or approximations of PNs
has sometimes a flavor of a survey, but also introduces some new ideas or techniques.
Among the aspects that distinguish the adopted approach are: the focus on the
relationships between discrete and continuous PN models, both for untimed, i.e.,
fully non-deterministic abstractions, and timed versions; the use of structure theory
of (discrete) PNs, algebraic and graph based concepts and results; and the bridge to
Automatic Control Theory. After discussing observability and controllability issues,
the most technical part in this work, the paper concludes with some remarks and
possible directions for future research.
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1 Introduction

Real systems are not continuous, discrete or hybrid. Continuous, discrete or hybrid
are the models that we construct in order to represent them. According to the given
purposes, a system can be “viewed” at different moments through different models,
particularly during its life-cycle. In fact, models are always abstractions! For example,
contrary to what is usually claimed, a tank filled with pure water is not a continuous
system, because we know that the liquid is formed by molecules, so there is always
a discrete number (remember, nanotechnologies deal with matter on an atomic and
molecular scale). Moreover, molecules are formed by atoms. But XX century physics
tells us that atoms “can be divided” and it becomes difficult to classify the models at
the atomic level as discrete, continuous or hybrid in the classical sense.1 In the same
line of thinking, classical predator-prey models (such as the basic model of Volterra-
Lotka) are based on a fluid view of systems in which the number of individuals
is discrete (even if many additional but abstracted features may distinguish them).
As a last example, among many, when visiting a large manufacturing plant, it is
common to hear the engineers using a kind of hydraulic terminology: levels, f lows,
etc. Having said that, it should be noted that, by abuse of language, expressions
such as continuous, discrete or hybrid “systems” are lexicalized, but refer to models,
i.e., they are “views”. According to this accepted practice, models and systems are
substantives frequently used interchangeably, even if sometimes a precision is truly
needed. Engineers are more interested in pragmatism than ontology (essences), and
the manipulation of “fluid (or continuous) views” of systems is a useful and classical
approach.
The mathematics for continuous dynamic systems, particularly for optimal con-

trol, goes back more than three centuries (Sussmann and Willems 1997). At the
intersection of Automatic Control, Operations Research and Computer Science,
the formalization of discrete event dynamic “views” is more recent. Very roughly
speaking it can be said that such views were really developed during the second half
of the past century.2

In many human made systems, for example in telecommunications, manufactur-
ing, logistics, transportation, work-flow management or distributed computation,
the conceptually “more appropriate” kind of formal representation belongs to the

1Think, for example, in models of atoms based on wave-particle duality or the uncertainty principle
(Bernard Pullman, The Atom in the History of Human Thought, Oxford Univ. Press, 1998).
2Before electronic computers became a reality, it is clear that the foundations of Theoretical
Computer Science go back to the 1930s with the works of Alan Turing. Moreover, in 1928 Claude
Shannon applied Boolean Algebra while developing Switching Theory. Even some years before, in
the electromechanical domain, Leonardo Torres Quevedo’s chess player was driven by an automata.
Furthermore, it is clear that, for example, the pioneering works of Markov and Erlang belong to the
first decades of the XX century. Nevertheless, Automata Theory or Queueing Theory (Operations
Research in a broader sense), are identifiable bodies of literature defined by the foundational
research of the 1950’s and 1960’s.
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class of Discrete Event Dynamic Systems (DEDS). But this “natural” formalization
may suffer from the well known state explosion problem. Then, transformation and
structural techniques (where the initial conditions play the role of a parameter) may
be of interest, but they do not offer complete solutions for all imaginable cases.
One of the more simple and classical “fluid” relaxation is that of transforming
Linear Integer Programming Problems (IPP, computationally NP-hard) into Linear
Programming Problems (LPP, of polynomial time complexity), a proof that to
f luidize has been in general an invaluable intellectual resource to construct more
abstract or coarse models. The main goal is to make computational problems for
large-scale systems decidable or much more tractable.

Fluidization techniques try to obtain semi-decision or approximate solutions for
qualitative and quantitative analysis of complex models, instead of exact solutions
of (over)simplified “views” of the original system. Fortunately, the quality of the
approximation usually improves with the size of the population in the system being
considered, while at the same time the computational savings with respect to the
discrete underlying model become much more significant.
Frequently the fluid approximation provides some useful insights into the po-

tential behavior of the real system under consideration, even if the size of the
populations is not “too big”. In other words, fluidization may allow to get tractable
approximate solutions to be achieved by providing some “educated guess” about
behaviors (instead of a very precise evaluation of an artificially over simplified
model). Anyhow it is particularly relevant to remember once again that, in essence,
any model is just an approximation of a certain reality. Obviously, part of the price
paid for fluidization is that, in general, certain properties cannot be considered in a
fluid framework, for example, mutual exclusion.
Coarsening by fluidization is a frequently practised relaxation technique, but there

are several others. Among these, decomposition techniques (the idea of “divide and
conquer”) or Lagrangian relaxations, which employ duality properties of dynamic
systems, especially useful in optimization problems. Rather than alternative, these
latter relaxation techniques may be seen as complementary approaches in the
struggle against computational complexity.
A formalism is a conceptual framework that enables a kind of formal model

of systems to be obtained, allowing some mathematically-based techniques for the
specification, development and verification. Its use in engineering is grounded on the
expectation of contributing to the quality and robustness of a design by performing
appropriate mathematical analysis. For instance, ordinary differential equations con-
stitute a formalism for the modeling of the dynamic behavior of continuous models
with lumped parameters. In view of the long life cycle of a given system (during which
it is conceived, analyzed from different perspectives, implemented and operated),
and the diversity of application domains, it seems desirable to have a family of
formalisms rather than a collection of unrelated or weakly related formalisms.
Following Thomas Kuhn’s ideas (The Structure of Scientif ic Revolutions, 1962),
a paradigm is “the total pattern of perceiving, conceptualizing, acting, validating,
and valuing associated with a particular image of reality that prevails in a science
or a branch of science”. For us, a modeling paradigm is a conceptual framework
that allows formalisms to be obtained from some common concepts and principles,
with the consequent economy, coherence and synergy in development, among other
benefits.
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In this paper, fluid or continuous Petri nets are not seen as isolated formalisms,
but as part of a broad modeling paradigm for DEDS, the Petri nets paradigm (Silva
and Teruel 1996, 1998). Based on the expression of concurrency and synchronization,
locality of states (places) and actions (transitions) is a basic issue for Petri nets. One
of the main consequences is the possibility of approaching the design, analysis and
implementation of parallel and synchronized, eventually distributed, systems using
bottom-up (by composition of lower level modules) and top-down (by refinement
of very abstract or upper level descriptions) approaches, in an arbitrary interleaved
manners. Petri Net (PN) models can then be presented as f lat or structured descrip-
tions, in the latter case just by keeping track of the way they are constructed, a degree
of freedom of the modelers and users. Structuring is in any case an essential issue
when dealing with the modeling and analysis of complex systems.
Among the most cited advantages of PN models is their representability in

graphical terms, but it is improper to limit them to a graphical formalism because they
can be also described straightforwardly in a textual way, which may be convenient for
very large models. Useful for the modeling, analysis and synthesis of concurrent and
distributed systems formalized as discrete (Peterson 1981; Brams 1983; Silva 1985,
1993; Valk and Girault 2003; Jensen and Kristensen 2009; David and Alla 2010),
the conceptual centrality of PNs in the framework of DEDS is confirmed when
considering that they have been defined from quite different perspectives (Silva and
Teruel 1996): axiomatically (by C. A. Petri himself), through the Vector Addition
System, through the Theory of Regions of a labeled graph (encoding the set of nodes-
global states), or from Linear Logic (non-monotonic logic of Girard), to give some
examples.
The introduction of continuous Petri nets (CPNs) goes back to 1987 (David and

Alla 1987). R. David explicitly states (see David and Alla 2010, p. IX) that the
source of inspiration was the fluidization of models for the performance evaluation
of production lines. It is simply coincidence that, at the same meeting in Zaragoza a
systematic use of Linear Programming techniques for the structural analysis of Petri
nets was proposed, working with the fundamental or state equation of the net system
(Silva and Colom 1987) (a revised version in Silva and Colom 1988). In fact this
second approach can be rephrased as just relaxing Integer Programming Problems
into Linear Programming Problems in order to obtain necessary or sufficient condi-
tions for qualitative properties, or bounds for quantitative ones. The main difference
between both approaches is that, being more conceptual, R. David and H. Alla
fluidize at the net level, while in the second case, being more technical, fluidization is
applied at the level of equations. In perspective, the advantage of the approach of our
colleagues from Grenoble was the possibility of describing the transient behavior of
timedmodels, a topic in which we did not take an interest until around a decade later.
On the other hand, the advantage of our approach is that the possible consideration
of the fundamental equation in the integer domain may be very important in order
to improve the analysis of the discrete event models.
Fluidization of PN models is mainly considered here at the level of transitions,

leading to the fluidization of places in their pre- and post-conditions. When only
some transitions are fluidized, the PN model is said to be hybrid (Di Febbraro et al.
2001; David and Alla 2010). Close to this idea, a different class of hybrid PNs has
been called Fluid PNs (Trivedi and Kulkarni 1993; Horton et al. 1998), a formalism
in which the marking of some places is relaxed into the non-negative real numbers
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in the framework of a stochastic model. In general, partial relaxations are used in
very diverse conceptual frameworks and application domains, for example, in data
communication networks. Their packet-level granularity is sometime abstracted into
a packet-train granularity, i.e., clusters of closely-spaced packets are replaced by
“packets trains” (see, for example, Liu et al. 1999). In the cited framework of PNs,
hybrid abstractions may be used, for example, to represent “platoons” of vehicles
in road traffic problems, these being formed due to the synchronization imposed by
traffic lights (Vázquez et al. 2010a). In order to deal with similar problems, Batches
PNs were defined for the modeling and analysis of bottling lines (Demongodin 2001;
Demongodin and Giua 2010). In this case, the previous kind of formalism is enriched
with additional primitives. First-Order Hybrid Petri Nets (FOHPNs) represent an
alternative definition of a timed PN based hybrid formalism. Using LPP techniques,
in Balduzzi et al. (2000) some on-line control and structural optimization problems
are considered; even a multiclass production network described with a queueing
network is considered in the FOHPNs framework. Another hybrid PN extension
is Dif ferential Petri Nets, which admit negative-real markings (Demongodin and
Koussoulas 1998).
If all transitions of a discrete PN are fluidized, the net model is said to be f luid

or continuous, but even in that extreme case the formalism is most frequently
technically hybrid. In this work we concentrate on f luid or continuous Petri Nets,
formalisms that are particularly appropriate for modeling many Large Scale Net-
works. Moreover, a good understanding of continuous PNs is a fundamental issue
for improving the understanding of most hybrid PN formalisms. Nevertheless, certain
PN based hybrid formalisms use a different approach to incorporate some continuous
part, particularly Dif ferential Predicate Transitions PNs (Champagnat et al. 1998,
2001). Using the same kind of approach employed in hybrid automata (see, for
example, Alur et al. 1995), the essential difference is that the discrete dynamics are
described with Petri nets.
The present work is structured as follows: In Section 2 a broad panorama is traced,

presenting a few important paradigms used for formal modeling and analysis of large
and distributed DEDS. One of the goals is to highlight the fact that despite the
apparent diversity at first sight, there exist many common features, and there are
many possibilities of enriching the different perspectives through the incorporation
or adaptation of concepts and techniques initially developed in other paradigms.
Fortunately, this transfer of concepts and techniques is particularly interesting in
the case of derived fluid models. Sections 3 and 4 introduce continuous Petri Nets
(CPNs) as untimed, i.e., fully non-deterministic, and timed formalisms, respectively.
The relationship between the properties of (discrete) PNs and the corresponding
properties of their continuous approximation is considered at several points. Even if
fluidization leads to more efficient techniques for analysis, it should be emphasized
that the expressive power of timed CPNs (TCPN) (under infinite server semantics) is
surprisingly high, because they can simulate Turing Machines (Recalde et al. 2010).
This means that certain important properties such as marking coverability or the
existence of a steady-state are undecidable.
Among the main technical problems that we review are the observation (Section

5) and control (Section 6) of TCPNs. In particular, a blend of techniques belonging to
PNs and (continuous and hybrid) Automatic Control theories is used, emphasizing
some structural (graph and algebraic) concepts and results. The control problems
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considered are mainly of the set-point or state-targeting type (where the distributed
state is the marking), or state-tracking control. For example, if the time duration is
minimized in the transfer from an initial to a given state, the problem is analogous
to the scheduling problem in which the goal is to minimize the make span in
the corresponding discrete model. Enforcement of some safety constraints, e.g.,
deadlock-freeness or generalized mutual exclusion constraints, may be previously
considered using PN based techniques. This overview ends with some concluding
remarks (Section 7).

2 Fluidization: a common coarsening approach for different
DEDS modeling paradigms

The purpose of this section is to provide a quick, probably over-ambitious, overview
of the field. More than two decades ago, in the Fleming report about Future directions
in control theory: a mathematical perspective, it was stated that (Fleming 1988):

There exist no formalisms for DEDS mathematically as compact or computa-
tionally as tractable as the differential equations are for continuous systems,
particularly with the goal of control.

Certainly the field is much more mature today, as it can be readily verified by
looking at the thousands of published works and their applications to real problems.
Nevertheless, it can be said that the same basic operational formalisms remain today,
and considerable diversity still prevails in the DEDS arena. Therefore, the idea
in this section is to “open the window” in order not to limit the perspective to
the Petri nets paradigm, but to show fluidization as a broad tendency. The goal
is to highlight the existence of similarities and potential synergies among different
modeling paradigms, and to suggest that many concepts and techniques can be
borrowed from one modeling paradigm to improve or approach others.
Fluid approximations of discrete event dynamic models may be obtained as a limit

case through a continuous state relaxation of the discrete model. Roughly speaking,
the coarse representation given by fluid models is obtained by abstracting the
movement of discrete entities: the new focus deals with the change of the aggregated
flows, the use of hydrodynamic metaphors being frequent (stock-levels and flows).
This leads to reasonable results when the loads are large enough and the stochastic
fluctuations may be neglected in relative terms, as it may happen, for example, under
heavy traffic conditions. Therefore, the relation between the discrete model and its
relaxed approximation is an important topic. Alternatively, fluid models may also be
directly introduced without paying much attention to the possible relation with an
underlying discrete model, i.e., assuming from the very beginning, at the modeling
stage, that for the problem being considered a fluid model provides a “good enough
abstract view” of the expected behaviors. The first set includes fluid formalisms
derived from Queueing Networks (QNs, Section 2.1), Stochastic Petri Nets (SPNs)
or Markovian Process Algebra (MPAs, Section 2.3). The second group comprises
other well-known formalisms such as Stochastic Flow Models (SFMs) or Forrester
Diagrams (FDs, also expressively called Stock and Flow Diagrams) (Section 2.2).
In all cases, dealing with very simplified historical traces, PNs will be considered
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as a co-existing paradigm. Thus, no special subsection is explicitly devoted to them
here. Nevertheless, they are usually taken as a reference, while we emphasize the
convenience of dealing with multi-paradigm views.

2.1 Queueing networks and fluid views

The history of Queueing Theory goes back to the beginning of the XX century with
the pioneering works of A. K. Erlang for telecommunication networks. Queues were
defined originally in order to deal with resource contention among independent jobs,
e.g., problems of congestion in traffic engineering. Pioneering works on Queueing
Networks go back to the late 1950s (J. Jackson, 1957) and the beginning of the sixties.
In parallel, Petri Nets were introduced by C. A. Petri at the beginning of the 1960s

(Petri 1962), as a fully non-deterministic (untimed) conceptual framework to logically
model and analyze concurrency and synchronization in DEDS. Perceived as a System
Theory by Petri (initially axiomatic), this field was called Systemics by A. Holt in
the historic MAC Project of MIT (Dennis 1970), and the marked bipartite diagrams
representing the systems were baptized Petri Nets. Until the mid 1970s, this was
mainly related to the framework of parallel programming. Notions of time in order
to compute performance or dependability were added to PNs around two decades
later, at the beginning of the 1980s. In the PN paradigm, time has been introduced for
different purposes (for example, time intervals in order to deal with some qualitative
or quantitative real-time properties (Merlin and Faber 1976); or in a possibilistic
fashion to handle uncertainty, or preferences, using fuzzy sets (Cardoso and Camargo
1999)). For performance evaluation and optimization, different semantics have also
been defined, providing the probability density functions (pdfs) for service times and
defining some probabilistic routing (even under some fairness constraints). The most
current practice is to assume random policies for queues (places), services (usually
associated to transitions that become stations, were servers operate) and routing (at
conflicts) (for more elaborate disciplines, see Ajmone-Marsan et al. 1989).
Since the 80s, the evolutions of QN and PN theories and applications have in

part been such that they simultaneously address an increasingly overlapping class of
problems. Nevertheless, it is very important to state that from a historical perspective
the conceptual driving forces have been rather different. It can be said that from the
beginning QNs focused on providing high level primitives that simultaneously supply
the user with simple yet expressive building blocks and restrict the models that can
be specified to those that can be analyzed in a relatively efficient way (Vernon et al.
1987). Very roughly speaking, in a sense QNs develop in a bottom-up approach. One
important limitation of the initial proposals of QNs was the absence of a general
construct to deal with synchronizations. However at the end of the 1970s, with the
emergence of parallel and distributed systems, the need for synchronization became
evident. For example, to describe cooperation relationships, such as the assembly of
parts A and B into a new reality or par-begin/par-end constructs, and competition
relationships, such as the sharing of servers among two different production lines,
or the need for several resources in order to advance production. The reaction was
to provide a bunch of specific, ad hoc extensions (for example, including diverse
forms of synchronization in Extended Queueing Networks, EQNs (Sauer et al. 1982;
Bolch et al. 1998; Gianni and D’Ambrogio 2007)). Proceeding in this way, EQNs
began to use a variety of specific primitives to handle synchronizations and resource
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constraints, sometimes with a clear redundancy in basic objects. For example, passive
resources and customers reside in different kinds of nodes, or different nodes are
used to model a join and a resource acquisition (see Fig. 1). Finally, let us remark
that stochastic Petri nets with weighted arcs, i.e., non-ordinary nets, can be used for
the modeling of bulk arrivals and bulk services (Kleinrock 1975) with deterministic
size of batches (given by the weights of the arcs).
In this respect, it can be pointed out that a great diversity and specificity of primi-

tives may be convenient in order to develop concise and possibly elegant models, but
this abundance tends to make formal reasoning and theory construction difficult. An
ideal solution to conciliate reasoning capabilities and practical expressivity consists
in having a minimal number of basic primitives in terms of which richer derived
ones can be constructed. In contrast to QNs, the basic PN formalism is quite austere:

Fig. 1 A stochastic Petri net and the corresponding extended queueing network
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only two simple and somewhat orthogonal primitives are identified (transitions and
places). In a sense, it can be said that PN theory develops in a top-down way, giving
primarily attention to the logical properties of fully non-deterministic models. In
other words, PN formalisms are based on a few basic principles leading to great
descriptive power, while QNs are based on several expressive blocks (with rich
semantics, dealing with relatively sophisticated queues and server disciplines and
also routing policies), a catalogue that increases under a more problem oriented
perspective, resulting from practical needs. An initial comparison of QNs and timed
PNs models for performance evaluation is provided in Vernon et al. (1987), were
emphasis is put on notation (what models can be expressed and suitability for
representing a class of models) and evaluation ef f iciency (what can be computed
and computational effort required).
In historical terms, the bridges between these two overlapping families of models

for performance evaluation have been fruitful. For example, synchronization has
been introduced in QNs in a more restricted but systematic way when dealing with
Fork Join QN with Blocking (FJQN/B, a class of models with the structure of strongly
connectedMarked Graphs, a well-understood subclass of PNs) (Dallery et al. 1997),
or to derive performance solution techniques on the PN side by adapting techniques
from the QN field. The latter include performance bounds, mean value analysis,
response time approximations or tensor based computations (Balbo and Silva 1998).
The same efficiency can be expected for their fluid approximations: timed fluid PNs
may benefit from borrowing concepts and techniques from fluid QNs, while the
problems in fluid PNs may also influence developments in fluid QNs.
The first book dealing with fluid approximations of QNs was by Newell (1982).

Recognizing that queueing theory was originated to deal with practical problems and
that the literature was already very large, the preface of the book stated that:

. . . as a tool for analysis of practical problems, it remains in a primitive state;
perhaps mostly because the theory has been motivated only superficially by its
potential applications... Queueing theory became very popular, particularly in
the late 1950s, but its popularity did not center so much around its applications
as around its mathematical aspects... The literature grew from “solutions
looking for a problem” rather than from “problems looking for a solution”.
Mathematicians working for their mutual entertainment will discard a prob-

lem either if they cannot solve it, or being soluble it is yet trivial. An engineer
concerned with the design of a facility cannot discard the problem... he must
do the best he can. The practical world of queues abounds with problems
that cannot be solved elegantly but which must be analysed nevertheless.
The literature on queues abounds with “exact solutions”, “exact bounds”,
simulations models, etc.; with almost everything except common sense methods
of “engineering judgment”.

These strong statements written in 1971 can be understood to have the intention
of promoting (forty years ago!) an interest in fluid approximations for QN systems!
The general acceptance of fluidization by the QN community was a slow process,
being delayed some two decades following Newell’s basic proposition.
Fluid limit equations can be derived from discrete QN equations by using natural

extensions of the well-known law of large numbers and the central limit theorem
from probability theory. More precisely its analogues in stochastic processes theory
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are the Functional Strong Laws of Large Numbers and, dealing with distributions,
the Functional Central Limit Theorem (also known as Donsker Theorem). In both
cases, the idea is to study the convergence of a sequence of stochastic processes
to another stochastic process, generating simple approximations (see, for example,
Whitt 2002). These approximations have been used in order, for example, to compute
performance, analyze stability, or optimize the behavior of QNs models.
Fluid approximations may be perceived as being, in a general sense, (continuous

or hybrid) dynamical systems associated with QNs. The fluid relaxed model may
be deterministic only if the functional strong law of large numbers or similar results
are used (Chen and Mandelbaum 1991). Roughly speaking, in this case arrival and
service processes are replaced by their intensities, i.e., expectations or average values.
Nevertheless, even if providing a simplified view, the deterministic approximation
may exhibit very complex behaviors. For example, as pointed out in Bramson (2008),
deterministic fluid QN models need not have unique solutions, since they might
bifurcate. Moreover, as will be mentioned later, when interpreting some continuous
PNs as fluid EQNs, undecidability issues can even appear!
Among the topics considered in the QN literature, questions related to the

quality of the approximation are important. When fluctuations cannot be neglected
with respect to average values (for example, because the population is not truly
that “big”), the fluid model should be described in terms of stochastic dif ferential
equations. In this latter case the noise in the differential equations partially reflects
the stochastic variability in the behavior of the original discrete QN. These stochastic
differential equations may be obtained by means of the functional central limit
theorem or similar results.
The literature on fluid QNs has been very extensive since the 1970’s. While a

complete overview is outside the scope of this work, we would refer as examples
to various books (Kleinrock 1976; Kelly et al. 1996; Chen and Yao 2001; Bramson
2008) or articles (Mitra 1988; Dai 1995; Misra et al. 2000; Altman et al. 2001). The
parametric optimization and dynamic control (sometimes referred to as scheduling
for the underlying discrete model) of the fluid approximate model are important
problems (see for example Moss and Segall 1982; Connors et al. 1994; Kumar and
Kumar 2001; Liu and Gong 2002). Among the many potential interests of fluid
models is the analysis of the stability of discrete QNs (in PN terms, the idea of
boundedness). This is a topic that in the mid 1990s was already stated to have
(in certain cases) “achieved a striking success by providing a complete answer to
the question of stability of stochastic networks” (p. 4 in Avram 1997), frequently
irrespective of the particular discipline being applied to the queues. There is a
significant amount of works dealing with fluid approaches and stability (among those
non previously cited, for example Bertsimas et al. 1996; Down and Meyn 1997; Foss
and Konstantopoulos 2004).

2.2 Direct fluid models of systems that can “naturally” be seen as DEDS

In many natural and technological systems the consideration of discrete event
models may be conceptually the more faithful view. Nevertheless, models being
abstractions, fluid views may be better suited for stability analysis, performance
evaluation, sensitivity analysis or optimization, to give some examples. As already
said, fluid models may be deterministic (first-moment approximation) or stochastic.
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Nevertheless, the basic pattern of the systems of equations is organized around the
simple “mass balance or accounting principle”: the rate of accumulation, e.g., of
customers in queues, is equal to the dif ference of incoming and outgoing f lows.
Even if conceptually thought of as continuous, those models are usually techni-

cally hybrid (among other reasons, because of upper bounds on capacities or non-
negativity at the level of “reservoirs”). From a System Theory point of view, the
peculiarities of models are in the definition of the input and output flows. Among an
infinity of possibilities, they can be linear, piece-wise constant (as it occurs with CPN
under f inite server semantics), piece-wise linear (as occurs with CPNs under inf inite
server semantics), or bilinear (as frequently occurs in population dynamic problems,
where products of predators and preys appear, a server semantics that appears in
CPN by the discoloring of colored PNs (Silva and Recalde 2002)).
It is easy to see that in many cases, “similar” kinds of approaches are taken as

the basis for defining classes of successful models of dynamical systems. For exam-
ple, Compartmental Systems (CS) are composed of a finite number of subsystems
(compartments), interacting by exchanging nonnegative quantities of material and
energy among the compartments and with the environment (Benevenuti and Farina
2002; Walter and Contreras 1999). Similar to that of QNs but “from the beginning”
a continuous perspective, compartmental “views” of systems are used in biology,
medicine and ecology, among many other application fields. The system is governed
by laws of transfer and conservation, while the state variables are constrained to
remain nonnegative over the system trajectories. A compartmental system can be
represented as a graph. ACompartmental Network (CN) has compartments as nodes,
and has a peculiar interpretation associated to it. The level (or amount of material)
of each compartment, xi, changes according to the input and output flows through
the arcs, i.e., ẋi = ∑

k fki − ∑
j fij.

In compartmental systems, generation of matter is forbidden. Hence, in the case
of linear systems (ẋ(t) = A · x(t) + B · u(t)), all the eigenvalues of A have a non-
positive real part and so the systems are either asymptotically or marginally stable.
If it is a closed system, then 1 · A = 0 (thus, A is singular), and then 1 · x(t) is
constant. That is, the system is strictly conservative. Otherwise, there are losses (e.g.,
evaporation) in the system.
The flows in CNs can be defined according to different semantics (Walter and

Contreras 1999): (pure) donor controlled, when fij depends only on xi ( fij = aij · xi in
the linear case); (pure) recipient controlled, when fij depends only on x j ( fij = bij · x j

in the linear case); donor and recipient controlled, if fij depends on both, xi and x j (for
example, fij = cij · xi · x j). Pure recipient controlled systems are not positive systems
according to Farina and Rinaldi (2000). In an unforced, i.e., non-controlled, linear
donor system, A is a Metzler matrix (non-diagonal elements are non-negative) and
for any non-negative initial state the variables remain always non-negative, i.e., x ≥ 0
is a redundant constraint. As with QNs, the compartmental systems “view”, has been
considered for performance evaluation (transient and steady state), sensitivity and
stability analysis or control design (for the last two see, see for example Jacquez and
Simon 1993; Haddad 2004).
Compartmental and PN systems are considered in Silva and Recalde (2003). Due

to the existence of synchronizations (joins or rendez-vous, and arc weights), it can
be said that the structure of PNs is richer. Nevertheless, considering the semantics
associated to the networks, in PNs there is a problem in representing recipient
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controlled compartmental systems in a “natural” way (because in PNs the flows are
defined according to the marking of places at the precondition, not the marking of
the subsequent places).
Using the same kind of “mass balance principle”, in Stochastic Flow Systems (or

Stochastic Fluid Systems) (Cassandras 2007) both the arrival (or incoming) flow
process and the service (or outgoing) process are random, normally assumed to be
independent of each other. As in compartmental systems, x(t) represents the level
of a set of reservoirs at time t, while controls may be applied to regulate the amount
of flows. In this case, graphs illustrate flows, reservoirs and their connections. The
key point is how equations are written, something for which there is a significant
degree of freedom. In order to address optimization problems or sensitivity analysis,
exogenous and endogenous events should be considered (the former referring to
changes in the defining process, the latter characterizing points were the state of
the system enters a certain region). In this framework, Inf initesimal Perturbation
Analysis (IPA) has been successfully explored in several cases in order to optimize
the behavior of the system (see, for example, Sun et al. 2004; Yao and Cassandras
2009).
As a third and last approach, let us mention System Dynamics. This is a modeling

and analysis (basically bounded to simulation) methodology that began to be consol-
idated in parallel with Petri nets, in the 1960’s. Jay W. Forrester started the System
Dynamics Group at MIT, from which Systems Dynamics arose (Forrester 1961,
1968). Abstracting the possible discrete “nature” of the system under consideration,
as in CNs or SFMs, systems are modeled as continuous or hybrid, now using two
kinds of diagrams. Here, we do not explicitly deal with the methodological aspects,
but only to point out the existence of the so called Forrester Diagrams (FDs), also
expressively known as Stock and Flow Diagrams. This kind of diagram allows the
quantitative modeling of the relationships between the parts by means of a catalogue
of symbols which correspond to a classical hydrodynamic interpretation of the system
(see Fig. 2).
The stocks correspond to the name of state variables in systems, while their

values are the levels (stocks accumulate “material” coming from material channels);
the valves determine the speed of the material flow through material channels
(solid lines); the required information is transmitted instantaneously by means of
information channels (dashed lines); auxiliary variables correspond to intermediate
steps in the calculation of functions associated to the valves; the clouds represent
sources and sinks; the interaction of the system with the exterior is represented by
exogenous variables; the delays can affect the material of information transmission
but they do not increase the modeling power of the formalism.
Elements of comparison between FDs and CPNs are provided in Jiménez et al.

(2001, 2004). At the structural level, as in EQNs, the variety of symbols in FDs
contrasts with the frugality of basic symbols in PNs. Additionally, in FDs there
exist not only material f lows, but also graphical representations of information
f lows. Concerning the interpretation of the graph, as in compartmental systems (or
SFMs, where noise is also considered) there is considerable freedom in defining the
flows through arbitrary functions. In contrast, in CPNs the flow functions will be
constrained by the particular server semantics (f inite, inf inite, population or product,
etc.), using only local state variables in the precondition of the transition. Roughly
speaking, if CNs, FDs and SFMs have increased expressivity in defining the “flows”
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Fig. 2 A continuous Petri net, the corresponding FD model and the basic components of a FD
model. Observe that the simulation of the synchronization t3 in the FD is rather “obscure”

quantitatively, the explicit presence of synchronizations in PNs makes the expression
of simple tasks more natural as the assembly of two kinds of parts.
To conclude, let us point out that (E)QNs, CNs, FDs or SFMs were directly

defined as evolving in the time domain. Nevertheless, (C)PNs were primarily defined
as fully non deterministic models, without any concept of time. This may be of
particular interest in order to check some properties such as the potential presence
of deadlocks, or the existence of other time independent constraints in behavior, e.g.,
certain synchronic distances or mutual exclusions.
However, the point here is not to focus on the differences among paradigms,

but rather the reverse: in the end, the different formalisms generate systems of
equations that share some structural elements and there is a clear potential for
transfering/adapting concepts and techniques.

2.3 Stochastic Process Algebras and fluid views

Returning to basic paradigms for modeling DEDS, let us consider Process Algebras
(PAs), a formal paradigm created within the Computer Science community. If PNs
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were mainly defined to express “concurrency and synchronization”, PAs base their
basic modeling view on “components and composition” (let us say, a generalization
of products of automata). Like PNs, PAs have been formally defined in a top-down
manner, first without time, and in a second step adding the time dimension. Very
recently, a lustrum ago, timed-fluid process algebras began to be explored.
From a historical perspective the three most classical process algebras are: Cal-

culus of Communicating Systems (CSS) (Milner 1980), Communicating Sequential
Processes (CSP) (Hoare 1985), where local variables and the message passing para-
digm of communication is adopted, andAlgebra of Communicating Processes (ACP)
(Bergstra and Klop 1982), where the algebraic features are emphasized, introducing
the noun phrase “process algebra”. These proposals belong to an enormous set in
which assumptions may sometimes differ very little, something which may puzzle
outside observers of the field’s evolution as in the case with QN and PN paradigms.
Work on stochastic PAs originated at the University of Erlangen at the beginning

of the 1990s. Roughly speaking, they extend the untimed model with stochastic
timings, and several proposals flourished during the first half of 1990s. They include
(Hermanns et al. 2002): TIPP (TImed Processes and Performance evaluation), PEPA
(Performance Evaluation Process Algebra), MPA (Markovian Process Algebra), and
EMPA (Extended Markovian Process Algebra).
Informally, it can be said that Petri Nets are to Stochastic Petri Nets (SPNs) what

Process Algebras are to Stochastic Process Algebras (SPAs). SPNs were defined
during the first half of the 1980s, while SPAs began to be defined one decade
afterwards. Underlying both kinds of extensions are the goals of modeling and
analysis of the functional behavior and performance characteristics of parallel and
distributed DEDS. The goals in the first process algebras were defined so as to
provide semantics for programming languages involving parallel constructions. This
fact together with the textual programming style of defining models meant that the
interest in process algebra was mostly confined to the Computer Science community.
If fluid or continuous PNs had a clear existence by the beginning of the 1990s

(David and Alla 1987, 1990), fluid PAs began to be defined in the second half of the
first decade of this century, i.e., about a decade and half later. Among these, PEPA
(Hillston 2005) is a basicMarkovian PA in which the basic components are sequential
processes (finite automata), while parallel composition is only supported at the top
level. Its fluid-flow approximation considers large scale models of massively repeated
sequential components. The small set of combinators in PEPA contains pref ix and
choice, representing a sequential behavior and a choice, and cooperation, that defines
synchronizations. Moreover, with hiding it is possible to abstract aspects of the com-
ponents’ behavior (roughly speaking, this is the “parallel” in PNs to silent, immediate,
non-observable... transitions). Among other constraints on fluidization, components
of the same type do not cooperate, i.e., synchronize. In a study related to chemical
reactions, Cardelli (see, for example Cardelli 2008) considers the fluidification of
other SPAs. As with fluid QNs or continuous PNs, the basic goal is to look for a set
of coupled ordinary dif ferential equations (ODEs) as the underlying mathematical
representation of the approximated behavior.
As in automata, in the PA paradigm the representation of the state is symbolic, a

fact which is not appropriate for fluidization. As it is well-known, in PNs (particularly
in Place/Transition nets, P/T nets), the distributed state is given by a numerical
vector, the marking. Following this line of thinking, in Hillston (2005) a numerically
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aggregated representation scheme is defined for PA expressions with replicated
components. It explicitly introduces integer counters to define the state space,
dealing with a state representation in numerical vector form which can be subject to
a fluid-flow approximation. Obtained by aggregating all identical non-synchronized
sequential components, the structure of the model is based on a so called activity
matrix (its dimension being the number of activities by the number of distinct local
derivatives), and timing is defined through a rate function per transition. Obviously
the activity matrix is nothing more than the incidence matrix of an underlying Petri
Net (were activities are transitions and derivatives are places). This obvious fact
has been recognized sometime later (Ding 2010; Galpin 2010). Additionally, due
to constraints on the subclass of considered process algebra models, the underlying
Petri nets are State Machine Decomposable, an ordinary, i.e., no weights on the arcs,
net subclass that is structurally bounded. Moreover, assuming interactions as being
like those existing in computer networks, a bounded capacity law was considered
in PEPA from the beginning. Components cannot perform activities any faster by
cooperation, so the rate of a shared activity is the minimum of the apparent rates of
the activity in the cooperating components. Therefore, the underlying CPN considers
the so called inf inite server’s semantics for the fluid model (in subsequent works
dealing with signalling pathways, borrowing terminology from chemistry, the law
of mass action was added (Ciocchetta and Hillston 2009), replacing the minimum
operator by the product, as in population dynamics (Silva and Recalde 2002)). A
very positive point about this connection is that analysis and control of PEPAmodels
can immediately use PN theory and techniques, and vice versa (a goal expressed in
Donatelli et al. (1995) and Hillston et al. (2001), when comparing the expressiveness
of PEPA and bounded SPN models). Extensions of this subclass of PA models can
be found in Hayden and Bradley (2010) where more than constructing a limiting-
deterministic approximation, higher order moments (in particular, variances) are
estimated. This is necessary for guessing the accuracy of the fluid-flow approximation
in a given situation.

2.4 Some remarks on the sketched landscape

The present section makes a long trip flying over the big forest (do not translate this
last word into Latin, to avoid certain confusions) of fluid models of discrete event
dynamic systems. As a summary of some of the ideas:

• Starting from DEDS views based on “customers-services” relationships (QNs),
expressing “concurrency and synchronization” (PNs), or “components and com-
position” (PAs), the fluid models have similar kinds of structure, withmeaningful
graphical representation.

• In essence, most of the considered DEDS models and their fluid relaxations
directly reflect a bipartite structure: queues in QNs, places in PNs or storages
(tanks) in FDs are “containers”, while stations in QNs, transitions in PNs
or valves in FDs deal with “activities” (in the QN case by agents identified
as servers). Roughly speaking, this represents a consumer/production logic, a
feature needed for manufacturing, communications, logistics, distributed compu-
tations, transportation (road traffic), chemical-reactions, biological or ecological
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systems, to give some examples. The distributed state is (partially) represented
by the number of customers in QNs, tokens in PNs or levels in FDs in the model.

• The presence of synchronizations (joins and arc-weights in PNs) and very
different stochastic interpretations (where the QNs literature is richer) are the
more significant peculiarities of the particular kind of equations in fluid models.

• In PNs, the state is always considered in a distributed and numerical way, as
opposite to the central and symbolic view (single global state-variable) provided
by automata orMarkov chains. This is also the reason why fluid PA models pass
through an intermediate PN representation.

• The accuracy of the approximation depends on the structure of the model, the
timing, the initial state and the performance metrics of interest.

• Under appropriate stability conditions, the classical robustness of closed-loop
control, i.e., reduction of sensitiveness, can more easily exploit the fluid approx-
imation than those required for pure performance evaluation problems.

• The considered fluid models (“approximate or not”) are technically (peculiar)
hybrid systems, due to upper/lower bounds on actions and states, or to flow
definitions as those in which aminimum operator is employed (as in the so called
inf inite server semantics in continuous PNs).

• In many cases, in sound theories to deal with fluid approximation of large scale
DEDS, it would be important to have not only a timed approximation, but
also an untimed one, i.e., assuming full non-determinism, where pure logical
properties of the system can be studied (such as deadlock freeness or liveness,
structural boundedness-stability, synchronic properties...).

Once models of QNs, PNs or PAs are fluidified, or CSs, SFMs or FDs are consid-
ered, the kind of (stochastic) equations that can be obtained have many structural
peculiarities in common. In other words, the study of those fluid models may apply
to broader frameworks than the precise DEDS modeling paradigm from which they
originate. Perhaps one way of understanding this important fact is as follows: if all the
performance models use exponential probability density functions (pdfs), the lower
level models reduce to Markov Chains, and the mentioned proximity among fluid
approximations can be “easily accepted”. If the pdfs are non exponential, under high
utilization probability of servers (heavy traffic. . .), functional central limit theorems
will “uniform” the stochastic kind of fluid models; for really very large populations,
deterministic differential equations may be truly appropriate. In some sense, an
idea of this kind is expressed in Harrison (2002), where a global reflection on the
proper mathematical setting for systems of the type being considered is explained.
Presented from a management/operations research perspective as an extension of
classical linear programming models (static and deterministic, appropriated for very
long terms), Harrison introduces time dimension and random behaviors, identifying
the existence of resources, buf fers, activities and “materials” (units of flow). The
formalism introduced is called Stochastic Processing Networks, its roots lying in the
classical Activity Analysis, began in the 1950s.
The quantity of works on fluid QNs today is impressive. At the other extreme, the

more recent approach to fluidization of DEDS concerns PAs, which goes through
a numerical PN-based representation. In a very simplistic way, the communities
of QNs, and following that lines, considering in fact a subclass of PNs, the com-
munity of PAs pay important attention to the justification of the fluid models
using the functional law of large numbers and functional central limit theorems.
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Most frequently the results concern populations growing to infinity, while time is
kept finite. Alternatively, in the context of PNs the consideration of steady-state
(time going to infinite) for big (but bounded) populations has been studied (see
Section 4.6). For QNs there is a great abundance of studies concerning stability or
optimization (parametric and dynamic) issues. In PNs the extensive use of structure
theory (see, for example Silva et al. 1998) to deal with functional properties for the
underlying non-deterministic discrete model is a peculiar feature, while some bridges
to automatic control concepts and techniques have been explored (see, for example,
hereafter the Sections 4 and 5).

3 Fluidification of untimed net models

After the previous broad perspective, let us now concentrate on Petri nets. This
section presents the formalism of continuous Petri nets and its behavior in the
untimed framework. It deals with basic concepts, as lim-reachability and desired
logical properties, and relates them to those ones of the discrete systems.

3.1 Basic concepts and definitions

In the following, it is assumed that the reader is familiar with Petri nets (PNs)
(seeMurata 1989; Silva 1993; David andAlla 2010 for an introduction). The usual PN
systemwill be denoted as 〈N , M0〉, whereN = 〈P, T, Pre, Post〉 is the net structure:
• P and T are disjoint and finite sets of places and transitions;
• Pre and Post are |P| × |T| sized, natural valued, incidence matrices. The net is

said to be ordinary if Pre and Post are valued on {0, 1};
and M0 ∈ N|P|

≥0 is the initial (discrete) marking. A continuous system 〈N , m0〉 is
understood as the fluid relaxation of all the transitions of a discrete system. The main
difference between continuous and discrete PNs is in the firing count vector and
consequently in the marking, which in discrete PNs are restricted to natural numbers,
while in continuous PNs are relaxed to non-negative real numbers, e.g., m0 ∈ R|P|

≥0 .
Observe that uppercase M represents the marking of a discrete net system, while
lowercase m represents the marking of a continuous net system. In the following, it
will be assumed that all the components of the firing count vector are non-negative
real numbers, what implies a full relaxation of the system. The marking of a place of a
continuous system can be seen as an amount of fluid stored in the place, and the firing
of a transition can be considered as a flow of fluids going from the set of its input
places to the set of its output places (in general, fluids can be created or destroyed by
firing a transition, because any local conservation of material is required).
Given a node v ∈ P ∪ T, its preset, •v, is defined as the set of its input nodes,

and its postset, v•, as the set of its output nodes. For example, in the PN of Fig. 3a,
•t2 = {p2, p3}, while p3

• = {t2}. These definitions can be naturally extended to sets
of nodes. A transition t is enabled at m if for every p ∈ •t, m[p] > 0. In other words,
the enabling condition of continuous systems and that of discrete ordinary systems
can be expressed in an “analogous” way: every input place should be marked. Notice
that to decide whether a transition in a continuous system is enabled or not, it is
not necessary to consider the weights of the arcs going from the input places to the
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transition. However, the arc weights are important to compute the enabling degree
of a transition which, for continuous nets, is defined for a given marking m as

enab(t, m) = min
p∈•t

m[p]
Pre[p, t] (1)

The enabling degree of a transition represents the maximal amount in which the
transition can be fired in a single occurrence. In this section no policy for the firing
of transitions is imposed, that is, a full non-determinism is assumed for the order and
firing amounts in which transitions are fired.
The firing of t in a certain amount α, with 0 < α ≤ enab(t, m) leads to a new

marking m′, and it is denoted as m
αt−→m′. It holds m′ = m + α · C[P, t], where

C = Post − Pre is the token f low matrix (incidence matrix if N is self-loop free),
and C[P, t] is the column of C devoted to transition t. Hence, as in discrete systems,
the state (or fundamental) equation (σ is the firing count vector)

m = m0 + C · σ , m, σ ≥ 0 (2)

summarizes the way the marking evolves. As it will be discussed, for discrete models
the state equation M = M0 + C · σ , M, σ ≥ 0 provides a necessary condition for a
marking to be reachable, however it is not a sufficient condition since it can contain
spurious solutions, i.e., non reachable solutions.
The support of a vector v ≥ 0 is ‖v‖ = {vi|vi > 0}, the set of positive elements

of v. Right and left natural annullers of the token flow matrix are called T- and
P-semif lows, respectively. A semiflow is minimal when its support is not a proper
superset of the support of any other semiflow, and the greatest common divisor of
its elements is one. As in discrete nets, when yT · C = 0, y > 0 the net is said to be
conservative, and when C · x = 0, x > 0 the net is said to be consistent.
P-semiflows lead to three different concepts: (a) the P-semiflow itself which is a

non-negative vector (y ≥ 0, yT · C = 0); (b) the conservation law induced by the P-
semiflow, i.e., if ∃y � 0 then, by the state equation, it holds that given an arbitrary
m0, yT · m0 = yT · m for every reachable marking m; c) the subnet generated by the
places in the support of the P-semiflow (Py = ‖y‖, Ty = • Py ∪ Py

•), a P-conservative
component. On the other hand, T-semiflows also admit three views: (a) the non-
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negative vector that is a right annuller of the incidence matrix (x ≥ 0, C · x = 0);
(b) the potentially cyclic behaviours induced by the T-semiflow. i.e., if ∃x � 0 that
is fireable from m0 then, by the state equation, m0

σ−→ m0 with σ being a firing
sequence whose firing count vector equals x; (c) the subnet generated by the
transitions in the support of the T-semiflow (Tx = ‖x‖, Px = •Tx ∪ Tx

•).
For example, the PN in Fig. 1 has several P-semiflows and one of them is a vector

y with zero elements except y9 = y13 = 1, i.e., ‖y‖ = {p9, p13}. Observe that, from
the initial marking in the figure, m[p9] + m[p13] = 1 for any reachable marking m.
Alternatively, observe that one of the T-semiflows is the vector with all elements
equal to 1 excepting components 3 and 5 that are equal to 0. Thus, if all transitions
are fired excepting t3 and t5, the final marking that is reached is the same as the initial
one. Therefore, the PN has a T-semiflow corresponding to this sequence x with all
elements equal to 1 excepting x3 = x5 = 0.
A set of places � is a siphon if •� ⊆ �•. A set of places � is a trap if: (a)

�• ⊆ •�; and (b) for each place p ∈ � the firing of any t ∈ • p enables at least one
t ∈ p•. Condition (b) is always satisfied in CPNs and in ordinary discrete PNs. For
non-ordinary discrete PNs, condition (b) is satisfied if a non-blocking condition is
true (Brams 1983).3 Therefore, for ordinary nets or if the non-blocking condition
is ignored, a trap in N is a siphon in the reverse net N r, i.e., the resulting net of
reversing all arcs. In discrete nets, initially marked traps cannot be emptied. More
formally, let � = ‖y‖ be a trap, if yT · M0 ≥ 1 then yT · M ≥ 1 for any reachable
marking M. Symmetrically, initially empty siphons cannot get marked, i.e., let � =
‖y‖ be a siphon, if yT · M0 = 0 then yT · M = 0 for any reachable marking M.
For the same PN in Fig. 1, � = {p5, p7} is a trap since �• = {t5} ⊆ {t3, t5} = •�,

while � = {p9, p10, p13} is a siphon since: •� = {t9, t10} ⊆ {t9, t7, t10} = �•.
The definitions of subclasses that depend only on the structure of the net are also

generalized to continuous nets. For instance, in conflict free (or structurally persistent)
nets each place has at most one output transition. In equal conf lict nets (EQ) all
conflicts are equal, i.e., •t ∩ •t′ �= ∅ ⇒ Pre[P, t] = Pre[P, t′] (for instance transitions
t3 and t4 in Fig. 1 are in equal conflict). Moreover, a net N is said to be proportional
equal conf lict if •t ∩ •t′ �= ∅ ⇒ ∃q ∈ R>0 such that Pre[P, t] = q · Pre[P, t′]. A netN
is said to be mono-T-semif low (MTS) if it is conservative and has a unique minimal
T-semiflow whose support contains all the transitions.

3.2 Fireable sequences, reachability sets and a necessary condition for fluidization

In order to illustrate the firing rule in a continuous system, let us consider the system
in Fig. 3a. The only enabled transition at the initial marking is t1 whose enabling
degree is 1. Hence, it can be fired in any real quantity going from 0 to 1. For
example, firing by 0.5 would yield marking m1 = [0.5 0.5 1 0]T . At m1 transition t2
has enabling degree equal to 0.5; if it is fired in this amount the resulting marking
is m2 = [0.5 0.5 0 0.5]T . Both m1 and m2 are markings reachable with finite firing
sequences, or simply reachable markings.

3For each place in the trap, the minimum weight of the input arcs is greater than or equal to the
minimum weight of its output arcs, i.e., ∀p ∈ � such that • p �= ∅ it holds that minti∈• p Post[p, ti] ≥
minto∈p• Pre[p, to].



Discrete Event Dyn Syst

For a given system 〈N , m0〉, the set of all markings that are reachable by a finite
number of firings is denoted as RS(N , m0). Interestingly this set is convex (Recalde
et al. 1999).

Proposition 1 Let 〈N , m0〉 be a continuous PN system. The set RS(N , m0) is convex,
i.e., if two markings m1 and m2 are reachable, then for any α ∈ [0, 1], αm1 + (1 −
α)m2 is also a reachable marking.

Notice that in a continuous system any enabled transition can be fired in a
sufficiently small quantity such that it does not become disabled. This implies that
every transition is fireable if and only if a strictly positive marking is reachable
(equivalently, there exists no empty, i.e., unmarked, siphon). From this, realizability
of T-semiflows can be deduced (Recalde et al. 1999), and therefore behavioral
and structural synchronic relations (Silva 1987; Silva and Colom 1988) coincide in
consistent continuous systems in which every transition is fireable at least once. In
particular, defining boundedness and structural boundedness as in discrete systems
(a system is bounded iff k ∈ N exists such that for every reachable marking m ≤
k · 1, and it is structurally bounded iff it is bounded with every initial marking),
it is immediate to see that both concepts coincide in continuous systems in which
every transition is fireable. And, as in discrete systems, structural boundedness is
equivalent to the existence of y > 0 such that y · C ≤ 0 (see, for example, Brams
1983; Silva et al. 1998).
Assume that the initial marking of a given system 〈N , m0〉 is a vector of non-

negative integers, i.e., m0 ∈ N|P|
≥0 . Obviously, if m is a marking that is reached by

firing transitions in discrete amounts, i.e., as if the system was discrete, then m is
also reachable by the system as continuous just by applying the same firing sequence.
Thus RSD(N , m0) ⊆ RS(N , m0) where RSD(N , m0) is the discrete reachability
set, i.e., the set of markings reachable by the system as discrete. An immediate
consequence of this is that boundedness of the continuous system is a sufficient
condition for boundedness of the discrete system.
A marking is said to be lim-reachable if it can be reached with a possibly infinite

firing sequence. More formally:

Definition 2 (Recalde et al. 1999) Let 〈N , m0〉 be a continuous system. A marking
m ∈ R|P|

≥0 is lim-reachable, if a sequence of reachable markings {mi}i≥1 exists such
that

m0
σ1−→ m1

σ2−→ m2 · · · mi−1
σi−→ mi · · ·

and lim
i→∞

mi = m.

The lim-reachable space is the set of lim-reachable markings, and will be de-
noted lim-RS(N , m0). Figure 3b depicts the lim-RS(N , m0) of the system in Fig. 3a.
It is not necessary to represent the marking of place p1 since m[p1] = 1 − m[p2]
(p1 and p2 define a token conservation law). The set of lim-reachable markings is
composed of the points inside the prism, i.e., the interior points, the points in the
non shadowed sides, the points in the thick edges and the points in the non circled
vertices.
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Let us consider again the system in Fig. 3a with initial marking m0 =
[0.5 0.5 0 0.5]T . The firing of t3 in an amount of 0.5 makes the system evolve to
marking [0.5 0.5 0.5 0]T from which t2 can be fired in an amount of 0.25 leading to
marking [0.5 0.5 0 0.25]T . Now, the markings of places p1, p2 and p3 are the same
as those of the system at m0, but the marking of p4 is half of its marking at m0.
As transitions t2 and t3 are further fired, the marking of p4 approaches 0. Notice
that the marking reached in the limit [0.5 0.5 0 0]T corresponds to the emptying of
an initially marked trap � = {p3, p4}, fact that can not occur in discrete systems.
Thus, in continuous systems traps may not trap tokens! From the point of view of the
analysis of the behaviour of the system, it is interesting to consider this lim-reachable
marking, since it is the one to which the state of the system may converge.
For any continuous system 〈N , m0〉, the differences between RS(N , m0) and

lim-RS(N , m0) are just in the border points of their convex spaces. In fact, it holds
that RS(N , m0) ⊆ lim-RS(N , m0) and that the closure of RS(N , m0), i.e., all the
points in RS(N , m0) plus the limit points of RS(N , m0), is equal to the closure of
lim-RS(N , m0) (Júlvez et al. 2003).
As in discrete systems, a continuous system 〈N , m0〉 is said to deadlock if a

marking m ∈ RS(N , m0) exists such that enab(t, m) = 0 for every transition t; the
system is live if for every transition t and for any markingm ∈ RS(N , m0) a successor
m′ exists such that enab(t, m′) > 0; and a net N is structurally live if ∃ m0 such that
〈N , m0〉 is live.
The fact that RSD(N , m0) ⊆ RS(N , m0)might involve the loss of some properties

of the discrete system, e.g., the new reachable markings might make the system live
or might deadlock it. The system in Fig. 4a deadlocks as discrete after the firing
of transition t1. However, it never gets completely blocked as continuous unless an
infinitely long sequence is considered. On the other hand, the system in Fig. 4b is
live as discrete but gets blocked as continuous if transition t2 is fired in an amount
of 0.5. This non-f luidizability of discrete net systems with respect to the deadlock-
freeness property (also with respect to liveness because they are MTS nets), that
may be surprising at first glance, can be easily accepted if one thinks, for example, on
the existence of non-linearizable differential equations systems (for example, due to
the existence of a chaotic behavior).
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Fig. 4 Two MTS systems that behave in very different ways if seen as discrete or as continuous
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It must be pointed out that a system can be fluidizable with respect to a given
property, i.e., the continuous model preserves that property of the discrete one, but
not with respect to other properties. Thus, the usefulness of continuous relaxations of
discrete models depends not only the systems being studied but also on the properties
to be analyzed.
Interestingly, the set lim-RS(N , m0) can be easily characterized if some common

conditions that can be checked in polynomial time are fulfilled (Recalde et al. 1999).

Proposition 3 Let 〈N , m0〉 be consistent and such that each transition can be f ired at
least once. Then m ∈ lim-RS(N , m0) if f there exists σ > 0 such that m = m0 + C · σ .

Hence, if a net is consistent and the system has no empty siphon at m0, then
the set of lim-reachable markings is fully characterized by the state equation. This
immediately implies convexity of lim-RS(N , m0) and the inclusion of every spurious
discrete solution in lim-RS(N , m0). Recall that m is said to be a spurious discrete
solution if m is solution of the state equation, i.e., there exists σ ∈ N|T|

≥0 such that
m = m0 + C · σ , but m is not reachable, i.e., m �∈ RSD(N , m0). Fortunately, as it will
be shown in the next section, every spurious solution in the border of the convex
set lim-RS(N , m0) can be cut by adding some implicit places (more precisely the
so-called cutting implicit places (Colom and Silva 1991)) what implies clear improve-
ments in the state equation representation. Improvements in the computation of
performance bounds for discrete PNs are considered in Campos et al. (1992).
If 〈N , m0〉 is not consistent or some transitions cannot be fired, lim-RS(N , m0)

can still be characterized by using the state equation plus a simple additional
constraint concerning the fireability of the transitions in ‖σ‖. The set RS(N , m0)

can also be fully determined by adding one further constraint related to the fact that
a finite firing sequence cannot empty a trap (Júlvez et al. 2003) (in contrast to infinite
sequences which might empty initially marked traps as shown in this section).

3.3 Liveness conditions for continuous systems

Liveness and deadlock definitions can be straightforwardly extended for the concept
of lim-reachability.

Definition 4 Let 〈N , m0〉 be a continuous PN system.
– 〈N , m0〉 lim-deadlocks if a marking m ∈ lim-RS(N , m0) exists such that

enab(t, m) = 0 for every transition t;
– 〈N , m0〉 is lim-live if for every transition t and for any marking m ∈

lim-RS(N , m0) a successor m′ exists such that enab(t, m′) > 0;
– N is structurally lim-live if ∃ m0 such that 〈N , m0〉 is lim-live.

Notice that although lim-deadlocks may only be reached in the limit, they
highlight an important system weakness: they allow the system to reach a marking
in which all transitions have either 0 or infinitely small enabling degrees.
As discussed in the previous subsection, the state equation provides a full charac-

terization of the lim-reachable markings for consistent nets with no empty siphons.
This allows one to use the state equation to look for deadlocks reachable from
m0, i.e., markings at which every transition has at least one empty input place.
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Consider the net in Fig. 5 with m0 = [10 11 0]T . It is consistent (with x1 = [1 1]T

as its only minimal T-semiflow) and conservative (with y1 = [1 0 1]T and y2 =
[0 1 1]T as minimal P-semiflows). At any potential lim-deadlock marking m, both
transitions t1 and t2 must be disabled, i.e., at least one input place per transition
is empty. Thus, transition t1 is disabled iff m[p1] = 0 or m[p2] = 0, and transition
t2 is disabled iff m[p1] = 0 or m[p3] = 0. Hence, at a lim-deadlock marking m
it holds m[p1] = 0 ∨ (m[p2] = 0 ∧ m[p3] = 0). As stated, this problem might be
directly associated to a satisfiability problem, which has exponential complexity.
Alternatively, deadlock-freeness can be straightforwardly expressed as a set of non-
linear (bi-linear) equations. Let us define Pre� and Post� as |P| × |T| sized matrices
such that:

– Pre�[p, t] = |t•| if Pre[p, t] > 0, Pre�[p, t] = 0 otherwise
– Post�[p, t] = 1 if Post[p, t] > 0, Post�[p, t] = 0 otherwise.

Equations {yT ·C� ≤ 0, y ≥ 0} where C� = Post� − Pre� define a generator of
siphons (� is a siphon iff ∃y ≥ 0 such that � = ‖y‖, yT ·C� ≤ 0) (Ezpeleta et al.
1993; Silva et al. 1998).

Proposition 5 The following system:

• m = m0 + C · σ , m, σ ≥ 0, {state equation}

• yT · C� ≤ 0, y ≥ 0, {siphon generator}

• yT · m = 0, {empty siphon at m}

• yT · Pre ≥ 1, {at least one input place per transition}

has no solution if f the continuous net system is deadlock-free.

Proposition 5 is derived from the statements that correspond to each constraint
of the bilinear system. The existence of a reachable marking, in which a siphon that
contains at least one input place per transition is empty, is a necessary and sufficient
condition for non-deadlock-freeness. Notice that if the last constraint yT · Pre ≥ 1
is removed, then activity in some transitions is allowed, and hence the existence of

Fig. 5 A continuous MTS
system that integrates a
discrete spurious deadlock
m = [0 1 10]T , reachable
through the firing sequence
5t1, 2.5t1, 1.25t1, . . .

p3

11

10

t1

p1

t2
p2

2

2
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solution for the remaining constraints represent a necessary and sufficient condition
for non-liveness.
The set of places {p2, p3} in Fig. 5 is the support of an initially marked P-semiflow,

and therefore both places cannot be emptied simultaneously. This implies that a
deadlock occurs iff p1 is emptied. The marking m = [0 1 10]T can be obtained as
a solution of the state equation with σ = [10 0]T as firing count vector. Thus given
that the system satisfies the conditions of Proposition 3, m is lim-reachable, i.e.,
the continuous system lim-deadlocks. Notice that p1 is a trap (• p1 = p1

•) that was
initially marked and can be emptied by an infinite firing sequence. However, it is well
known that initially marked traps cannot be completely emptied in discrete nets.
Thus, m is a spurious solution of the state equation if we consider the system as
discrete. An important question is now: How to search for and to remove (discrete)
spurious solutions, i.e., non-reachable markings?
Let us define Pre� and Post� as |P| × |T| sized matrices such that:

– Pre�[p, t] = 1 if Pre[p, t] > 0, Pre�[p, t] = 0 otherwise
– Post�[p, t] = |•t| if Post[p, t] > 0, Post�[p, t] = 0 otherwise.

Equations {yT · C� ≥ 0, y ≥ 0} where C� = Post� − Pre� define a generator of
traps (� is a trap iff ∃y ≥ 0 such that � = ‖y‖, yT · C� ≥ 0) (Ezpeleta et al. 1993;
Silva et al. 1998). Hence, given m we can check in polynomial time a sufficient
condition for a solution of the state equation to be spurious:

Proposition 6 Given m ∈ N|P|
≥0 (m = m0 + C · σ , m, σ ≥ 0), if

• yT · C� ≥ 0, y ≥ 0, {trap generator}

• yT · m0 ≥ 1, {initially marked trap}

• yT · m = 0, {trap empty at m}

has solution, then m is a discrete spurious solution.

The result of Proposition 6 follows directly from the fact that ‖y‖ is a trap that
has been emptied. Fortunately, there exist techniques to cut spurious solutions of
the state equation (Colom and Silva 1991). Let us show how the spurious solution
m = [0 1 10]T can be cut by adding a place that in the discrete net is implicit. Recall
that a place is said to be implicit if it is never the unique place that forbids the firing
of its output transitions, i.e., it does not constraint the sequential behavior of the net
system.
Since p1 is an initially marked trap, its marking must satisfy m[p1] ≥ 1. This

equation together with the conservation law m[p1] + m[p3] = 10 leads to m[p3] ≤ 9.
This last inequality can be forced by adding a slack variable, i.e., a cutting implicit
place q3, such thatm[p3] + m[q3] = 9. Thus, q3 is a place having t2 as input transition,
t1 as output transition and 9 as initial marking. The addition of q3 to the net system
renders p2 implicit (structurally identical with higher marking) and therefore p2

can be removed without affecting the system behavior. In the resulting net system,
m = [0 1 10]T is not any more a solution of the state equation, i.e., it is not lim-
reachable, and then the net system does not deadlock as continuous.
Notice that in continuous systems, deadlock markings are always in the borders

of the convex set of reachable markings and hence, discrete spurious deadlocks
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can be cut by the described procedure. This way, the addition of cutting implicit
places improves the quality of the continuous net as an approximation of the discrete
one by eventually increasing the number of P-semiflows and traps. Notice that such
an addition creates more traps that might be treated similarly in order to improve
further the quality of the continuous approximation.
It must be pointed out that the concept of limit-reachability in continuous nets

provides an interesting approximation to discrete nets in the sense that lim-liveness
of the continuous system is a sufficient condition for liveness of the discrete one
(Recalde et al. 1999):

Proposition 7 Let 〈N , m0〉 be a bounded and lim-live system. Then, N is structurally
live and structurally bounded as a discrete net.

From Proposition 7 it is clear that any necessary condition for a discrete system
to be structurally live and structurally bounded, is also necessary for it to be
structurally lim-live and bounded. In particular rank theorems (Recalde et al. 1998)
establish necessary liveness conditions based on consistency, conservativeness and
the existence of an upper bound on the rank of the token flow matrix, which is the
number of equal conflict sets. These are equivalence relations, and the sets of all the
equal conflict and proportional equal conflict sets are denoted by SEQS (e.g., the
set {t3, t4} in Fig. 1 is an equal conflict set) and SPEQS (e.g., the set {t3, t4} in Fig. 1
is a proportional equal conflict set for any weights of the arcs connecting p4 to t3
and t4) respectively. The following rank theorem (Recalde et al. 1999) establishes a
necessary condition for lim-liveness:

Proposition 8 Let 〈N , m0〉 be a bounded and lim-live system. Then, N is consistent,
conservative and rank(C) < |SPEQS|.

In discrete EQ systems another rank theorem provides a full characterization
of structural liveness and structural boundedness (Teruel and Silva 1996). For
continuous EQ systems this result can be extended leading to a full characterization
of lim-liveness and boundedness of polynomial time complexity (Recalde et al.
1999):

Proposition 9 A continuous EQ system 〈N , m0〉 is lim-live and bounded iff:

– N is consistent, conservative, rank(C) = |SEQS| − 1 and
– The support of every P-semif low is marked (� ∃yT ≥ 0, yT · C = 0, y · m0 = 0).

Let us finally notice that there exist transformation techniques, namely equaliza-
tion and release, that convert non EQ systems into EQ ones and, under some con-
ditions, preserve non (structural) liveness. While equalization hardens the enabling
conditions of the transitions to make them equal, release weakens such conditions.
Thus, these transformations allow to obtain some sufficient liveness conditions for
non EQ systems out of the ones known for EQ systems (see Recalde et al. 1998 for
details).
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4 Fluidization of timed net models

This section introduces the notion of time in the continuos Petri net formalism
presenting the most used firing semantics. Then, the main focus will be on inf inite
server semantics. Some basic properties such that the monotonicity of steady-state
throughput or the relation of liveness with untimed model are considered. Even if
some properties are undecidable, a model checking technique is also mentioned. Fi-
nally, some developments on how can be improved the approximation are done con-
sidering the removing of spurious solutions, the addition of noise, or the definition
of ad-hoc server semantics.

4.1 Conceptual framework and server semantics

If a timed interpretation is included in the continuous model, the fundamental
equation explicitly depends on time: m(τ ) = m0 + C · σ (τ ), which, through time
differentiation, becomes ṁ(τ ) = C · σ̇ (τ ). The derivative of the firing count vector
f (τ ) = σ̇ (τ ) is called the (f iring) f low, and leads to the following equation for the
dynamics of the timed CPN (TCPN) system:

ṁ(τ ) = C · f (τ ). (3)

Depending on how the flow f is defined, different firing semantics can be
obtained. In general, transitions are interpreted as stations (in QN terminology),
where servers and clientsmeet. Thus, “a priori” the most appropriate firing relaxation
depends on the relative number of servers and clients in the discrete model that we
want to approximate. Very roughly speaking, assuming that there may be “many”
or “few” of each of them, fluidization can be considered for clients, for servers or
for both. Table 1 represents qualitatively the four possible cases. If the number of
clients is “small” (Few-Few and Few-Many in Table 1), the system is not too much
“crowded”, the transitions “should” remain discrete and the fluidization may be
unsuitable. If there are many clients and few servers (Many-Few) the relaxation is
only at the level of clients, and the so called f inite server semantics may provide
a good approximation. On the other hand, in the case of many clients and many
servers (Many-Many), a continuous model with the so called inf inite server semantics
seems reasonable, since there are so many servers that there is no need to make them
explicit.
Let us assume that a constant λ j is assigned to each transition t j. For f inite

server semantics, if the markings of the input places of t j are strictly greater than
zero (strongly enabled), its flow will be constant, equal to λ j, i.e., all servers work

Table 1 A qualitative
approach to the fluidization of
a transition (Silva and Recalde
2004)

Clients Servers Semantics of the transition

Many Many Infinite server semantics
Many Few Finite server semantics
Few Few Discrete transitions
Few Many Discrete transitions
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at full speed. Otherwise (weakly enabled), the flow will be the minimum between
its maximal firing speed and the total input flow to the empty places (hence, λ j

represents the product of the number of servers in the transition and their speed).
This semantics corresponds to the constant speed of Alla and David (1998), where
the flow of a transitions t j is:

f j =

⎧⎪⎨
⎪⎩

λ j, if ∀pi ∈ •t j, mi > 0

min

{
min

pi∈•t j|mi=0

{ ∑
tq∈• pi

fq·Post[tq,pi]
Pre[pi,t j]

}
, λ j

}
, otherwise

(4)

The dynamical system corresponds to a piecewise constant system; a switch occurs
when the set of empty places changes and the new flow values must ensure that
the marking of all places remains positive. Many examples using this semantics are
given in David and Alla (2010) while a net system using both semantics is studied in
Mahulea et al. (2009a).
Observe that Eq. 4 is not defining completely the flow when there are conflicting

transitions. In such a case, a resolution policy should be specified, otherwise many
solutions are possible (Balduzzi et al. 2000).Moreover, an important drawback of this
semantics is that it allows infinitely fast movement of tokens when several transitions
in sequence are weakly enabled. In the following, finite server semantics is only
considered in Section 6.7, the rest of the paper focuses on infinite server semantics.
In the case of inf inite server semantics, the flow of transition t j is given by:

f j = λ j · enab(t j, m) = λ j · min
pi∈•t j

mi

Pre[pi, t j] , (5)

where λ j is the firing rate of t j.
Like in Markovian PNs, i.e., discrete PNs with exponential firing times in all

transitions (Molloy 1982), in continuous PNs under inf inite server semantics, the
flow through a transition is proportional to its enabling degree. The dynamical
system corresponds to a piecewise linear system and switches occur due to the
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(a) A continuous Petri net with several
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(b) The flow of transition t1 (see fig. 6(a))
is a piecewise linear function of the mark-
ing of p1.

Fig. 6 Modeling of the flow of a transition as a piecewise linear function of the marking of a given
place
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minimum operators. Nevertheless, more complex behaviors can be modeled. For
example, in certain application domains as road traffic systems different shapes may
be convenient. In this case, it is important to approximate the fundamental diagram
expressing the relationship between the density of cars and the flow of cars in a given
section of the road. Using some additional places, the flow of a transition can be
modeled as a piecewise linear function of the marking of a given place (Júlvez and
Boel 2010). For example, a three phases flow can be easily represented: with an
ascending phase, a constant phase (using self-loop places around transitions) and
a descending phase (using complementary places) (Fig. 6). In Timed dif ferentiable
Petri nets (TDPNs) the idea is analogous to have two separate channels (like in
Forrester Diagrams): one devoted to define how tokens flow, i.e., the material flow,
and the other to fix the value of the flow, i.e., the information flow. In Recalde
et al. (2010) it is proved that TDPNs can be simulated by TCPNs, having equal
modeling capabilities. From a different perspective, an extension of the infinite
server semantics is defined in Hiraishi (2008) where lower and upper bounds are
given for the firing rates. The idea is that using interval f iring speeds the variability
of the stochastic behavior of the underlying discrete model can be taken into account
in performance evaluation tasks.
TCPNs under infinite server semantics have the capability to simulate Turing

machines (Recalde et al. 2010), thus they have an important expressive power;
nevertheless, certain important properties are undecidable (for example, marking
coverability, submarking reachability or the existence of a steady-state). Moreover,
through discoloration of colored nets, the minimum operator of infinite server
semantics becomes a product (population semantics) (Silva andRecalde 2002). Being
possible to define firing flows proportional to the product of the marking of input
places, chaotic models can be described, i.e., models of deterministic dynamical
systems that are extremely sensitive to initial conditions.
A model in which the time is associated to places has been introduced in Cohen

et al. (1998). Under some assumptions on the net structure and on the firing policy,
it is equivalent to a linear system in the (min,+) semiring. Unfortunately, basically
marked graphs can be studied in this algebra. Following this work, in Gaujal and
Giua (2004) some results regarding the steady-state have been proved for a particular
class of deterministically timed nets under a stationary routing (STAR), by which the
behavior is constrained to be conflict-free.
In the case of manufacturing or logistic systems, it is natural to assume that the

transition firing flow is the minimum between the number of clients and servers and,
f inite server (or constant speed) or inf inite server (or variable speed) are mainly used
(Silva and Recalde 2004; David and Alla 2010). Since these two semantics provide
two different approximations of the discrete net system, an immediate problem is to
decide which semantics will approximate “better” the original system. In David and
Alla (2010), the authors observed that most frequently the infinite server semantics
approximates better the marking of the discrete net system. Moreover, for mono-T-
semiflow reducible net systems (Júlvez et al. 2005) under some general conditions
it is proved that infinite server semantics approximates better the flow in steady
state (Mahulea et al. 2009a). The result holds depending on an structural property
defined from the steady-state marking, a condition that is quite common in the case
of production systems. For population systems (predator/prey, biochemistry, . . .),
the transition firing flows are usually described by products of markings, and even
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more specific non-linear functions (see, for example, Silva and Recalde 2002; Heiner
et al. 2008). In fact, the products can be obtained from infinite server semantics while
considering discoloration of colored PN models (Silva and Recalde 2002).

4.2 Logical properties in timed models versus untimed models

If the steady-state exists, from Eqs. 3 and 5, ṁ = C · f ss = 0 is obtained (indepen-
dently of the firing semantics), where f ss is the flow vector of the timed system in
the steady state, f ss = limτ→∞ f (τ ). Therefore, the flow in the steady state is a T-
semiflow of the net. Deadlock-freeness and liveness definitions of untimed systems
can be easily extended to timed systems as follows:

Definition 10 Let 〈N , λ, m0〉 be a timed continuous PN system and f ss be the vector
of flows of the transitions in the steady state.

– 〈N , λ, m0〉 is timed-deadlock-free if f ss �= 0;
– 〈N , λ, m0〉 is timed-live if f ss > 0;
– 〈N , λ〉 is structurally timed-live if ∃ m0 such that 〈N , λ, m0〉 is timed-live.

Notice that if a timed system is not timed-live (timed-deadlock-free), it can be
concluded that, seen as untimed, the system is not lim-live (lim-deadlock-free)
since the evolution of the timed system just gives a particular trajectory that can
be fired in the untimed system. This fact allows us to establish a one-way bridge
from liveness conditions of timed systems to untimed systems. The reverse is not
true, i.e., the untimed system can deadlock, but a given λ can drive the marking
along a trajectory without deadlocks, e.g., the system in Fig. 4b deadlocks as untimed
but is timed-live with λ = [1 2]T (in particular f ss = [1 1]T). In other words, the
addition of an arbitrary transition-timed semantics to a system imposes constraints
on its evolution what might cause the timed system to satisfy some properties,
as boundedness and liveness, which are not necessarily satisfied by the untimed
system (Vázquez and Silva 2010). The relationships among liveness definitions are
depicted in Fig. 7.
As an example, let us show how some conditions initially obtained for timed

systems can be applied on untimed ones. It is known that if a MTS timed system
〈N , λ〉 is structurally live for any λ > 0, then for every transition t there exists p ∈ •t
such that p• = {t}, i.e., p is structurally persistent or conf lict-free (Júlvez et al. 2006).
Let 〈N , λ〉 be a timed system containing a transition t such that for every p ∈ •t,
|p•| > 1. According to the mentioned condition λ exists such that 〈N , λ〉 is not
structurally timed-live. Therefore N is not structurally lim-live, since structurally
timed-liveness is a necessary condition for structurally lim-liveness (see Fig. 7).

Fig. 7 Relationships among
liveness definitions for
continuous models by definition

by definition

untimed

timed

behavioral structural

lim-liveness
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lim-liveness
structurally

timed-liveness
structurally



Discrete Event Dyn Syst

4.3 Infinite Server Semantics: Performance bounds for steady-state

The existence of the minimum operator in infinite server semantics induces three
strongly related concepts: (a) the set of places defining the enabling degree of transi-
tions is known as conf iguration; (b) the sub-state space in which the configuration is
the same is known as region; and (c) at each region the dynamics is driven by a single
linear system which is also known as operation mode. More formally:

Definition 11 A conf iguration of a net N is a set of (p, t) arcs, one per transition,
covering the set T of transitions. Associated to a given configuration Ck is the
following |T| × |P| conf iguration matrix:

�k[t, p] =
{ 1

Pre[p,t] , if (p, t) ∈ Ck

0, otherwise
(6)

In the case of a TCPN system under infinite server semantics, at a given marking
m ∈ RS(N , m0), the flow of a transition t j, given by Eq. 5, is defined by the marking
of an input place pi ∈ •t j, the one which gives the minimum. Let us notice that the
reachability set RS(N , m0) of a TCPN system can be partitioned (except on the
borders) according to the configurations and inside each obtained convex region
Ri(N , m0) the system dynamic is linear. Putting together Eqs. 6, 5 and 3, the
dynamic system evolution inside a regionRk, called operation mode k as well, can be
written as:

ṁ(τ ) = C · f (τ ) = C · � · �(m) · m(τ ), (7)

where � = diag(λ) is a diagonal |T| × |T| matrix containing the firing rates of
transitions and the configuration matrix is�(m) = �k where�k is the configuration
matrix associated to Rk (if m is on the border of two regions R1 and R2, any
operation mode with C��1 or C��2 can be used since the same behavior is
obtained).
Obviously, inside a region (where �(m) is the current matrix) Eq. 7 is a linear

system and will be said that it is the kth linear system or the kth (operation) mode of
the TCPN system. To each configuration, an operation mode can be associated. The
number of modes (regions, configurations) is upper bounded by

∏
t∈|T| |•t| but some

of them can be redundant and can be removed (Mahulea et al. 2010).
A performancemeasure that is often used in discrete PN systems is the throughput

of a transition in the steady state (assuming it exists), i.e., the number of firings per
time unit. In the continuous approximation, this corresponds to the firing flow in
steady state. A classical concept in queueing network theory is the “visit ratio”. In
Petri net terms, the visit ratio of transition t j with respect to ti, v(i)[t j], is the average
number of times that t j is visited (fired), for each visit to (firing of) the reference
transition ti.
Let us consider consistent nets without empty siphons at m0 (Proposition 3,

∃x ≥ 1, C · x = 0 and � ∃y ≥ 0, yT · C� ≤ 0, yT · m0 = 0). In order to simplify the
presentation, let us assume that the net is MTS. Therefore, for any ti, f ss = χi · v(i),
with χi the throughput of ti. The vector of visit ratios is a right annuler of the
incidence matrix C, and therefore, in MTS systems, proportional to the unique
T-semiflow. For this class of systems, the throughput can be computed using the



Discrete Event Dyn Syst

following non-linear programming problem that maximize the flow of a transition
(in fact, any of them, since all are related by the T-semiflow)

max f ss[t1]
s.t. mss = m0 + C · σ

f ss[t j] = λ j · min
pi∈•t j

{
mss[pi]

Pre[pi,t j]
}

, ∀ti ∈ T

C · f ss = 0
mss, σ ≥ 0

(8)

where mss is the steady-state marking. A way to solve Eq. 8, which due to the
minimum operator is non linear, consists in using a branch& bound algorithm (Júlvez
et al. 2005). Relaxing the problem to a LPP, an upper bound solution can be obtained
in polynomial time, although this may lead to a non-tight bound, i.e., the solution
may be not reachable if there exists a transitions for which the flow equation is not
satisfied. If the net is not MTS, similar developments can be done by adapting the
equations in Chiola et al. (1995).
In the case of controlled systems, the LPP relaxation of Eq. 8 can be used to

compute an optimal steady-state assuming only flow reduction (the machines can
only be slowed down), f ≥ 0 and the steady-state flow should be repetitive, C · f =
0. If all transitions are controllable, it can be solved by introducing some slack
variables in order to transform the inequalities derived from the minimum operator
in some equality constraints. These slack variables are used after to compute the
optimal steady-state control (Mahulea et al. 2008c). For example, let us consider the
following LPP:

max k1 · f − k2 · m − k3 · m0

s.t. m = m0 + C · σ (a)

fi = λi ·
(

m[p j]
Pre[p j,ti]

)
− v[pj, ti],∀pj ∈ •ti, v[pj, ti] ≥ 0 (b)

C · f = 0 (c)
m, σ , f ≥ 0

(9)

where v[pj, ti] are slack variables. The objective function represents the profit that
has to be maximized where k1 is a price vector w.r.t. steady-state flow f , k2 is the
work in process (WIP) cost vector w.r.t. the average marking m and k3 represents
depreciations or amortization of the initial investments over m0. Using the slack
variables v, the optimal control in steady-state for a transition ti if it is controllable,
i.e., it permits a control ui > 0, is just ui = min

pj∈•ti
v[pj, ti]. Therefore, this control

problem (a synthesis problem) seems easier than the computations of performance
(an analysis problem) even if, in general, is the opposite. Controllability issues will
be considered from a dynamic perspective in Section 6.

4.4 Infinite server semantics: monotonicity and paradoxes

According to Eq. 5, it is obvious to remark that being the initial marking of a
continuous net system positive, the marking will remain positive during any unforced
or non-controlled evolution. Hence, it is not necessary to add constraints to ensure
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the non-negativity of the markings. On the other hand, according to Eq. 5 as well,
two homotheticity properties are dynamically satisfied:

– if λ is multiplied by a constant k > 0 then identical markings will be reached, but
the system will evolve k times faster;

– if the initial marking is multiplied by k, the reachable markings are multiplied by
k and the flow will also be k times bigger.

Unfortunately, infinite server semantics has not only “good” properties and some
counterintuitive behaviors or “paradoxes” appear. For example, it could be thought
that, since fluidization relax some restrictions, the throughput of the continuous sys-
tem should be at least that of the discrete one. However, the throughput of a TCPN
is not in general an upper bound of the throughput of the discrete PN; moreover, if
only some components of λ or only some components of m0 are increased the steady
state throughput is not monotone in general (Silva and Recalde 2004).
Two monotonicity results of the steady-state throughput are satisfied under some

general conditions (Mahulea et al. 2009a):

Proposition 12 Assume 〈N , λi, mi〉, i = 1, 2 are MTS TCPNs under inf inite server
semantics that reach a steady-state. Assume that the set of places belonging to the arcs
of the steady state conf iguration contains the support of a P-semif low for m ∈ [m, m]
and λ ∈ [λ, λ]. Then for all m1, m2 ∈ [m, m] with m1 ≤ m2 and for all λ1,λ2 ∈ [λ,λ]
with λ1 ≤ λ2, the steady state f lows satisfy f 1 ≤ f 2.

Let us consider the mono-T-semiflow TCPN in Fig. 8a under infinite server
semantics with λ1 = λ3 = 1 and m0 = [15 1 1 0]T . Different modes can govern
the evolution of the system at steady-state. For example, if 0 < λ2 ≤ 0.5, the flow
in steady-state is f1(τ ) = m1(τ ), f2(τ ) = λ2 m4(τ ) and f3(τ ) = m3(τ ), respectively.
Therefore, C2 = {(p1, t1), (p4, t2), (p3, t3)} is the steady-state configuration and the
set of places {p1, p4, p3} gives the flow. Since it contains the support of a P-semiflow
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(b) Throughput for m0 = [15 1 1 0]T and different
values of λ 2

Fig. 8 A mono-T-semiflow net and its “fluid” throughout in steady-state. Observe that it is not
smooth, and that increasing λ2 > 0.5 the throughput is counterintuitive (faster machine, slower
behavior)
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(p1 + 4 · p3 + p4) the steady-state flow is monotone (Fig. 8b). Increasing λ2, the
steady-state configuration becomes C3 = {(p4, t1), (p2, t2), (p3, t3)}, i.e., the set of
places governing the evolution becomes {p4, p2, p3}, that is the support of a P-flow
(p2 − 3 · p3 − p4), not a P-semiflow, and monotonicity may not hold (Fig. 8b).

4.5 Infinite server semantics: analyzing by model checking

Born in the Computer Science milieu, model checking techniques are very popular
for formal verification of DEDS (see for example Clarke et al. 2009, the ACM
Turing Award of 2007). Given a model and a specification, model checking tests
automatically whether the model meets the specification or not. Herein we deal with
continuous systems, therefore we need a “discrete view”. For a TCPN system under
infinite server semantics formal analysis starts by embedding the TCPN system into
a piecewise affine (PWA) system and then into a finite transition system based on
discrete abstractions (finite quotients). The obtained quotient is iteratively analyzed
and refined by employing convexity properties of affine systems in full-dimensional
polytopes (Kloetzer and Belta 2008).
Let us assume that P is a user-defined set of strict linear inequalities over marking

m, including all the affine functions in m necessary to define the full-dimensional
regionsRi. Two kinds of interesting problems can be formulated as:

– Construction of safe sets: let us assume a given set of initial markings defined as
the conjunction of predicates from a set P0 ⊆ P . The problem is to find a subset
of the reachability set that cannot be reached by trajectories of TCPN originating
in the initial set.

– Initial set satisfying Linear temporal logic (LTL) specif ication: given an LTL
formula over P , find a set of initial markings of TCPN from where all possible
trajectories satisfy the formula.

The basic idea for the formal verification of PWA systems is based on the results
in Habets and van Schuppen (2004). Given two adjacent polytopes, it is shown that
there exists a trajectory penetrating from one to another in finite time if and only
if there exists a vertex on the common facet at which the projection of the vector
field on the outer normal of the facet pointing from the first to the latter is strictly
positive. Moreover, it is proved also that an affine system has a trajectory contained
in a full dimensional open polytope for all time if and only if the affine system has an
equilibrium inside the polytope. Therefore, solving both problems of TCPN reduces
to checking nonemptiness of polyhedral sets.
A fully automated procedure is proposed in Kloetzer et al. (2010) for both

problems. Since the procedure basically reduces to search on a graph, the complexity
is dependent on the number of nodes, each node corresponding to a region in the
obtained partition. Thus, the bottleneck is resulting from an iterative refinement
procedure because after each refinement the number of discrete states in the
transition system is increasing.

4.6 On the approximation by fluidization

Fluid PNs are usually considered as relaxations of original discrete models. In fact,
the definitions for the most usual semantics for timed continuous PNs were inspired
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by the average behavior of high populated timed discrete PNs (David and Alla 2010;
Recalde and Silva 2001). Nevertheless, the dynamic behavior of a timed continuous
PN model does not always approximate that of the corresponding timed discrete PN.
Then, it is important to investigate the conditions that lead to a valid relaxation, from
the performance evaluation perspective. In some sense, this subsection deals with the
legitimization of the so called infinite server semantics (introduced in Section 4.1) and
the consideration of some issues that affect the quality of the approximation. The
following subsection considers a few techniques for improving the approximation.
Let us consider Markovian Petri nets (MPN), i.e., stochastic discrete Petri net with

exponential delays associated to the transitions and conflicts solved by a race policy
(Molloy 1982). The approximation of the average marking of an ergodic (thus with
home states) MPN, by that of the corresponding TCPN under inf inite server seman-
tics (ISS), was first considered in Recalde and Silva (2001), later more deeply studied
in Vázquez et al. (2008b). In this last work it is concluded that the approximation
holds when the utilization factor is high, usually when the number of active servers
of transitions (the probability of being enabled) is large as well, and the system
mainly evolves inside one marking region, i.e., for each synchronization, a single
place is almost always constraining the throughput. Errors in the approximation may
appear due to the existence of sychronizations: arc weights (in non-ordinary nets)
and joins (rendez-vous). The reason is that the flow definition for the TCPN does
not accurately describe the throughput in these cases. In fact, the approximation is
perfect for ordinary Join-Free Petri nets.
Let us provide an intuitive reasoning for this. As previously stated, M and Enab

refer to the discrete MPN, while m and enab refer to the continuous model, TCPN.
Suppose that, at some time, the marking of the TCPN approximates the average
marking of the MPN, i.e., m ∼ E{M}. Given an arc with weight k connecting a
place pj to a transition ti, the expected enabling degree of ti in the MPN would
be E{Enab(ti)} = E{�M[pj]/k�}, which is different than the enabling degree in
the TCPN enab(ti) = m[pj]/k ∼ E{M[pj]}/k, due to the presence of the operator
� · � (in ordinary arcs k = 1, thus �M[pj]/k� = M[pj]). Similarly, given an ordinary
synchronization ti with two input places {pj, pk}, the expected enabling in the
MPN would be E{Enab(ti)} = E{min(M[pj], M[pk])}, which is not equal to the
enabling in the TCPN enab(m[pj], m[pk]) ∼ min(E{M[pj]}, E{M[pk]}), because
the “expected value” and the “min” operators do not commute (also seen in the
context of performance evaluation of throughput bounds (Campos and Silva 1992)).
Consequently, since the flow through the transitions depends on the enabling degree,
a perfect approximation will not hold for future time. Nevertheless, approximation
errors do not accumulate when the steady state marking of the continuous model is
asymptotically stable (because the deviations of the MPN from its expected behavior,
which is similar to that of the TCPN, vanish with the time evolution). Therefore,
asymptotic stability is a necessary condition (together with liveness, otherwise, the
continuous system may die while the discrete is live) for the approximation of the
steady state.
Let us illustrate with an example how the arc weights introduce approximation

errors. Consider the MPN system of Fig. 9a with timing rates λ1 = λ2 = 1, and
initial marking M0 = [k · q 0]T , where k, q ∈ N+. This system, and its corresponding
TCPN, were evaluated for different values of k and q. The obtained values for the
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throughput and flow of t1, at steady state, are shown in Table 2. Note that, when
k = 1, i.e., the marking is relatively very small, the larger the weight of the input arc
of t1, i.e., q, the bigger the error between the throughput in the MPN (χ [t1]), and the
flow in the TCPN ( f [t1]). Observe that the flow in the continuous model remains
unchanged. Actually, it is very important to remark that the differential equation
describing the behavior of the TCPN does not depend on q:

•
m = C��(m)m =

[−q 1
q −1

] [
1 0
0 1

] [ 1
q 0
0 1

]
m =

[−1 1
1 −1

]
m (10)

On the other hand, when the arc weights are fixed but the initial marking is
increased, i.e., k is increased, the relative approximation error decreases (in such
case, E{�M[p1]/q�} ∼ E{M[p1]} for M[p1] >> q). Concluding: the relative errors
introduced by arc weights become smaller when the marking in the net is increased
w.r.t. those weights.
Now, let us illustrate how the joins also introduce approximation errors. TheMPN

system of Fig. 9b was simulated with timing rates λ1 = λ2 = λ3 = 1 and different rates
for t4: λ4 ∈ {2, 1.5, 1.2, 1}. The corresponding TCPN models were also simulated.
The average markings at the steady state are shown in Table 3 (columns MPN and
TCPN). The column TnCPN corresponds to the stochastic extension of the TCPN
obtained by adding some gaussian noise, something to be considered in section 4.7.
The column denoted as E{Enab(t4)} is the average enabling degree of t4 in the MPN
at the steady state (∀ti ∈ T \ {t4} : E{Enab(t4)} < E{Enab(ti)} in all the experiments,
so this represents a lower bound for the number of active servers in the transitions).
The value in column Prob(M ∈ Rss) is the probability that the marking is inside
the region Rss, related to the steady state of the TCPN (equivalently, the fraction
of time that M(τ ) is in Rss). Note that the lower the probability that M(τ ) belongs

Table 2 Throughput and its approximation for t1 of the net of Fig. 9a

k = 1 \ q = 1 2 4 8 16

MPN, χ [t1] 0.50 0.40 0.32 0.26 0.22
TCPN, f [t1] 0.50 0.50 0.50 0.50 0.50

q = 4 \ k = 1 2 4 8 16

MPN, χ [t1] 0.32 0.80 1.76 3.78 7.68
TCPN, f [t1] 0.50 1.00 2.00 4.00 8.00
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Table 3 Marking approximation of p3 for the MPN of Fig. 9b (which is a marked graph, so, state
machine decomposable)

λ4 MPN TCPN TnCPN E{Enab(t4)} Prob(M ∈ Rss)

2 54.62 55 54.63 2.53 0.8433
1.5 53.87 55 53.88 3.22 0.661
1.2 51.16 55 51.17 3.88 0.413
1 29.97 55 30.73 4.93 0.036

to Rss, the larger the difference (the error) between the MPN and the TCPN, even
if the average enabling degrees increase. On the other hand, a good approximation
is provided when the probability that M(τ ) ∈ Rss is high, which occurs for λ4 = 2.
The approximation holds because, in this case, M(τ ) mainly evolves in one region
Rss (in particular, E{min(M[p4], M[p5])} ∼ E{M[p4]} and E{min(M[p2], M[p3])} ∼
E{M[p2]}), where the continuous model has an asymptotically stable steady sate
marking.
An analogous approximation analysis has been recently achieved in the frame-

work of fluid process algebra (PEPA), deriving a functional limit theorem (Ding and
Hillston 2010). That approach is based on classic works where ordinary differential
equations are used for describing the transient behavior of the limit of a sequence
of Markov processes (Kurtz 1970). The resulting theorem establishes that, with a
randomly high probability, the relative distance between the state of the discrete and
of the fluid systems becomes arbitrarily small, during a f inite time interval, when the
number of initial process-algebra components is increased towards infinity. In Petri
nets this would be expressed as ∀δ > 0, T < ∞: limk→∞ Prob{ 1

k ||M (τ, M0 · k) −
m(τ, m0 · k)|| < δ| τ ∈ [0, T]} = 1. It is very important to remark that the analysis is
restricted to a f inite time interval. Nevertheless, the approximation in finite time
does not imply the approximation in steady state (a more interesting issue from our
perspective), specially when the initial number of components is increased leading to
a larger transient behavior. In the PEPA framework, the steady state approximation
has been recently studied (Hayden 2010). Assuming a unique stationary state in
the underlying Markov chain of the discrete model and the existence of a globally
asymptotically stable equilibrium point (called fixed point) in the fluid one, it is
showed that the relative distance between the steady state of both systems becomes
zero when the number of initial components is increased towards infinity. The
analysis becomes more complex if the stability precondition is not fulfilled. Even
more, the approximation may not hold.
Consider for instance the (discrete) PN system of Fig. 9b with λ4 = 1 and

initial marking M0 = k · [5 5 55 5 5 5]T . For any k ∈ N+, the average steady state
is E{Mss} = k · [5 5 30 30 5 5]T (known by the system’s symmetry). On the other
hand, the steady state for the TCPN is mss = m0 = k · [5 5 55 5 5 5]T , since this is an
equilibrium point in the TCPN (but not the only one). Then, it is clear that the TCPN
system does not approximate theMPN for any value of k. In fact, the average relative
distance can be directly computed as 1

k ||M(τ, M0 · k) − m(τ, m0 · k)|| = 35.35, ∀k ∈
N+. On the other hand, considering a finite time interval T < ∞, it is always possible
to set a large enough value for k s.t. the average relative distance is arbitrarily
small during τ ∈ [0, T]. Intuitively: increasing the initial marking makes the transient
behavior to be longer, so, when k → ∞ while T remains constant has a similar effect
that keeping k constant while T → 0 (thus M(T) → M0, and m(T) → m0).
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A couple of different examples can be found in Silva and Recalde (2002). The first
one is the “gambler’s ruin problem”, represented as a stochastic Petri net. In this,
a deadlock is reached with probability one. Nevertheless, by multiplying the initial
state by a factor k, and given some particular rates (providing equal probabilities
to the transitions in conflict), the transient behavior, i.e., the average time to reach
the deadlock, becomes larger with a higher rate, of order of k2. Consequently, if a
finite time interval is considered, the two deadlocks of the (discrete) system may be
ignored when k is too large. The second example is the well known predator/prey
model of Volterra-Lotka, which can be modelled as a colored PN system. This
model is fluidified leading to the product server semantics. The discrete PN model
is unbounded and non-live (Nicolis and Prigogine 1971), while the continuous is
bounded and live! (the system describes an orbit in the phase portrait (Silva and
Recalde 2002)). Since the transient behavior of the discrete model may be very large,
this can be approximated by the continuous model for a very long time. Nevertheless,
sooner or later, the discrete model will become non-live (all the predators will die),
while the continuous system will remain live. Even more, if all the predators die
before the prey, these can grow unboundedly, while the continuous approximation
will remain bounded.

4.7 Improving the approximation: removing spurious solutions, addition of noise,
modification of the semantics

Since the approximation provided until now by a fluid PN is not always accurate,
a question that may arise is the possibility of improving such approximation by
means of modifying the continuous Petri net definition. Through this subsection,
three different approaches, for such improvement, will be discussed.

Removing spurious solutions In Section 3.3 it was pointed out that spurious solu-
tions become reachable markings in the autonomous continuous model, affecting the
quality of the fluidization. This is specially undesirable when the spurious solutions
represent deadlocks in the continuous PN while the discrete system is live. This
problem may also appear in the timed continuous model. Even in the case that the
spurious deadlock is not reachable by the TCPN system, i.e., it is reachable for the
autonomous continuous, but not for the timed continuous given the particular initial
marking and timing, the existence of such deadlock marking in the autonomous net
affects the dynamic behavior of the TCPN. In any case, removing spurious solutions
always represents an improvement of the fluidization, being specially important
when those are deadlocks or represent non-live steady states.
As an example, consider the MPN given by the net of Fig. 5 with initial marking

M0 = [10 11 0]T and rates λ = [0.4 1]. As shown in Section 3.3, this PN has a spurious
deadlock, which can be removed by eliminating the two (discrete) frozen tokens from
p2. This is equivalent to consider M′

0 = [10 9 0]T as the initial marking. TheMPN and
the corresponding fluid model TCPN have been simulated for both initial markings
M0 (with spurious deadlocks) and M′

0, for different rates at t1 ranging in λ1 ∈ [0.4, 4].
The throughput at t1, for both models, is shown if Fig. 10a. It can be seen that the
MPN is live for any λ1 ∈ [0.4, 4], furthermore, the throughput seems as a smooth
function of λ1. On the other hand, the continuous model with the original m0 = M0

reaches the (spurious) deadlock for any λ1 ∈ (2, 4]. Note the discontinuity at λ1 = 2
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Fig. 10 Throughput for the MPN system of Fig. 5 and its corresponding continuous relaxations, for
rates λ1 ∈ [0.4, 4], λ2 = 1 and initial marking a M0 = [10 11 0]T and b M0 = [50 55 0]T . In all figures,
TCPN′ and TnCPN′ represent the fluid models in which the spurious deadlock has been previously
removed. There is a discontinuity in TCPN and TCPN′ at λ1 = 2. c Average transient behavior of
the throughput at t1 for M0 = [10 11 0]T and λ1 = 2

for the TCPN model with both initial markings, i.e., the continuous model is neither
monotonic nor smooth w.r.t the timing. Finally, it can be appreciated that the TCPN
provides a much better approximation when the spurious deadlock is removed (with
M′

0), for any λ1 > 2 (for λ1 ≤ 2 there is no change in the TCPN).

Stochastic continuous PN The approximation of the average marking of an ergodic
Markovian Petri net may be improved by adding white noise to the transitions flow
of the TCPN (Vázquez et al. 2008b). Intuitively speaking, the transitions firings of a
MPN are stochastic processes, then, the noise added to the flow in the TCPN may
help to better approximate such stochastic behavior, which is particularly relevant
at the synchronizations. The model thus obtained (here denoted as TnCPN) is
represented, in discrete time, as: mk+1 = mk + C(��(mk)mk
τ + vk), with vk being
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a vector of independent normally distributed random variables with zero mean and
covariance matrix

∑
vk

= diag(��(mk)mk
τ).4

This modification is particularly relevant when the system evolves through
different regions, because in these cases, even for ordinary models, the contin-
uous flow does not approximate the throughput of the discrete transitions (re-
member that, in a join {p1

i , .., pk
i } = •ti, the difference between E{Enab(ti)} =

E{min(M1
i , .., Mk

i )} and its continuous approximation enab(ti) = min(m[p1
i ], ..,

m[pk
i ]) ∼ min(E{M[p1

i ]}, .., E{M[pk
i ]}) may become relatively important). The ap-

proximation is improved when the number of active servers is increased, as already
said, assuming asymptotic stability and liveness in the continuous system (thus it is
important to remove the spurious deadlocks).
An interesting issue is that the new continuous stochastic model approximates

not only the average value, but also the covariance of the marking of the original
MPN. Moreover, since the TnCPN model is actually the TCPN one with zero-mean
gaussian noise, many of the results known for the deterministic model can be used for
analysis and synthesis of the stochastic continuous one. Nevertheless, the addition of
noise cannot reduce the error introduced by arc weights.
For instance, consider again the MPN system of Fig. 9b. The corresponding

TnCPN was simulated for λ4 ∈ {2, 1.5, 1.2, 1}. The average steady state marking is
also shown in Table 3. As it was pointed out in the previous subsection, the lower the
probability that Mk belongs toRss, the larger the difference (the error) between the
MPN and the deterministic TCPN. On the other hand, the approximation provided
by the TnCPN system is good for all of those rates.
Now, consider again the MPN of Fig. 5 with M0 = [10 11 0]T . The steady state

throughput of the MPN and its different relaxations is shown in Fig. 10a, for different
values λ1 ∈ [0.4, 4]. Note that the noise added to the TCPN makes this to reach the
spurious deadlock quickly and the approximation to theMPN does not hold since the
liveness precondition is not fulfilled. On the other hand, after removing the spurious
deadlock with M0 = [10 9 0]T (see Section 3.3), the TnCPN approximates better the
MPN than the TCPN model. Figure 10b shows the results of the same experiment
but with a bigger population. In this case, M0 = 5 · [10 11 0]T = [50 55 0]T and the
spurious solution is removed by considering the initial marking M′

0 = [50 49 0]T (in
this case, six frozen tokens are removed from p2). Note that this marking is not equal
to five times the one used in the first case, i.e., M′

0 �= 5 · [10 9 0]T , then the curve
TCPN′ in Fig. 10b is not in homothetic relation with that in Fig. 10a (but the original
TCPN is). It can be observed in Fig. 10b that now the continuous models provide a
better approximation than in the case of Fig. 10a, because the population is bigger.
Finally, Fig. 10c shows the transient trajectory described by the average throughput
of t1, for the case M0 = [10 11 0]T and λ1 = 2. It can be observed, that not only the
steady state of the MPN is well approximated by the TnCPN′ (after removing the
spurious deadlock), but also the transient evolution.

Modif ication of the semantics As already mentioned, the existence of arc weights
(a kind of lot-synchronization) affects the quality of the fluidification. A critical case

4For simulation purposes, in the state equation for mk+1, the noise vk is added only ifmk+1 ≥ 0. This
means that very close to boundaries the system may be kept as deterministic. In fact, if the system is
crowded, i.e., m0 is big, the probability of getting mk+1 �≥ 0 is very low.
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occurs when there exists a transition t j with a q-bounded input place pi ∈ •t j and
the weight of the arc connecting them is q as well (in any case, since liveness is
assumed, the weight of the arcs cannot be larger than the bound of the corresponding
input places). Consequently, the marking at pi must be equal to its upper bound in
order to enable t j (the most basic example of this case is given in Fig. 9a for k = 1,
where the TCPN fails in approximating the throughput of t1 when q >> 1). In this
situation, transition t j is enabled only at a few specific markings (in the example of
Fig. 9a, the worst case is found because t1 is enabled at only one marking) of the
autonomous reachability set. This enabling property is not captured by the contin-
uous relaxation, where t j is enabled whenever the places in •t j are marked, leading
to significant approximation errors, i.e., Enab(t j) = �M[pi]/q� = 0 for almost all the
markings, while in the TCPN enab(t j) = m[pi]/q > 0 whenever m[pi] > 0. In order
to improve the continuous approximation (for hybrid approximation other reasoning
must be considered), the server semantics of the TCPN must be modified for t j. A
heuristic way for doing this, assuming {pi} = •t j, consists in the following expression:
f [t j] = λi(m[pi]/q)q (this is obtained from a probabilistic relaxed view, in which
the probability of a token to be in pi is assumed as E{M[pi]}/q). This equation is
equivalent to f [t j] = λim[pi] · (m[pi]q−1/qq), which can be seen as the original ISS
but multiplied by a marking-dependent function (m[pi]q−1/qq). This modification
may provide a better approximation. For instance, in the net in Fig. 9a with k = 1
and q = 4, the throughput of t1 obtained with this new semantic is 0.275, which is
closer to the throughput of the MPN (0.32) than that obtained with the ISS (0.5).
Nevertheless, further investigation is required in order to understand how and when
the improvement is achieved.
Another semantics-modification approach has been introduced in Lefebvre et al.

(2009, 2010). There, in order to make the steady state of the continuous PN (mss)
to coincide with that of the MPN (Mss), the authors propose a modification of
the firing rates λ of the transitions in the continuous model. Two techniques are
proposed: in the first one the firing rates are defined as piecewise-constant, i.e.,
λ ∈ {λ1, ..., λr}, depending on the configuration at which m(τ ) belongs, while in
the second case (called adaptive) the firing rates are adjusted according to the
instantaneous approximation error (in particular, λ̇ = η · diag(βCT(Mss − m(τ )) +
(1 − β)(χ ss − f (τ )), with η > 0 and β ∈ [0, 1] being decision parameters). Errors
may appear in specific configurations, called critical. For mono-T-semiflow nets,
such critical regions can be avoided by setting the firing rates with a suitable fix
value, providing in this case a homothetic approximation of the average steady state
marking and throughput of the MPN, i.e., Mss = αmss and f ss = αχ ss.

5 Observability and observers

Reconstructing the state of a system from available measurements is a fundamental
issue in system theory which may be considered as a self-standing problem, or it
can be seen as a pre-requisite for solving a problem of different nature, such as
stabilization, state-feedback control, diagnosis, filtering, and others. In the case of
CPNs, this problem has been studied for both untimed and timed models under
infinite server semantics. In the case of untimed systems (see Section 5.4), the state
estimation is conceptually and methodologically closer to the one of discrete event
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systems since the firing of transitions can be assumed/seen as sequential and the
corresponding events not appearing simultaneously. In this case, it is assumed that
some events (transitions) are not observable and the initial marking known. The
problem is to estimate the possible marking after each observable event (transition).
For timed systems, the problem has been studied mainly for infinite server semantics
and, since the evolution can be characterized by a set of switching linear differential
equations, the state estimation problem is more related to the linear and hybrid
system theory. It is a better informed model because of the time constraints, but here
it is assumed that the initial marking is unknown. Measuring the amount of tokens in
some places, the problem is to estimate the current and initial marking of the net.

5.1 On three conceptual levels for timed systems under infinite server semantics:
observability, generic observability and structural observability

Three different concepts of observability can be defined for TCPN based on the
knowledge of the firing rate vector. Assuming a constant value for the firing vector
and measuring a subset of places, the “classical” observability problem is to estimate
the initial state/marking. In this case, the set of differential equations is fixed and the
concept is called observability in inf initesimal time. Observability criteria of piecewise
af f ine systems can be applied to TCPN since this is a subclass of those systems.
It is well known that the observability in this case is a more difficult problem that
the one of linear systems because not only the observability of continuous states is
required, but also that of the discrete states (Bemporad et al. 2002a). It should be
always possible to say which is the linear system governing the evolution.
Let us assume that we can attach some sensors to a set of places Po ⊆ P, the token

load of these places being measured at every time instant. Frequently, the marking of
some places are impossible to be measured either due to the fact that the sensor is too
expensive or because of the physical nature of the state. The problem is to estimate
the marking of the other places P \ Po. Going back to Eq. 7, the system considered
here is given by: {

ṁ(τ ) = Ai · m(τ ), m ∈ Ri

y(τ ) = S · m(τ )
(11)

where Ai = C · � · �i and S is a |Po| × |P|matrix, each row of S has all components
zero except the one corresponding to the jth measurable place that is 1.

Definition 13 Let � = 〈N , λ, m0〉 be a TCPN system with infinite server semantics
and Po ⊆ P be the set of measurable places. � is observable in inf initesimal time if it
is always possible to compute its initial state m0 in any time interval [0, ε), ∀ε > 0.

In many real systems, the possibility to estimate/observe the system for all possible
values of λ is an important problem. In this framework, structural observability is
defined and approaches based on graph-based arguments are used to study it.

Definition 14 Let � = 〈N , λ, m0〉 be a TCPN system with infinite server semantics
and Po ⊆ P be the set of measurable places.� is structurally observable if it is always
possible to compute its initial state m0 in any time interval [0, ε), for all ε > 0 and for
all λ > 0.
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Finally, if one wants to estimate the system not “for all” but “for almost all”
possible values of firing rate, generic observability is defined. Also here, graph based
approaches are used. This concept is close and partly inspired from similar works on
linear structured systems (Dion et al. 2003).

Definition 15 Let � = 〈N , λ, m0〉 be a TCPN system with infinite server semantics
and Po ⊆ P be the set of measurable places. � is generic observable if it is always
possible to compute its initial state m0 in any time interval [0, ε), for all ε > 0 and for
all λ > 0 outside of a proper algebraic variety of the parameter space.

Obviously, if a TCPN is structurally observable, it is generic observable and
observable in infinitesimal time.

5.2 Observability criteria for infinite server semantics

The observability problem can be studied using graph based approaches or matrix
algebraic techniques. Let us see first which are the most important graph based
approaches exploring how basic PN constructions (see Fig. 11a–d) affect the ob-
servability of the system. First, let us assume that the net system has only conf licts
(Fig. 11a) and forks (Fig. 11b). If pi is measured, mi(τ ) and its variation, i.e., ṁi(τ ),
are known at every time moment τ . Because the net has no joins, the flow of each
output transitions t j of pi is the product of λ j andmi. Knowing the derivative and the
output flows, the input flow of the unique (because attributions are not still allowed)
input transition tk can be estimated. Based on the definition of the firing semantics,
fk is the product between λk and the marking of •tk. Notice that |•tk| = 1 since there
are no joins. Obviously, the marking of •tk can be computed immediately. Observe
that this is a backward procedure: measuring pi, the marking of •(• pi) is estimated in
absence of joins and attributions.
Therefore, if there exists a path from a place pi to a measured place pj not

containing any join or attribution then pi is structurally observable, i.e., observable
for any values of the firing rates of transitions belonging to the path pi to pj (Júlvez
et al. 2008). Hence, for net systems without attributions and joins, measuring at least
one place from each terminal strongly connected p-component (a subnet generated
by a set of places such that there exists a path between each pair of places) the
net system is structurally observable (Mahulea et al. 2010). Therefore, it is also
observable and generic observable.

.
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(a) Conflict - p1

1
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t 1
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(b) Fork - t1
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(c) Attribution - p1
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(d) Join - t1

Fig. 11 Conflict and forks allow backward reasoning to observe the net system. Attributions (in
some cases) and joins are problematic
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Let us consider now attributions and see that this construction can lead to the loss
of observability. Assume the TCPN system in Fig. 12a where p3 (an attribution place)
is the measured place. Writing down the differential equation we have:

ṁ3(τ ) = λ1 · m1(τ ) + λ2 · m2(τ ) − λ3 · m3(τ ).

From the previous equation, λ1 · m1(τ ) + λ2 · m2(τ ) can be computed since the
other variables are known. Nevertheless, if λ1 = λ2, it will be impossible to distin-
guish between m1(τ ) and m2(τ ) and the system is not observable. In most cases, if
there exist two transitions with the same firing rate, each one on a different input
path in the attribution (paths not containing any attribution or fork), the system is
not observable (Mahulea et al. 2010). Nevertheless, this is not a general rule since the
observability is a global property. Remark also that the system is observable if p1 is
measured, even if λ1 = λ2 = λ3. In this case, the attribution in p3 is “destroyed” since
the output transitions of the measured places can be removed without affecting the
observability space (Júlvez et al. 2008).
Let us consider the TCPN in Fig. 12b with arbitrary λ and assume that p2 is

measured. Then m4 and m5 cannot be estimated directly, but their sum (a linear
combination of them) is computable (place p45 in the figure). Going backwards,m1 is
estimated and, even althoughm1 is an attribution, sincem2 is measured, thenm3 can
also be estimated. Usingm3, nowm4 is estimated and, through the linear combination
of p45, m5 as well. Therefore, by measuring p2 the system is structurally observable.
An explanation to the previous loss of observability in join free nets, i.e., linear

net models, is obtained by consideration of the transfer functions in Laplace domain.
The basic idea is that attributions introduce zeros in the transfer function. Therefore,
some pole-zero cancelations may appear, leading to the already mentioned loss of
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(a) A JF net that is not observ-
able if p3 is measured and λ1 = λ2
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p2 p3
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p

(b) A JF net that is observable measuring the
attribution place p2 even if λ4 = λ5 = λ2 = λ3

Fig. 12 Two CPNs with attributions (both are Join-Free, JF)
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observability. Let us illustrate this with the TCPN system in Fig. 13a, assuming that
the attribution p1 is measured. The system is linear since the net is join-free. If we
consider that the input of the system is f5 and the output is m1, the transfer function
vector between the input flow in places and the output is:

Y(s) = 1

(s + λ1)(s + λ2)(s + λ3)(s + λ4)
HT (12)

where:

H =

⎡
⎢⎢⎣

(s + λ2) · (s + λ3) · (s + λ4)

λ2 · (s + λ3) · (s + λ4)

λ3 · (s + λ2) · (s + λ4)

(λ2 · (s + λ3) + λ3 · (s + λ2))

⎤
⎥⎥⎦ (13)

Obviously, if λ2 = λ3 or λ4 = 2·λ2·λ3
λ2+λ3

there is a pole-zero cancellation in all elements
of vector Y(s). Therefore, when the net has an attribution, particular values of λmay
exist such that the observability is lost.
Clearly, for a JF net, if the firing rates of the transitions are randomly chosen

in R>0, the probability to obtain this cancelation is null and the already introduced
weaker concept of observability appears: generic observability. This property is
similar with the observability in linear structured systems (Dion et al. 2003) and
can be studied using graph-based approaches. In fact, for self-loop free JF nets, the
associated graph that is used in Commault et al. (2005) to characterize the generic
observability of linear structured systems can be obtained from the Petri net structure
just removing all transitions, adding an arc from pi to pj if pj ∈ (pi

•)• and adding a
self-loop to each place (Mahulea et al. 2010). If at least one place from each terminal

Fig. 13 Two CPNs. The first is
Join-free (JF), while the
second is Attribution-free
(AF)
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(b) An AF net having both lin-
ear systems observable but
not overall observable if p3
is measured and λ1 = λ2
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strongly connected p-component is measured, all states of the associated graph are
output connected and the net system is generic observable.
Concluding, for JF TCPN, i.e., the net subclass that defines linear systems, all

three concepts of observability can be easily characterized: (i) using the theory
of linear systems for standard observability, the observability matrix should have
full rank (where the observability matrix of a system with dynamic matrix Ai is
ϑi = [ST (SAi)

T . . . (SA|P|−1
i )T ]T (Luenberger 1979)); (ii) using the graph based

results in Commault et al. (2005) for generic observability, for self-loop free nets, it
is enough to measure one place from each terminal strongly-connected p-componet;
and (iii) using graph based approach for structural observability of AF nets, it suffices
to measure one place from each terminal strongly connected p-component, and,
eventually, combining graph approaches with algebraic manipulations for nets with
attributions.
Finally, let us introduce joins (otherwise stated, rendez-vous). According to

the flow definition, in this case the system is not linear. Let us concentrate on
infinitesimal time observability. Obviously, observability of all linear systems (or
operation modes) is a necessary condition for the observability, but unfortunately it
is not enough. It may happen that the continuous state estimation fits with different
discrete states, i.e., observing some places, it may happen that more than one linear
system satisfies the observation. For example, let us consider the TCPN in Fig. 13b
and p3 the only measured place. This system has two modes corresponding to two
linear systems. Let us interpret why it is not observable using the previous graph
approach. Assume that the first mode is such that f3(τ ) = λ3 · m1. If we compute the
backward path from p3 it is as if we ignore the arc (p2, t3). It is straightforward to see
that p3t3 p1t2 p2 is obtained. On the other hand, for the second mode, the arc (p1, t3)
is ignored and the obtained path is: p3t3 p2t1 p1. Obviously, if λ1 = λ2, the same set
of differential equations is obtained and will be impossible to distinguish between
two modes (Mahulea et al. 2010). For example, taking m1 = [1 2 0]T ∈ R1 \ R2

and m2 = [2 1 0]T ∈ R2 \ R1 both have the same observations, what correspond to
ϑ1 · m1 = ϑ2 · m2, were ϑi are the observability matrices of the two operation modes.

Definition 16 Two operation modes 1 and 2 of a TCPN system are distinguishable if
for any m1 ∈ R1 \ R2 and any m2 ∈ R2 \ R1 the observation y1(τ ) for the trajectory
through m1 and the observation y2(τ ) for the trajectory through m2 are dif ferent on
the interval [0, ε) for all ε > 0.

If all pairs of modes are distinguishable, it is always possible to uniquely assign
an operation mode (corresponding to a configuration, also defining a region) to an
observed continuous state. Assuming that a pair of modes are observable, a LPP
can be proposed to check their distinguishability. Unfortunately, this LPP may suffer
from numerical problems since we have to find interior points of some regions and
it is well known that strict inequalities are problematic to be implemented. Let us
consider the following quadratic programming problem (QPP):

z = max βT · β

s.t. ϑ1 · m1 − ϑ2 · m2 = 0
β = m1 − m2

m1 ∈ R1

m2 ∈ R2

(14)
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First, let us observe that if the feasible set of Eq. 14 is empty, operation modes are
distinguishable. If in QPP (14) z = 0, using the fact that both systems are observable,
i.e., ϑ1 and ϑ2 have both full rank, m1 = m2 is obtained. Therefore, there exist no
interior markings m1 ∈ R1 and m2 ∈ R2 with the same observation, i.e., ϑ1 · m1 =
ϑ2 · m2, and the modes are distinguishable. Finally, if the solution is z > 0 we cannot
say nothing about distinguishability of the modes. In this last case, for a particular
solution of Eq. 14 a small variation of m1 and m2 can be considered by assuming
constant flow during this small time interval. If ϑ1 · 
m1 = ϑ2 · 
m2 with
m1 = A1 ·
m1 and 
m2 = A2 · m2 then the operations mode are undistinguishable. Moreover,
the exact solution of Eq. 14 is not necessary to be computed and if a feasible solution
with z > δ, with δ a small positive number, is found the search can be stopped. An
immediate criterium for observability is obtained (Mahulea et al. 2010):

Proposition 17 A timed continuous Petri net system 〈N , λ〉 under inf inite server
semantics is observable in inf initesimal time if f:

1. All pairs of modes are distinguishable,
2. For each mode, i.e., in each region, the associated linear system is observable.

Based on the previous observations, the checking of the observability of a net
system with joins is not a trivial task. For this reason, some results have been
proposed in order to “delete” the joins without affecting the observable space. After
that, observability can be checked using only the observability matrix. This reduction
can be done under some general conditions if the net system is AF or EQ (Mahulea
et al. 2010). Notice that in the case of AF nets, since the joins can be removed, the
structural observability problem is the same as for nets with forks and conflicts: one
place from each terminal strongly connected p-component should be measured.
A complementary observability problem is presented in Lefebvre (2001). For the

discrete-time model and measuring some places, the problem is to estimate the firing
flow (speed) of the transitions and not the marking of the other places. Since the flow
of a transition is the product between its firing rate (constant value) and the enabling
degree, in some cases, measuring places or transitions is equivalent. Anyhow, in
order to compute the flow through joins it is necessary to measure all of its input
places. Moreover, we may also have different markings that have the same firing
flow.

5.3 Design of observers

Join-Free (JF) nets lead to linear systems, for which, Luenberger’s observers (Luen-
berger 1971; Ogata 2001) are frequently used. Such an observer for a PN with a single
mode can be expressed as: ˙̃m = A · m̃ + K · (z − S · m̃) where m̃ is the marking
estimation, A and S are the matrices defining the evolution of the marking of the
system and its output in continuous time, z is the output of the system, and K is a
design matrix of parameters.
At a particular time instant, a continuous PN evolves according to a given

operation mode, i.e., linear system. Thus, an online estimation can be performed
by designing one (Luenberger) linear observer per each potential mode of the PN
(in a similar way to Juloski et al. (2007) for a class of piecewise linear systems)
and selecting the one that accomplishes certain properties. The “goodness” of an
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estimate can be measured by means of a residual (Balluchi et al. 2002). Let us
use the 1-norm || · ||1, which is defined as ||x||1 = |x1| + . . . + |xn|. The residual at
a given instant, r(τ ), is the distance between the output of the system and the output
that the observer’s estimate, m̃(τ ), yields, i.e., r = ||S · m̃(τ ) − z(τ )||1. In order to be
selectable, the estimations of the observers must verify the following conditions:

– The residual must tend to zero.
– The estimations of the places in a synchronization have to be coherent with the

operation mode for which they are computed.

Thus, at a given time instant, only coherent estimations are selectable. Moreover,
a criterion must be established to decide which coherent estimation is, at a given
time instant, the most appropriate. An adequate heuristics is to choose the coherent
estimation with minimum residual.
Consider the TCPN system in Fig. 14. Let its output be the marking of place

p1, i.e., m[p1] = S · m, where S = [1 0 0]. The net has two configurations: C1 =
{(p1, t1), (p1, t2), (p3, t3)} and C2 = {(p1, t1), (p2, t2), (p3, t3)}. For the linear system
corresponding to C1, m2 is not observable. However, for the linear system corre-
sponding to C2 the marking of all the places can be estimated. Let λ = [0.9 1 1]T and
m0 = [3 0 0]T . The marking evolution of this system is depicted in Fig. 15a.
One observer per operation mode will be designed. Let the initial state of observer

1 be e01 = [1 2]T and its eigenvalues be [−12 + 2 · √
3 · i, −12 − 2 · √

3 · i]. Since
observer 1 can only estimate m1 and m3, the first component of its state vector
corresponds to the estimation of m1, and its second component to the estimation
of m3. For observer 2, let the initial state be e02 = [1 0 2]T and its eigenvalues be
[−15, −12 + 2 · √

3 · i, −12 − 2 · √
3 · i]. The evolution of the coherent estimation

with minimum residual is shown in Fig. 15a.

Fig. 14 A net system with two
operation modes. A deadlock
is reachable by emptying the
siphon {p1, p3}
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Fig. 15 The marking evolution is given by (m[p1], m[p2], m[p3]). a The estimate of the minimum
residual and coherent observer is (omcr1, omcr2, omcr3) . b The estimate of the observer that makes
use of a simulation is (obss1, obss2, obss3). Now the estimate of m[p2] is taken from the simulation

The resulting estimation can be improved by taking into account some consider-
ations. When the first system switch happens, the estimation becomes discontinuous
and, what is more undesirable, the estimation for the marking of p3 becomes worse.
A similar effect happens when the second system switch occurs. Another undesirable
phenomenon is that, after the first switch, the estimation ofm2 just disappears (since
it is unobservable in configuration C1).
One way to avoid discontinuities in the resulting estimation, is to use the estima-

tion of the observer that is going to be filtered out in order to update the estimation of
the observer that is not going to be filtered out. This estimation update must be done
when a system switch is detected. In order not to lose the estimation of themarking of
a place when it was “almost perfectly” estimated (recall the case ofm2 when the first
switch happened) a simulation of the system can be launched. The initial marking
of this simulation is the estimation of the system just before the observability of the
marking is lost. Such a simulation can be seen as an estimation for those markings
that are not observable by the observer being considered. The simulation should
only be carried out when an estimation for all the places exists and the residual is
not significant. Figure 15b shows the evolution of the estimation obtained by this
strategy.
One of the main advantages is that the residual does not increase sharply when

the mode of the system changes. Another interesting feature is that the use of a
simulation allows one to estimate the marking of places that in some modes are in
principle not observable: In Fig. 15b it can be seen that the marking of p2 can be
estimated, even when it is unobservable due to configuration C1 being active.

5.4 Observability and observers in other fluid models

Observability and state estimation problems in systems modeled by a continuous PN
have been studied also in the case of untimed models or assuming a timed f inite
server semantics. Anyhow, the studied problems are a little bit different in both
cases. Nevertheless, in both cases it is assumed that the initial marking is known
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(and not unknown as in previous section) and the set of transitions is partitioned
in two: observable and unobservable transitions (hence transitions are observed and
not places). Obviously, given a sequence of observed transitions, it is impossible to
uniquely determine the actual marking, hence a set of markings will be the solution.
This set is called the set of consistent markings and contains all markings in which the
system may be given the actual observation.
In Mahulea et al. (2009b), untimed CPN are considered. When an observable

transition fires, its firing quantity is measured and the problem is to obtain the
set of consistent markings. It is proved that, under certain assumptions on the
unobservable subnet, the set of consistent markings is convex. The main idea of an
iterative algorithm to compute it is to start from each vertex of the previous set and
compute the vertices of some polytopes. Taking the convex hull of all new vertices,
the new set of consistent markings is obtained. The computational complexity of
the algorithm is exponential because requires the computation of vertices, but the
compact representation as a convex polytope is a real advantage.
Somehow related to the previous one, the problem of fault diagnosis is clearly

a main issue in many engineering applications because of the practical need of
ensuring the correct and safe functioning of systems. Using the characterization of
the set of consistent markings and the algorithm to compute it, the problem of fault
detection for systems modeled by untimed CPN has been recently addressed (Seatzu
et al. 2009a, b). Three diagnosis states have been considered: N—the fault has not
occurred; U—the fault may have occurred or not (uncertain state); and F—the fault
surely occurred. Given an observation, the diagnosis state is computed solving two
LPPs. Themain advantage of fluidification for fault diagnosis is that it enables to deal
with more general Petri net structures than that considered in discrete approaches
(Cabasino et al. 2010; Genc and Lafortune 2007). In particular, the unobservable
subnet needs not be acyclic.
In the case of First Order Hybrid Petri Nets (FOHPNs), the problem has been

considered in Mahulea et al. (2008a). Once again, it is assumed that the initial
marking is known but no observation is available. Thus the observation problem
reduces to determining the set of markings, in which the net may be at a given
time. This problem is similar to that of time-reachability for continuous models. It
is shown under which conditions the reachability set of the timed net under finite
server semantics coincides with that of the untimed one. A procedure to compute the
minimum time ensuring that the set of consistent markings is equal to the reachability
set of untimed system is given for some net classes.

6 Controllability and control

Controllability is an important property in every kind of dynamic system. It is related
to the capability of being driven in a certain desirable way. Continuous Petri nets
are relaxations of discrete Petri nets, but at the same time, they are continuous-state
systems (in fact, they are technically hybrid systems in which the discrete state is
implicit in the continuous one). In this way, it seems natural to consider two different
approaches for the controllability and control concepts: (1) at the discrete level, the
extension of control techniques used in discrete PN’s, such as the supervisory-control
theory (for instance, Giua et al. 1993; Holloway et al. 1997; Iordache and Antsaklis
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2006) and (2) at the fluidized level, the application of control techniques developed
for continuous-state systems. Usually, the control objective in the first approach is to
meet some safety specifications, like avoiding forbidden states, by means of disabling
transitions at particular states. The objective of the second approach consists in
driving the system, by means of a (usually) continuous control action, towards a
desired steady state, or state trajectory (see, for instance, Chen 1984). Regarding
continuous Petri nets, most of the specific works that can be found in the literature
deals with the second control approach applied to the inf inite server semantics
model.
Like in discrete PNs, the control action is applied through the transitions. This

may only consist in the reduction of the flow, because transitions (machines for
example) should not work faster than their nominal speed. A partition of the
transitions set T is made, leading to sets of controllable (Tc) and uncontrollable (Tnc)
transitions. The control vector u ∈ R|T| is defined s.t. ui represents the control action
on ti. Assuming infinite server semantics, since ui represents a reduction of the flow,
then 0 ≤ ui ≤ λi · enab(ti, m). The behavior of a forced (or controlled) continuous
Petri net can be described by the state equation:

ṁ = C��(m)m − Cu
subject to 0 ≤ u ≤ ��(m)m and ∀ti ∈ Tnc, ui = 0.

(15)

Enforcing a desired target marking in a continuous PN is analogous to reaching
an average marking in the original discrete model (assuming that the continuous
model approximates the discrete one), which may be interesting in several kinds of
systems. This idea has been illustrated by different authors. For instance, in Amrah
et al. (1998) it was proposed a methodology for the control of open and closed
manufacturing lines. The control actions consist in modifying the maximal firing
speeds of the controlled transitions. It was also illustrated how the control law can be
applied to the original discrete Petri net model (a T-timed model with constant firing
delays). This approach has been used in Lefebvre (1999) and Kara et al. (2006) as
well, in the same context of manufacturing lines. A related approach was presented
in Vázquez and Silva (2009a), for a stock-level control problem of an automotive
assembly line system originally modeled as a stochastically timed discrete Petri net
(Dub et al. 2002). The resulting scheme allows to control the average value of the
marking at the places that represent the stock-level, by means of applying additional
delays to the controllable transitions.
For continuous PNs under infinite server semantics, controllability is considered

in Sections 6.1–6.3, while different control approaches are recalled in Sections 6.4–
6.6. Section 6.7 is devoted to a control technique for systems under finite server
semantics.

6.1 On controllability: from the classical concept to bounded input controllability

The control objective considered here consists in driving the system, by applying
a control law, towards a desired steady state, i.e., a set-point control problem,
frequently addressed in continuous-state systems. This control objective is related
to the classical controllability concept, according to which a system is controllable if
for any two states x1, x2 of the state space it is possible to transfer the system from x1

to x2 in finite time (see, for instance, Chen 1984).
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Few works have addressed the study of controllability in the context of continuous
Petri nets. For instance, in Amer-Yahiaj et al. (1996) it is studied for linear nets (Join-
Free nets), pointing out that the classical rank condition is not sufficient (detailed in
Section 6.3). In Jiménez et al. (2005) the controllability was studied for Join-Free
continuous nets from a different perspective, by characterizing the set of markings
that can be reached and maintained. Nevertheless, those results are difficult to
extend to general subclasses of nets, where the existence of several regions makes
the general reachability problem untractable.
Despite those results, in Mahulea et al. (2008c) it was pointed out that TCPN

systems are frequently not controllable according to the classical controllability
concept, due to the marking conservation laws imposed by P-flows. In detail, if y
is a P-f low then any reachable marking m must fulfill yT m = yT m0, defining thus a
state invariant. Nevertheless, the study of controllability “over” this invariant is par-
ticularly interesting. This set is formally defined as Class(m0) = {m ∈ R|P|

≥0 |BT
y m =

BT
y m0}, where By is a basis of P-flows, i.e., BT

y C = 0. For a general TCPN system,
every reachable marking belongs to Class(m0).
Another issue that appears in TCPN systems is the nonnegativeness and bound-

edness of the input, i.e., 0 ≤ u ≤ ��(m)m. Considering these issues, an appropriate
local controllability concept was proposed in Vázquez et al. (2008a):

Definition 18 The TCPN system 〈N , λ, m0〉 is controllable with bounded input
(BIC) over S ⊆ Class(m0) if for any two markings m1, m2 ∈ S there exists an input
u transfering the system from m1 to m2 in finite or infinite time, and it is suitably
bounded, i.e., 0 ≤ u ≤ ��(m)m, and ∀ti ∈ Tnc ui = 0 along the marking trajectory.

6.2 Controllability if all the transitions are controllable: consistency

The controllability in continuous PNs, when all the transitions are controllable,
depends only on the structure of the net. Intuition for this can be gained by rewriting
the state equation as:

ṁ = C · w (16)

where the innovation vector w = ��(m)m − u can be seen as an auxiliary input.
The constraints for u are transformed into 0 ≤ w ≤ ��(m)m. In this way, given a
marking m1 ∈ Class(m0), if ∃σ ≥ 0 such that Cσ = (m1 − m0) then m1 is reachable
from m0. This can be achieved by setting w = ασ (with a small enough α > 0), so the
field vector results ṁ = Cασ = α(m1 − m0)which implies that the system will evolve
towards m1 describing a straight trajectory (assuming that the required transitions
can be fired from this marking, what always happens if m is a relative interior point
of Class(m0)).
Consider for instance the TCPN of Fig. 16a and the markings m0 = [2 3 1 1]T ,

m1 = [1 3 2 1]T and m2 = [2 1 1 3]T . Since this system has 2 P-semiflows (involving
{p1, p3} and {p2, p4} respectively), the marking of two places is sufficient to represent
the whole state. For this system ∃σ ≥ 0 such that Cσ = (m1 − m0), but �σ ≥ 0 such
that Cσ = (m2 − m0), so, m1 is reachable but m2 is not. The shadowed area in
Fig. 16a corresponds to the set of reachable markings, note that it is the convex cone
defined by vectors c′

1 and c′
2, which represent the columns of C (here restricted to

p1 and p2).
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Fig. 16 Two TCPN systems
with identical P-flows. The
shadowed areas correspond to
the sets of reachable markings.
Only the system (b) is
consistent and controllable
over Class(m0)
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This structural reachability reasoning leads to a simple and full characterization of
controllability (Vázquez et al. 2008a):

Proposition 19 Let 〈N , λ, m0〉 be a TCPN system in which all the transitions are
controllable. The system 〈N , λ, m0〉 is BIC over the interior of Class(m0) if f the net
is consistent. Furthermore, the controllability is extended to the whole Class(m0) if f
(additionally to consistency) there exist no empty siphon at any marking in Class(m0).

Conditions of Propositions 3 (regarding lim-reachability) and 19 are equivalent
(the non existence of empty siphons is equivalent to the fireability of all the
transitions). Note that the controllability does not depend on the timing λ.
The key condition here is consistency, i.e., ∃x > 0 such that C · x = 0. Remember

that a reachable marking m ≥ 0 fulfills m = m0 + C · σ with σ ≥ 0, which implies
BT

y m = BT
y m0 (equivalently, m ∈ Class(m0)). On the opposite sense, if the net is

consistent then ∀m ≥ 0 s.t. BT
y m = BT

y m0 (i.e.,m ∈ Class(m0)) it exists σ ≥ 0 s.t.m =
m0 + C · σ , thusm is reachable (assuming σ is fireable). A very informal and intuitive
explanation is that consistency permits movements of marking in any direction inside
the reachability space (see Fig. 16b), i.e., if there exists σ such that m1 = m0 + C · σ ,
under consistency any σ ′ = σ + k · x ≥ 0, permits the reachability of m1.
Consider again the TCPN system of Fig. 16a. By using the Proposition 19 it can

be verified that this TCPN is not controllable over Class(m0), because the net is not
consistent. Now, consider the system of Fig. 16b. In this case, for any marking m ∈
Class(m0), the vector (m − m0) is in the convex cone defined by the vectors c′

1, c
′
2 and

c′
3; which occurs due to the consistency of the net and implies thatm is reachable from

m0. Moreover, since at the border markings of Class(m0) there are not unmarked
siphons then, according to the Proposition 19, the system is BIC over Class(m0).

6.3 Controllability with uncontrollable transitions over stationary states

Systems with uncontrollable transitions are not controllable over Class(m0), even
for consistent nets. In this case, a smaller set of markings need to be considered.
This idea was explored in Jiménez et al. (2005), where a set named Controllability
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Space (CS), over which the system is controllable, was characterized for Join-Free
nets. Nevertheless, this set depends on the marking, thus its characterization for
general subclasses of nets is difficult. The existence of several regions makes the
general reachability problem untractable. For practical reasons, the controllability
was studied in Vázquez et al. (2008a) over sets of equilibrium markings : mq ∈
Class(m0) is an equilibrium marking if ∃uq suitable such that C(��(mq)mq − uq) =
0. They represent the possible stationary operating points of the original discrete
system. These markings are particularly interesting, since controllers are frequently
designed in order to drive the system towards a desired stationary operating point.
Since inside each region Ri (defined in Section 4.3) the state equation is linear

(�(m) is constant), it becomes convenient to study, in a first step, the controllability
over equilibrium markings in each region and later over the union of them. This
approach is supported by the following proposition:

Proposition 20 Let 〈N , λ, m0〉 be a TCPN system. Consider some equilibrium sets S1,
S2,..., S j related to dif ferent regions R1, R2,..., R j. If the system is BIC (in f inite time)
over each one and their union

⋃ j
i=1 Si is connected, the system is BIC over the union.

The connectivity of the set of all the equilibrium markings in Class(m0) has not
been demonstrated for the general case. Nevertheless, in every studied system such
property holds.
As an example, consider the timed continuous marked graph of Fig. 17 with

Tc = {t4} and λ = [1 1 1 2]T . There are four possible configurations according to the
structure, but given the initial marking, one of them cannot occur. The polytope in
Fig. 17 represents theClass{m0}. Since the system has three P-semiflows, the marking
at {p1, p3, p5} is enough to represent the whole state. This is divided into the regions
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Fig. 17 TCPN system (a marked graph). Transition t4 is the only controllable one. There are four
possible configurations: C1 = {(p2, t2), (p4, t3)}, C2 = {(p3, t2), (p4, t3)}, C3 = {(p2, t2), (p5, t3)} and
C4 = {(p3, t2), (p5, t3)}, however, C2 cannot occur from the given m0 because p3 and p4 cannot
concurrently constrain t2 and t3, respectively. Equilibrium sets depend on the timing, but regions
do not
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R1, R3 and R4, related to the feasible configurations. The segments E1 = [m1, m2],
E3 = [m2, m3] and E4 = [m3, m4] are the sets of equilibrium markings in regions
R1, R3 and R4, respectively. Since the union of E1, E3 and E4 is connected, if the
system were BIC over each Ei (this will be explored in a forthcoming example)
then, according to Proposition 20, the system would be BIC over E1 ∪ E3 ∪ E4. For
instance, the system could be driven from m3 to m1 and in the opposite sense.
In a given region Ri the TCPN system is linear and time-invariant, then some of

the classical results in control theory can be used for its analysis. Null-controllability
(controllability around the origin) of this kind of systems with input constraints was
studied in Brammer (1972). Recalling from there, if a linear system ẋ = Ax + Bu,
with input constraint u ∈ � (called the set of admissible inputs), is controllable then
the controllability matrix Contr(A, B) = [B AB ... An−1 B] has full rank (equiva-
lently, ∀x1, x2: ∃z s.t. (x2 − x1) = Contr(A, B) · z). Furthermore, if 0 is in the interior
of � then the previous rank condition is also sufficient for null-controllability.
Otherwise, if there are inputs that can be only settled as positive (or negative) then
the controllability depends also on the eigen-structure of the state matrix. These
results can be adapted to TCPNs. For this, the state equation of a TCPN is firstly
transformed in order to represent the behavior around an equilibrium marking mq,
i.e., the evolution of 
m = m − mq. As a consequence, some transformed inputs

u = (u − uq) can be settled only as nonnegative while others can be settled as either
positive or negative. The set of transitions related to this last kind of inputs is denoted
as Ti

cf ⊆ Tc. Let us denote as E∗
i the set of all equilibrium markings in a region Ri

s.t. 
u[Ti
cf ] can be settled as either positive or negative (equivalently, [��imq] j >

uq
j > 0 for all t j ∈ Ti

cf ). In this way, it can be proved that if a TCPN is controllable
over a set E∗

i then ∀m2, m1 ∈ E∗
i : ∃z s.t. (m2 − m1) = Contr((C��i), C[Tc]) · z. This

condition is only necessary, as already pointed out in Amer-Yahiaj et al. (1996),
because the existence of input constraints. Furthermore, a system is controllable (in
finite time) over E∗

i if ∀m2, m1 ∈ E∗
i : ∃z s.t. (m2 − m1) = Contr((C��i), C[Ti

cf ]) · z.
This sufficient condition is also necessary if Ti

cf = Tc (but not if Ti
cf ⊂ Tc). Note that

now the controllability depends not only on the structure of the net, but also on the
timing (Vázquez et al. 2008a).
For instance, consider the region R3 in the system of Fig. 17. For this, T3

cf = {t4}.
Since T3

cf = Tc then the span condition introduced above is sufficient and necessary
for controllability. In this case, it can be verified that the system is BIC over E∗

3 = E3.
Consider now the same system but with λ4 = 1 instead of λ4 = 2. In this case,
T3

cf = ∅ (this set depends on the timing), then we cannot use the same sufficient
condition. Nevertheless, it is still fulfilled that ∀m2, m1 ∈ E∗

3 : ∃z s.t. (m2 − m1) =
Contr((C��3), C[Tc]) · z. Therefore, the controllability matrices do not provide
enough information for deciding whether the system is BIC or not over E∗

3. By using
another results from Vázquez et al. (2008a), it can be proved that the system is not
BIC with λ4 = 1, what leads to the conclusion that the controllability is a timing-
dependent property.

6.4 Control when all the transitions are controllable

Through the following paragraphs and Section 6.5, a few control techniques, pro-
posed in the literature for continuous Petri nets, will be recalled. Similar to the set-
point control problem in state-continuous systems, the control objective here consists
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in driving the system towards a desired target marking (a steady state, here denoted
as md). This desired marking can be selected, in a preliminarily planning stage,
according to some optimality criterion (Silva and Recalde 2004), e.g., maximizing the
flow as in Section 4.3. Most of the work done on this issue is devoted to centralized
dynamic control assuming that all the transitions are controllable. We will firstly
present those control techniques that require to control all the transitions, while
a couple of techniques (gradient-base and pole assignment), where uncontrollable
transitions are considered, will be presented in the following subsection.

Fuzzy control (Hennequin et al. 1999) The authors showed that the flow of a
fluid transition, under infinite server semantics with an implicit self-loop, can be
represented as the output of two fuzzy rules under the Sugeno model. It was proved
that if the integral of the output of each fuzzy rule converges to a finite value then
the resulting global fuzzy system (that represents the controlled flow) converges as
well. Moreover, upper and lower bounds of this convergence were derived. Based on
that, a proportional fuzzy control was proposed, proving convergence of the system
to the desired output (the marking of a place pj ∈ P, i.e., md[pj]), assuming that this
is smaller than the initial upstream marking, i.e., md[pj] ≤ m0[pi], ∀pi ∈ • pj, which
is not the general case.

Control for a piecewise-straight marking trajectory Dealing with the tracking control
problem of a mixed ramp-step reference signal, this approach was firstly explored
in Jing et al. (2008a) for Join-Free nets and extended to general PNs in Jing et al.
(2008b). There, a high & low gain proportional controller is synthesized, while
a ramp-step reference trajectory, as a sort of path-planning problem at a higher
level, is computed. Let us detail the more simple synthesis procedure introduced
in Apaydin-Ozkan et al. (2009). Consider the line l connecting m0 and md, and the
markings in the intersection of l with the region’s borders, denoted asm1

c ,m
2
c , ....,m

n
c .

Define m0
c = m0 and mn+1

c = md. Then, ∀k ∈ {0, n} compute τk by solving the linear
programming problem (LPP):

min τk

s.t. : mi+1
c = mi

c + C · x
0 ≤ x j ≤ λ j�

z
ji min{mi

c,i, mi+1
c,i }τk

∀ j ∈ {1, ..., |T|} where i satisfies�z
ji �= 0

(17)

The control law to be applied is thus w = x/τk (the model is represented as
in Eq. 16), when the system is between the markings mk

c and mk+1
c . The time

required for reaching the desired marking is given by τ f = ∑n
k=0 τk. Feasibility and

convergence to m f were proved in Apaydin-Ozkan et al. (2009).
In order to obtain faster trajectories, intermediate states, not necessarily on the

line connecting the initial and the target marking, can be introduced (Jing et al.
2008b). According to Apaydin-Ozkan et al. (2009), they can be computed by means
of bilinear programming problems (BPP). The idea is to currently compute the
intermediate markings mk

c , on the borders of the regions, that minimizes the total
time τ f = ∑n

k=0 τk with some additional monotonicity constraints. Finally, the same
algorithm can be adapted in order to recursively compute intermediate markings in
the interior of the regions, obtaining thus faster trajectories.
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Model predictive control (MPC) (Mahulea et al. 2008b) Here, two solutions were
considered based on the implicit and explicit methods (see, for instance, Bemporad
et al. 2002b). The evolution of the timed continuous Petri net model (16), in discrete-
time, is represented by the difference equation: m(k + 1) = m(k) + � · C · w(k),
subject to the constraints 0 ≤ w(k) ≤ f (k) with f (k) being the flow without control,
which is equivalent to G · [wT(k), mT(k)]T ≤ 0, for a particular matrix G. The
sampling � must be chosen small enough in order to avoid spurious markings, in
particular, for ensuring the positiveness of the markings. For that, the following
condition is required to be fulfilled ∀ p ∈ P : ∑

t j∈p• λ j� < 1.
By using this representation of the continuous PN, a MPC control scheme is

derived in Mahulea et al. (2008b). The goal is to drive the system towards a desired
marking md, while minimizing the quadratic performance index

J(m(k), N) = (m(k + N) − md)
′ Z(m(k + N) − md)

+
N−1∑
j=0

[
(m(k + j) − md)

′ Q(m(k + j) − md)

+ (w(k + j) − wd)
′ R(w(k + j) − wd)

]
where Z, Q and R are positive definite matrices and N is a given time horizon. This
leads to the following optimization problem that needs to be solved in each time step:

min J(m(k), N)

s.t. : ∀ j ∈ {0, ..., N − 1}, m(k + j + 1) = m(k + j) + � · C · w(k + j)

G ·
[

w(k + j)
m(k + j)

]
≤ 0

w(k + j) ≥ 0

(18)

In Mahulea et al. (2008b) it was shown that the standard techniques used for
ensuring converge in linear/hybrid systems (i.e., terminal constraints or terminal
cost) cannot be applied in continuous nets if the desired marking has zero compo-
nents. Nevertheless, a particular control law, guaranteeing asymptotic stability for
all possible final states, was proposed. Simulations showed that the horizon N is
not required to be too large (actually, it is well known in classical systems theory
that if ∃N̄ s.t. ∀m0 and ∀N ≥ N̄, the finite and the infinite horizon controllers are
equal). However, sometimes N is such that the computational time needed to solve
the optimization problem becomes larger than the sampling period, making the
implementation unfeasible.
An alternative MPC approach for this problem is the so-called explicit solution

(Bemporad et al. 2002b), where the set of all states that are controllable is split into
polytopes. In each polytope the control command is defined as a piecewise affine
function of the state. The closed-loop stability is guaranteed with this approach. On
the contrary, when either the order of the system or the length of the prediction
horizon are not small, the complexity of the explicit controller becomes quickly
prohibitive. Furthermore, the computation of the polytopes sometimes is unfeasible.

Proportional control synthesis with LMI (Kara et al. 2009) The proposed control
scheme consists of a set of proportional (affine) control laws, one for each region.
In detail, the controlled flow is represented, in discrete time, by w(k) = Fr(m(k) −



Discrete Event Dyn Syst

md) + R, where R is a vector and Fr is a gain matrix computed for each region (the
subindex r denotes the r − th region). In each region, the control and the marking
are required to fulfill:

1. the input constraints: 0 ≤ w(k) ≤ f (k), where f (k) represents the flow without
control,

2. the region membership: m(k) ∈ P(Gr, gr), where P(Gr, gr) = {m|Grm ≤ gr} is
the inequality representation of the r-th region (a polyhedral),

3. the existence of a contractive invariant set (in order to prove closed-loop
stability), which is stated as: x(k) ∈ P( Q,μ) → x(k + 1) ∈ P( Q, αμ), where
x(k) = (m(k) − md) is the current error, α < 1 and P( Q, αμ) = {x| Qx ≤ αμ is
the contractive set (so, the absolute error is monotonic decreasing).

The methodology consists in expressing the previous conditions as sets of linear
matrix inequalities (LMI), one set for each region. The solution of a LMI can be
achieved in polynomial time. Furthermore, convergence to the desired marking md

is guaranteed. The main drawback of this approach is that a LMI must be solved for
each region, but the number of these increases exponentially w.r.t. the number of
synchronizations (joins).

ON-OFF (minimum-time) control for persistent nets (Wang et al. 2010) Stronger
results may be obtained when the problem is restricted to particular net subclasses.
Accordingly, the minimum-time control problem was solved in this work for per-
sistent continuous Petri nets (i.e., net systems where the enabling of any transition
t j cannot decrease by the firing of any other transition ti �= t j). The solution is truly
straightforward. First, a minimal firing count vector σ s.t.md = m0 + Cσ is computed
(σ is minimal if for any T-semiflow x, ||x|| � ||σ ||, where || · || stands for the support
of a vector). Later, the control law is defined, for each transition t j, as:

u[t j] =
{

0 if
∫ τ−

0 w[t j]dτ < σ [t j]
f [t j] if

∫ τ−
0 w[t j]dτ = σ [t j]

This means that if t j has not been fired an amount of σ [t j], then t j is completely ON.
Otherwise, t j is completely OFF (it is blocked). It is proved that this ON-OFF control
policy drives the system towards md in minimum time. An intuitive reason for this is
that, for persistent nets, the firing order is irrelevant for reaching a marking. Thus,
what only matters is the amount of firings required, which is provided by σ .

Preliminary decentralized control techniques (Apaydin-Ozkan et al. 2010; Vázquez
et al. 2010b) In order to deal with systems having large net structures (many places
and transitions), it seems natural to consider decentralized and distributed control
strategies. In a completely distributed approach, the model can be considered as
composed of several subsystems that share information through communication
channels, modeled by places. This problem has been addressed in Apaydin-Ozkan
et al. (2010) for a system composed of two MTS subsystems asynchronously con-
nected through places. For each subsystem, a controller is designed. The mission of
each local controller is to drive its corresponding subsystem from its initial marking
to a required one, taking into account the interaction with the other subsystems.
For this, it is required that neighboring local controllers share information, related
to the possibility of concurrently reaching the target marking in every subsystem.
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A consensus algorithm is proposed for that task. Feasibility and concurrent conver-
gence are demonstrated. In a second approach (Vázquez et al. 2010b), the existence
of an upper-level controller, named coordinator, is allowed. This coordinator may
receive and send information to the local controllers, but it cannot apply control
actions directly to the TCPN system. The existence of such coordinator increases
the capability of the local controllers, allowing to consider wider classes for the net
subsystems (they are assumed to be separately live and consistent, but they are not
restricted to particular net subclasses). Affine control laws are proposed for local
controllers. Feasibility and concurrent convergence to the required markings are
proved.

6.5 Control with uncontrollable transitions

Gradient-base control with uncontrollable transitions (Lefebvre et al. 2007) Here,
the input control actions consist in reducing the rates of the controllable transitions
from their nominal maximum values, which is equivalent to reduce the flow, as
considered along this section. Nevertheless, the goal of the control problem is slightly
different, since it is no longer required to drive the whole marking of the system
to a desired value, but only the marking of a subset of places (the output of the
system). The analysis is achieved in discrete time. Let us provide the basic idea for the
case of a single-output system. Firstly, a cost function is defined as v(k) = 1/2ε(k)2,
where ε(k) denotes the output error. The control proposed has a structure like:
u(k) = u(k − 1) − (s(k)s(k)T + α I)−1s(k)ε(k), where the input u(k) is the rate of the
controllable transitions and s(k) is the output sensitivity function vector with respect
to the input (the gradient vector ∇u y). The factor α > 0 is a small term added to
avoid ill conditioned matrix computations. The gradient is computed by using a
first order approximation method. One of the advantages of this approach is that
the change of regions (or configurations) is not explicitly taken into account during
the computation of the gradient. Furthermore, a sufficient condition for stability is
provided.

Pole assignment control with uncontrollable transitions (Vázquez and Silva 2009b)
In a first step, it is assumed that the initial and desired markings are equilibrium
ones and belong to the same region. The control approach considered has the
following structure: u = u′

d + K(m − m′
d), where (m

′
d, u′

d) is a suitable intermediate
equilibrium marking. The gain matrix K is computed, by using any pole-assignment
technique, in such a way that the controllable poles are settled as distinct, real
and negative. Intermediate markings m′

d, with their corresponding input u′
d, are

computed during the application of the control law (either at each sampling period
or just at an arbitrary number of them) by using a given LPP with linear complexity
that guarantees that the required input constraints are fulfilled. Later, those results
are extended in order to consider several regions. For this, it is required that the
initial and desired markings belong to a connected union of equilibrium sets with
positive flows, i.e., m0 ∈ E+

1 , md ∈ E+
n and ∪n

i=1 E+
i is connected. Thus, there exist

equilibrium markings mq
1, ..., mq

n−1 on the borders of consecutive regions, i.e., mq
j ∈

E j ∩ E j+1, ∀ j ∈ {1, .., j − 1}. A gain matrix K j, satisfying the previously mentioned
conditions, is computed for each region. Then, inside each jth region, the control
action u = u′

d + K j(m − m′
d) is applied, where m′

d is computed, belonging to the
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segment [mq
j , mq

j+1], by using a similar LPP. It was proved that this control law
can always be computed and applied (feasibility). Furthermore, convergence to the
desired md was also demonstrated, whenever the conditions for controllability are
fulfilled and ∪n

i=1 E+
i is connected (see Section 6.3). The main drawback of this

technique is that a gain matrix and a LPP have to be derived for each region in the
marking path.

6.6 Preliminary comparison of control methods under infinite server semantics

Having several control methods available for timed continuous PNs, a question
that may arise concerns the selection of the most appropriate technique for a given
particular system and purpose. There are several properties that may be taken into
account, like feasibility, closed-loop stability, robustness, computational complexity
(for the synthesis and during the application), etc.
Table 4 summarizes a few qualitative properties of some of the control methods

described above. Accordingly, provided a structurally persistent PN, the natural
choice will be an ON–OF F control law, since it does not exhibit computational
problems, ensures convergence an provides the minimum-time transient behavior.
For non-persistent nets, MPC ensures convergence and minimizes a quadratic
criterion. Nevertheless, when the number of transitions grows, the complexity may
become untractable. In such a case, control synthesis based on LMI or enforcing
piecewise-straight trajectories would be more appropriated. Finally, control laws
based on gradient-descendent and pole assignment methods are developed in order
to deal with uncontrollable transitions. The synthesis of this last technique becomes
tedious (but automatizable) when several configurations appear in the system, since
a pole assignment is required for each configuration. This problem does not appear
for the gradient based controller; on the contrary, this technique does not guarantee
convergence for the general case, while the pole assignment does it.
Given a system with just few configurations and transitions, all of them being

controllable, most of the described control laws could be synthesized and applied

Table 4 Qualitative characteristics of control laws (assuming mf > 0)

Technique Computational Optimality Subclass Tnc Stability
issues criterion

PW-straight A LPP for Heuristic for All No Yes
trajectory each config. min. time
MPC Poly. compl. Min. quadratic or All No Under suf.

on |T|, N linear func. of m, u conditions
LMI A LMI for None All No Yes

each config.
ON-OFF Linear compl. Minimum Structurally No Yes

on |T| time persistent
Gradient-based Poly. compl. Min. quadratic All Yes Under a suf.

on # outputs error condition
Pole-assignment A pole-assignment None All Yes Yes

for each config.

The following abbreviations are used: config. (configuration), min. (minimize), func. (function), exp.
(exponential), compl. (complexity) and poly. (polynomial)
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to it, ensuring convergence. In such case, the criterion for selecting one of them
may be a quantitative one, like minimizing either a quadratic optimization criterion
or the time spent for reaching the desired marking. At the present moment, such
quantitative comparison has not been systematically made, but it is our intuition that
the transient response of the mentioned techniques should be comparable (of the
same order of magnitude), i.e., one technique could be the best for a TCPN system,
while another technique could be better for a slightly different model.

6.7 Control under finite server semantics

In contrast to ISS, under finite server semantics (FSS), the flow vector, f , is
piecewise constant: it keeps constant until an event occurs, and events occur only
when places become empty. Between events, the system is said to be at a invariant
behavior state (IB-state) (David and Alla 2010). The concept of IB-state in FSS is
similar to that of configuration in ISS. At an IB-state the flows of transitions are
constant and therefore the markings of places increase or decrease linearly. Given a
net N and a vector λ, the flow vector under FSS just depends on the set of empty
places. Hence, the number of potential IB-states is equal to the number of sets of
places that can be simultaneously empty in the system. These differences entail that
alternative techniques are required for the control of systems under FSS. We will
focus on optimal control problems.
As in ISS, a transition t is controllable when its flow can be slowed down in a

quantity that depends on the input, u[t], applied to it. The value u[t] is positive and
upper limited by λ[t]. The way of computing f is analogous to the one shown in
Section 4.1 for FSS, being now the maximum flow allowed by t, λ[t] − u[t]. Hence, if
transition t is strongly enabled then f [t] = λ[t] − u[t]. If t is weakly enabled f [t] will
be computed considering λ[t] − u[t] the upper bound for the flow of t. If t is neither
strongly nor weakly enabled f [t] = 0. An alternative approach to control under FSS
is developed in Balduzzi et al. (2000) where the firing speed of transitions is a control
variable what allows to solve conflicts and optimization problems.
In the literature, there are several works dealing with optimal control in hybrid

systems (remember that a CPN model under FSS is a particular class of hybrid sys-
tem). Most of them can be roughly divided into two groups: those using continuous-
time models (see, for example Cassandras et al. 2001; Xu and Antsaklis 2003) and
those using discrete-time models (see, for example Bemporad and Morari 1999).
Regarding continuous-time models, the main considered issues are the study of
necessary trajectories to be optimal and the computation of optimal control laws
by means of Hamilton–Jacobi–Bellman equations or the maximum principle. With
respect to discrete-time models, a solution to optimal control problems was proposed
in Bemporad and Morari (1999). A drawback of time-discretization is that the length
of the sampling period is not easy to define, since there often exists a trade-off
between accuracy (short sampling period) and computational speed (long sampling
period).
An intermediate approach between continuous and discrete time models consists

of considering event-driven models. The evolution of an event-driven model is
described in terms of steps, where steps are associated to the occurrence of events,
i.e., to a place becoming empty in the case of continuous PNs. Each step contains the
time instant at which the event occurred as well as the system state at that instant.
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This way, in contrast to usual discrete-time models, the time elapsed between events
is not necessarily constant. Event-driven models (for instance, see De Schutter and
van den Boom 2001 for models based on max-plus algebra) offer two interesting
advantages: (1) Event-discretization does not imply loss of accuracy: The marking
evolution of a continuous PN under FSS is linear between events, and so it can
be determined from the marking of the net at the event instants; and (2) The
number of steps is minimized: A step happens only when it is really required
(an event happens). The task of solving optimal control problems by using event-
driven models of continuous nets is greatly eased if the net system is transformed
to a Mixed Logical Dynamical (MLD) system (Bemporad and Morari 1999). The
basic steps to transform a continuous PN into a MLD system are the following
(Júlvez et al. 2004):

1. Identify the potential IB - states of the continuous PN.
2. Describe the behavior of the PN under each IB - state.
3. Force that at least one place becomes empty at the occurrence of the next event.

Once a MLD system is obtained, it can be equipped with the objective function
that is desired to be optimized. This produces a Mixed Integer Linear Programming
Problem (MILP) whose objective function represents the pursued control goal, e.g.,
minimum-time, minimum-effort, minimum-displacement, etc, and whose solution
contains the control actions that optimize the objective function (Di Cairano et al.
2009). Let us exemplify the event-driven control through the net in Fig. 14 with
λ = [1.5 1 2]T and m0 = [6 0 0]T . If no control action is applied to the system, it
reaches a steady state marking with null throughput, i.e., a deadlock marking. An
interesting control problem for such non live systems and for many manufacturing
systems is to find control actions that maximize the throughput in the steady state,
thus deadlocks are avoided. Such a control goal can be achieved by defining a
MILP (Júlvez et al. 2004). Notice that the considered system is bounded and has
a unique T-semiflow χ = 1. Hence, maximizing the throughput of one transition
in the steady state is equivalent to maximizing the throughput of any of the three
transitions. Let us assume that t3 is the only controllable transition. The obtained
control is u[t3] = 2 during 2.4 time units, which leads to m = [0 1.2 2.4]T . At m the
flow of all transitions is equal to 1. The control action required to keep m constant is
u[t3] = 1.

7 Some concluding remarks and open issues

The fluidization of discrete event dynamic models is a classical technique used
from the late sixties of the past century in the Queueing Network framework.
As in Petri Nets, Forrester Diagrams or Stochastic Flow Models, happens to be
particularly interesting for systems following production/consumption patterns. The
material presented here represents the warp of an approximation, where three
different weaves are essential: the autonomous or fully non-deterministic view,
rooted in Theoretical Computer Science; the performance evaluation of unforced (or
uncontrolled) models, strongly related to classical Operations Research perspectives;
and observation, control, and related problems, central to Control Theory. Not
surprisingly, all three disciplines play a major role in the arena of the formal study
of DEDS. The explicit consideration of the relationships of the fluid model and the
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underlying discrete event one is also a crucial concern. For these reasons, aspects
such as the legitimacy of the fluid relaxations or their improvements (through the
elimination of spurious markings, the addition of noise to reflect the stochastic
variability, or the convenience of the introduction of special server semantics) are
important.
Fluidization means a loss of fidelity with respect to the discrete model, but as

shown in this work, among the benefits is the substantial reduction in complexity of
several important computational problems. For example, convexity is a property that,
in general, makes optimization problems easier. Under the consistency of the net and
the non-existence of empty siphons at the initial marking (that can be proved through
LPPs), the state-space is linearly described, which does not mean that the behaviors
that can be described are linear! Moreover, the ability to fire in isolation minimal
T-semiflows causes behavioral and structural synchronic relations to collapse (thus,
for example, the bound of a place can be straightforwardly computed in polynomial
time). Under the above conditions, the analysis of reachability in untimed models,
among other properties, is also solvable in polynomial time. Nevertheless, the
introduction of time makes things less simple. For example, under infinite server
semantics, continuous Petri Nets may simulate Turing Machines! Of course, this
means that the theoretical expressive power is very satisfactory, but now several
properties (such as the existence of steady state) are undecidable. Dealing with syn-
thesis problems for timed models, and assuming that a steady state exists (as required
when using the final-value theorem with the Laplace transform), the computation of
the minimal marking for certain required cycle times or some optimal steady state
control actions are also polynomial time problems. From a different perspective,
the bridge to continuous control theory is also very challenging; nevertheless, PN
structure theory based is the fact that if all transitions are controllable, controllability
can also be decided in polynomial time. Obviously, the over-approximation that
is fluidization entails that something is lost, but usually (particularly if the system
is performance monotonic) the bigger the initial marking, the smaller the errors
produced by the relaxation.
Another benefit of fluidization is that the fluid model permits the use of

inf initesimal perturbation analysis providing algorithms for the gradients (deriv-
atives) of sample performance functions (Cassandras and Lafortune 2008). This
technique has been applied mainly to queueing models, where performance met-
rics of delay and throughput are of primary interest. Recently, the application of
infinitesimal perturbation analysis to TCPN has been proposed in Giua et al. (2010),
where the gradient of the throughput with respect to fluid flow parameters is studied
for marked graphs. In Xie (2002) another simple-path optimization approach is
developed.
Even if the reader may be under the impression that there is a substantial amount

of accumulated knowledge available, we would like to point out that there are plenty
of fundamental issues that still require significant research efforts. Just to mention a
few examples:

• When is it reasonable to fluidize a discrete event dynamic (both as untimed and
as timed) model?

• Which is the most appropriate timing interpretation in order to approximate
well the underlying discrete model? (Otherwise stated: which is the best server
semantics for the problem under consideration?)
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• Expressiveness of CPNs under infinite server semantics is high to the level of be-
ing able to simulate Turing machines. But this this is also means the existence of
undecidabilities. In which net subclasses may we have simultaneously significant
modeling and decidability power?

• For the different server semantics, what about the establishment of duality
theories between observation and control? Can the interleaving of graph and
algebraic based techniques be mademore symmetric (not only as a sign of beauty
and elegance, but also for practical purposes)?

• What about the efficient computation of sensitivity and optimization issues in
continuous models (IPA techniques and others)?

• Observability and controllability criteria for distributed systems are needed.
• How to design more efficient observers, with fewer elements?
• What about the adequacy of continuous control laws for the underlying discrete

event dynamic model? What are the limitations?
• To what extent, the theory of discrete and continuous models can help in the

building of a more solid theory of hybrid systems? To what extent, the present
theories of hybrid systems can help to improve the understanding of these fluid
models, as already pointed out hybrid in a technical sense?

Of course, to most of the previous questions, elements of answers are already
available, but there is a long way to cover, surely a beautiful travel to do in company.
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