
Scale Drift-Aware Large Scale Monocular SLAM

Hauke Strasdat

Department of Computing,

Imperial College London, UK

Email: strasdat@doc.ic.ac.uk

J.M.M. Montiel

Instituto de Investigación

en Ingenierı́a de Aragón (I3A),

Universidad de Zaragoza, Spain

Email: josemari@unizar.es

Andrew J. Davison

Department of Computing,

Imperial College London, UK

Email: ajd@doc.ic.ac.uk

Abstract—State of the art visual SLAM systems have recently
been presented which are capable of accurate, large-scale and
real-time performance, but most of these require stereo vision.
Important application areas in robotics and beyond open up
if similar performance can be demonstrated using monocular
vision, since a single camera will always be cheaper, more
compact and easier to calibrate than a multi-camera rig.

With high quality estimation, a single camera moving through
a static scene of course effectively provides its own stereo
geometry via frames distributed over time. However, a classic
issue with monocular visual SLAM is that due to the purely
projective nature of a single camera, motion estimates and map
structure can only be recovered up to scale. Without the known
inter-camera distance of a stereo rig to serve as an anchor, the
scale of locally constructed map portions and the corresponding
motion estimates is therefore liable to drift over time.

In this paper we describe a new near real-time visual SLAM
system which adopts the continuous keyframe optimisation ap-
proach of the best current stereo systems, but accounts for
the additional challenges presented by monocular input. In
particular, we present a new pose-graph optimisation technique
which allows for the efficient correction of rotation, translation
and scale drift at loop closures. Especially, we describe the
Lie group of similarity transformations and its relation to the
corresponding Lie algebra. We also present in detail the system’s
new image processing front-end which is able accurately to track
hundreds of features per frame, and a filter-based approach
for feature initialisation within keyframe-based SLAM. Our
approach is proven via large-scale simulation and real-world
experiments where a camera completes large looped trajectories.

I. INTRODUCTION

Visual SLAM with a single camera is more challenging than

when stereo vision can be used, but successful solutions have

the potential to make a much wider impact because of the

wealth of application domains in robotics and beyond where a

single camera can more cheaply, compactly and conveniently

be installed. Monocular SLAM research, which naturally

overlaps with the highly developed Structure from Motion

(SfM) field in computer vision, has seen great progress over

the last ten years, and several impressive real-time systems

have emerged as researchers have managed to transfer the best

sequential SLAM techniques to the single camera domain.

However, the successful sequential systems presented have

mostly either been limited to operation in a local workspace

(e.g. [7, 14, 9, 2]) or, more rarely, have been designed for

open-loop visual odometry exploration of larger areas [20, 3].

Meanwhile, in stereo vision-based SLAM there have now

been systems presented which offer end to end solutions to

real-time large scale SLAM. Probably the most complete is

that of Mei et al. [17], which combines robust and accurate

local visual odometry with constant-time large-scale mapping

(enabled by a continuous relative map representation), high-

performance appearance-based loop closure detection, and

global metric map optimisation if required. Another similar

system is that presented by Konolige and Agrawal [16].

It has proven more difficult to achieve real-time large-scale

mapping with a monocular camera, due to its nature as a

purely projective sensor. Geometry does not just ‘pop out’

of the data from a moving camera, but must be inferred over

time from multiple images. Difficulties had to be overcome

before a probabilistic sequential approach could successfully

be implemented for monocular SLAM due to the fact that im-

age features must be observed from multiple viewpoints with

parallax before fully constrained 3D landmark estimates can

be made. Special attention was given to feature initialisation

schemes which permitted sequential probabilistic filtering of

the joint camera and map state [7, 27, 19]. Beyond this issue,

the fact that a single camera does not measure metric scale

means that monocular mapping must either proceed with scale

as an undetermined factor or that scale has to be introduced

by an additional information source such as a calibration

object as in [7] or even by exploiting nonholonomic motion

constraints [26]. These issues, and the fact that monocular

maps are just generally less well constrained than those built

by metric sensors, meant that it was more difficult than in

SLAM systems with other sensors to build algorithms which

could tackle large areas by composing local fragments.

One of the first attempts to put a whole large scale

monocular SLAM together was by Clemente et al. [4], who

took a hierarchical mapping approach where locally filtered

submaps were built and joined by an upper level joint map.

Map matching based on feature correspondences between

submaps allowed global correction of motion and scale drift

around a large loop. In [23] a more accurate later evolution

of this work based on conditional independent local maps

was presented. Eade and Drummond [10, 8] presented a

system which had several similarities to these approaches,

but also many improvements, in that it was able to operate

automatically in true real-time, incorporating effective loop-

closing and re-localisation methods, as well as making use of

non-linear optimisation techniques at various different levels to

improve accuracy. At its core, though, it built a graph of local

filtered submaps, each with a state vector and covariance, and

with the similarity transforms between neighbouring submaps

estimated via feature correspondences.

A. SLAM via Optimisation

Recently, Strasdat et al. [28] presented results which in-

dicate, on the basis of a systematic investigation into the

accuracy of local map components versus computational cost,

that the keyframes + optimisation approach of Klein and

Murray [14] — based ultimately on well known bundle ad-

justment methods [29] — is strongly advantageous compared

to methods like those of Eade [8] or Clemente [4] whose

building blocks are locally filtered submaps. Essentially, the

accuracy analysis in [28] shows that it is the ability to harvest

measurements from large numbers of image features per frame

that plays the major role in increasing accuracy in local

monocular motion estimation, while incorporating information

from a large number of closely spaced camera frames provides

less information for a given computation budget. This plays

into the hands of the optimisation methods which cope much

more efficiently with large numbers of features than filters can.

In light of this analysis, the previous large scale monocular

systems [4] and [8] can be seen as somewhat unsatisfactory

approaches, which combine filtering at a local level with opti-

misation at the global level. For instance, when loop closures

are imposed, the relative positions of their filtered submaps

changes, but any drift within the local maps themselves cannot

be resolved. In this paper, we have therefore resolved to take

a keyframe optimisation approach from top to bottom, aiming

for maximum accuracy while taking into full account the

special character of SLAM with monocular vision.

B. Gauge Freedoms, Monocular SLAM and Scale Drift

Metric SLAM systems aim to build coherent maps, in a

single coordinate frame, of the areas that a robot moves

through. But they must normally do this based on purely

relative measurements of the locations of scene entities ob-

servable by their on-board sensors. There will therefore always

be certain degrees of gauge freedom in the maps that they

create, even when the best possible job is done of estimation.

These gauge freedoms are degrees of transformation freedom

through which the whole map, consisting of feature and robot

position estimates taken together, can be transformed without

affecting the values of the sensor measurements. In SLAM

performed by a robot moving on a ground plane and equipped

with a range-bearing sensor, there are three degrees of gauge

freedom, since the location of the entire map with regard

to translations and rotation in the plane is undetermined by

the sensor measurements. In SLAM by a robot moving in

3D and equipped with a sensor like calibrated stereo vision

or a 3D laser range-finder, there are six degrees of gauge

freedom, since the whole map could experience a rigid body

transformation in 3D space. In monocular SLAM, however,

there are fundamentally seven degrees of gauge freedom [29],

since the overall scale of the map, as well as a 6 DoF (degrees

of freedom) rigid transformation, is undetermined (scale and

a rigid transformation taken together are often known as a

similarity transformation).

It is the number of gauge degrees of freedom in a particular

type of SLAM which therefore determines the ways in which

drift will inevitably occur between different fragments of a

map. Consider two distant fragments in a large map built

continuously by a single robot: local measurements in each

of the fragments have no effect in pulling either towards a

particular location in the degrees of gauge freedom. If they are

not too distant from each other, they will share some coherence

in these degrees of freedom, but only via compounded local

measurements along the chain of fragments connecting them.

The amount of drift in each of these degrees of freedom

will grow depending on the distance between the fragments,

and the distribution of the potential drift can be calculated if

needed by uncertainty propagation along the chain.

It is very well known that planar maps built by a ground-

based robot drift in three degrees of freedom; so maps built

by a monocular camera with no additional information drift

in seven degrees of freedom. It is through these degrees

of freedom therefore which loop closure optimisations must

adjust local map fragments (poses or submaps in a graph).

II. GENERAL FRAMEWORK FOR STATE ESTIMATION

USING OPTIMISATION

In this section, we give a short review of state estimation

using optimisation. The goals of this are first to define common

notation and terminology for the rest of the paper, and second

to clarify the natural close relationship between the different

types of optimisation our approach uses, such as bundle

adjustment and pose-graph optimisation.

In a general estimation problem, we would like to estimate

a vector of parameters p given a vector of measurements f ,

where we know the form of the likelihood function p(f |p). The
most probable solution is the set of values p which maximises

this likelihood, which is equivalent to minimising the negative

log-likelihood:

argmax
p

p(f |p) = argmin
p

(− log p(f |p)) . (1)

In many optimisation problems, negative log-likelihood is

known as energy and the goal is to minimise it, which is fully

equivalent to maximising the probability of the solution.

A. Least Square Problems and Gauss-Newton Optimisation

We now speak in more specific but still very widely applica-

ble terms, and assume that the likelihood distribution p(f |p) is
jointly Gaussian, and thus has the distribution (up to a constant

of proportionality):

p(f |p) ∝ exp((f − f̂(p))⊤Λf (f − f̂(p))) , (2)

where Λf = Σ−1
f , the information matrix or inverse of the

measurement covariance matrix Σf of the likelihood distribu-

tion, and f̂(p) is the ‘measurement function’ which computes

(predicts) the distribution of measurements f given a set of

parameters p.

The negative log-likelihood, or energy, S(p) = − log p(f |p)
therefore has the quadratic form:

S(p) = (f − f̂(p))⊤Λf (f − f̂(p)) . (3)

If Λf is block-diagonal, S(p) simplifies to:

S(p) =
∑

i

(fi − f̂i(pi))
⊤Λf ,i(fi − f̂i(pi)) . (4)

This is the case if f consists of a stack of measurements which

are independent, which can very commonly be assumed when

many measurements are made from a calibrated sensor — of

particular interest here, where each measurement is the image

location of a scene feature in one frame taken by a camera.

Further, and again in our case, Λf can very often be taken to

equal the identity matrix. This implies that the uncertainty in

each individual parameter of every measurement has exactly

the same value, and that they are all independent. The absolute

magnitude of the values on the diagonal of Λf does not affect

the optimisation result so they can be set to one. Now, S(p) is
simply a sum of squares, and minimising it is called non-linear

least squares optimisation.

A common technique for non-linear least squares optimisa-

tion is the Gauss-Newton method, which is an approximation

of the Newton method. This consists of iteratively updating

an initial estimate of the parameter vector p by the rule

p(i+1) = p(i) + δ , (5)

where at each step the update vector δ is found by solving the

normal equation:
(

J
⊤
pΛfJp

)

δ = −J⊤pΛfr . (6)

Here, Jp = ∂r
∂p

and r = f − f̂(p) is the residual error.

All estimation described in this paper is done using a variant

of Gauss-Newton called Levenberg-Marquardt (LM), which

alters the normal equation as follows:
(

J
⊤
pΛfJp + µI

)

δ = −J⊤pΛfr . (7)

The parameter µ rotates the update vector δ towards the

direction of the steepest descent. Thus, if µ → 0 pure Gauss-

Newton is preformed, whereas if µ → ∞, gradient descent is

used. In LM, we only perform an update p(i) + δ if it will

be successful in significantly reducing the residual error. After

a successful update, µ is decreased; otherwise µ is increased.

The motivation behind this heuristic is that Gauss-Newton can

approach a quadratic rate of convergence, but gradient descent

behaves much better far from the minimum.

B. Covariance Back-propagation

So far, we have considered only how to find the single most

probable set of parameters p. If there is no gauge freedom in

the minimisation argminp S(p), then J
⊤
pΛfJp has full rank

and we can determine a full distribution for p. A first-order

approximation of the covariance Σp can be calculated using

covariance back-propagation:

Σp = (J⊤pΛfJp)
−1 . (8)

Note that if p is high-dimensional, this calculation is very

expensive because of the large matrix inversion required.

C. Optimising Rigid Body Transformations in R
3

In optimisation, especially in 3D SLAM, the correct treat-

ment of angles consistently causes confusion. On one hand,

a minimal parametrisation is desired, but also singularities

should be avoided. Interpolation of angles is not straightfor-

ward, since the group of rotation is only locally Euclidean.

Probably the most elegant way to represent rigid body

transformations in optimisation is based on Lie theory. A

rigid body transformation in R
n can be expressed as an

(n+1)×(n+1) matrix which can be applied to homogeneous

position vectors:

T =

[

R t

O 1

]

with R ∈ SO(n) , t ∈ R
n , (9)

and SO(n) being the Lie group of rotation matrices. The

rigid body transformations in R
n form a smooth manifold

and therefore a Lie group — the Special Euclidean group

SE(n) [11]. The group operator is the matrix multiplication.

A minimal representation of this transformation is defined

by the corresponding Lie algebra se(n) which is the tangent

space of SE(n) at the identity. In R
3, the algebra elements

are 6-vectors (ω, υ)⊤: ω = (ω1, ω2, ω3) is the axis-angle

representation for rotation, and υ is a rotated version of the

translation t. Elements of the se(3) algebra can be mapped to

the SE(3) group using the exponential mapping expSE(3):

expSE(3) (ω, υ) :=

[

expSO(3)(ω) Vυ

0 1

]

=

[

R t

0 1

]

.

(10)

Here, expSO(3)(ω) = I + sin(θ)
θ

(ω)× + 1−cos(θ)
θ2 (ω)2× is the

well-known Rodrigues’ formula, V = I + 1−cos(θ)
θ2 (ω)× +

θ−sin(θ)
θ3 (ω)2×, θ = ||ω||2, and (·)

×
is an operator which maps

a 3-vector to its skew-symmetric matrix. Since expSE(3) is

surjective, there exists also an inverse relation logSE(3).

During optimisation, incremental updates δ are calculated in

the tangent space around the identity se(3) and mapped back

onto the manifold SE(3), leading to a modified version of (5):

T(i+1) = expSE(3)(δ) · T(i) . (11)

In this way, we avoid singularities — since δ is always close to

the identity — while ensuring a minimal representation during

optimisation. The Jacobian of (11) is linear in T,

∂ expSE(3)(δ) · T

∂δ

∣

∣

∣

∣

δ=0

=

−(r1)× O3×3

−(r2)× O3×3

−(r3)× O3×3

−(t)× I3×3

, (12)

where (r1, r2, r3) := R. A general Jacobian
∂f(expSE(3)(δ)·T)

∂δ

can be easily determined using the chain rule.

III. A KEYFRAME OPTIMISATION SYSTEM FOR LARGE

SCALE MONOCULAR SLAM

We will now describe the elements of our complete system

for sequential monocular SLAM. Similar to Klein and Mur-

ray’s PTAM system [14], our SLAM framework consists of

two parts: a front-end which tracks features in the image and

estimates the pose of each live frame given a set of known 3D

points, and a back-end which performs joint bundle adjustment

over a set of keyframes. In PTAM which focuses on accurate

and fast mapping in a small environment, the front-end only

performs pose and feature tracking, while the optimisation

back-end does everything else such as feature initialisation

and dropping of new keyframes. Since our approach focusses

on mapping large scenes, we use the opposite emphasis. The

optimisation back-end does only bundle adjustment, but the

tracking front-end takes over all important decisions such as

when to drop new keyframes and which feature to initialise.

This design puts a higher computational burden on the tracking

front-end, but facilitates exploration since the stability of the

tracking front-end does not depend on the optimisation back-

end to drop new keyframes.

A. The Camera Projection Function and Camera Poses

Points in the world xj ∈ R
3 are mapped to the camera

image using the observation function ẑ:

ẑ(Ti,xj) = proj(K · Ti · xj) . (13)

Here, xj is a homogeneous point, Ti ∈ SE(3), K is the camera

calibration matrix (which we assume is known from prior

calibration) and proj is the 3D-2D projection:

proj(a) :=
1

a3
(a1, a2)

⊤ for a ∈ R
3 . (14)

We represent the pose of the camera at a given time-step i

by the rigid body transformation Ti. Note that the position

of the camera center is not explicitly represented, but can be

recovered as −R⊤i ti [13, pp.155].

B. Optimisation Back-end

In the back-end, we perform an optimisation jointly over

a set of keyframes Tkey:i and large set of points xj called

bundle adjustment (BA) [29]. In order to be constant-time,

the number of keyframes included in BA is restricted. Since

we focus on exploration, we optimise over a sliding window

of keyframes. At loop closure, different measures have to be

taken (see Sec. IV).

In general in BA, not all points are visible in every frame.

Let Z be a sparse matrix where an entry is either an observation

zi,j if point xj is visible in frame Tkey:i or zero otherwise. Let

I be the sequence of non-zero row indices of Z: I = {(i) :
Zi,j 6= 0}. The column index list J is defined similarly. Now,

it is obvious how to define the stacked projection function:

ẑ(Tkey:1, ..., Tkey:m,x1, ...,xn, I, J) . (15)

We solve BA conventionally using LM by minimising

S(p) =
∑

(i,j)∈I×J

(zi,j − ẑ(Tkey:1, ..., Tkey:m,x1, ...,xn, I, J))
2

(16)

with respect to the parameter vector p =
(Tkey:3, ..Tkey:m,x1, ...,xn). As a sliding window BA is

applied, the optimisation window has to be anchored to the

previous map. Thus, at least 7 DoF (rotation, translation

and scale) should be fixed. Because of this, Tkey:1, Tkey:2 are

excluded from the optimisation. In order to guard against

spurious matches, we use the pseudo-Huber cost function [13,

p.619] as a robust kernel.

The primary sparseness pattern in BA — that there are

only links between points and frames, but no point-point or

frame-frame constraints — is exploited in the usual way using

the Schur complement [29]. However, our BA implementation

also exploits the secondary sparseness pattern — that not

every point is visible in every frame. This is done using

the CSparse library [6] which performs efficient symbolic

Cholesky decomposition using elimination trees.

C. Feature Tracking and Pose Optimisation

The main task of the tracking front-end is to estimate the

current camera pose Ti. However, it also deals with feature

and keyframe initialisation. It takes as input a set of keyframe

poses Tkey:i and 3D points xj ∈ X which are associated with

2D measurements zkey:i,j . The poses Tkey:i and points xj were

already jointly estimated in the optimisation back-end (see

Sec. III-B).

For feature tracking and pose optimisation, we use a mixture

of bottom-up (for every pixel) and top-down approaches

(guided techniques). First, we estimate the relative pose∆Ti =
Ti−1 ·Ti between the previous and current frames. This is done

by the help of dense variational optical flow implemented very

efficiently on the GPU [24]. Given the pose estimate of the

previous frame Ti−1, we can calculate an initial pose estimate

for the current frame: T
[0]
i = ∆Ti · T

−1
i−1. Feature tracking is

not done using frame to frame matching. Whereas frame to

frame matching is very reliable for pure visual odometry, it

prevents mini-loop closures.

Given our initial pose guess T
[0]
i , we estimate the subset

X ′ ⊂ X of landmarks which might be visible in the cur-

rent frame. Based on the projection (13), we perform active

search [7] for each point xj′ ∈ X ′, where the centre of

the search region is defined by the prediction ẑ(T
[0]
i ,xj′).

Generally, the uncertainty of the projection and thus the size

and shape of the search region depends on the uncertainty of

xj′ and Ti. Given that all points in X are already optimised

using keyframe bundle adjustment, and that pose Ti−1 is

already optimised with respect to the X , then apart from the

measurement noise Σz, the only crucial uncertainty originates

from the motion between the previous and the current frame.

Let, Σ∆Ti
be the uncertainty of the relative motion. Then the

a) Feature initialisation a) After a single update

Fig. 1. Illustration of the feature initialisation process. First features are
initialised as inverse depth points with infinite uncertainty on the depth (a). A
single update leads to a significant reduction of the depth uncertainty (b). The
inverse depth features are plotted using a 99.7 percent confidence interval.

search area is constrained by the innovation covariance

(

∂ẑ(T′,xj′)

∂δ

)⊤

Σ∆Ti

(

∂ẑ(T′,xj′)

∂δ

)

+Σz , (17)

with T
′ = expSE(3)(δ) · T

[0]
i . The search within this re-

gion is based on template matching using normalised cross-

correlation. Using the initial guess T
[0]
i , the templates are

perspectively warped. In order to speed-up the search, we do

not apply the matching at every single pixel in the search

region, but only there where FAST features [25] are detected.

As a result, we receive a set of 2D-3D matches between

image locations zk and feature points xk. Finally, we opti-

mize the pose Ti using motion-only BA. Thus, we minimize

S(Ti) =
∑

k(zk − ẑk(Ti,xj))
2 wrt. Ti using LM. Again, we

use the pseudo-Huber cost function as a robust kernel.

D. Feature Initialisation

In monocular SLAM approaches using filtering, no special

treatment for feature initialisation is needed if an inverse depth

representation [19] is used. New features are jointly estimated

together with all other parameters, but at a cost of O(n3)
where n is the number of features visible.

In PTAM [14], new features are triangulated between

keyframes. In order to restrict the matching, a strong depth

prior is used (restricting the PTAM to using features relatively

close to the camera). We suggest a feature initialisation method

for keyframe-based SLAM systems based on a set of three

dimensional information filters which can estimate the position

of arbitrarily distant features. Very recently, a similar method

was briefly described by Klein and Murray [15]. Compared

to our approach, their filters are applied on every frame, are

one-dimensional and are only used for data association.

Ultimately, we would like to update a set of partially

initialised 3D points xnew:j given the current camera pose

Ti. If Ti is known, the features xnew:n become independent:

p(xnew:1, ...,xnew:j , ..|Ti) = p(xnew:1) · · · p(xnew:n) . (18)

Since the current camera Ti is well-optimised wrt. the set

of known points X (as described in the previous section),

equation (18) is approximately true. Thus, our method employs

a set of information filters. Each filter estimates the position

of the a single landmark given the current pose estimate. In

this sense, our approach is similar to FastSLAM [18]. The

difference to FastSLAM is that the partially initialised features

xnew:j are not used for state estimation immediately. New

features are only used for pose estimation after they are jointly

bundle adjusted and added to X (see Sec. III-E).

The design of a single information filter is greatly inspired

by Eade’s filtering framework [8]. Features are represented

using inverse depth coordinates y = (u, v, q)⊤ wrt. the origin

frame Torg in which they were seen first. They can be mapped

to a Euclidean point xorg =
1
q
(u, v, 1)⊤ in this local coordinate

frame Torg. The uncertainty of an inverse depth feature is rep-

resented using the inverse covariance matrix Λy = Σ−1
y . New

features are jointly initialised at keyframes where FAST [25]

produces candidate locations. In order to ensure an equal

distribution of feature locations over the image, we employ

a quadtree similar to Mei et al. [17]. Given the FAST feature

location z = (u, v)⊤, we set y = (u, v, q) with q ∈ R
+. The

uncertainty Λ
(0)
x∗ is set to diag(1

σ2
z

, 1
σ2
z

, 0). Note that initially

there is an infinite uncertainty along the feature depth, so we

do not enforce any depth prior no matter which start value

we assign for q. In order to save computation and to avoid

divergence, inverse depth features are only updated on selected

frames with sufficient parallax.

We filter y by minimising:

S(y) = (y − ŷ)⊤Λy(y − ŷ) + (∆z)⊤Λz(∆z) (19)

wrt. y using LM. Here, ŷ is set to the initial guess y[0] and

∆z = z − ẑ(Ti, T
−1
orgxorg). The first term in S(y) ensures

that the optimisation of y is based on its prior distribution

〈ŷ,Λy〉. The second term takes care that the projection error

wrt. the current frame is reduced. In other words, the point y

is moved along its uncertain depth rather than via its certain

u, v coordinate in order to reduce the projection error in the

current image. We also update the uncertainty using covariance

back-propagation (see Fig. 1):

Λ(k+1)
y = Λ(k)

y +

(

∂∆z

∂y

)⊤

Λ(k)
z

(

∂∆z

∂y

)

. (20)

E. Keyframe Dropping

A new keyframe is dropped as soon the distance of the

current camera from the closest keyframe exceeds a threshold.

Only inverse depth features y which could be reliably tracked

and whose position is certain enough are considered for adding

to X . Before, they are bundle adjusted with respect to a small

number (e.g. three) of surrounding keyframes. Only those

features which do not produce a large projection error in any

of the surrounding keyframes are added to X .

IV. LOOP CLOSURE

A. Loop closure detection

It is well known that loop closures can be detected effec-

tively using appearance information only [1, 5]. These methods

often rely on visual bags of words based on SIFT or SURF

features. Given that we have a loop closure detection between

two frames each associated with a set of SURF features, the

standard method would apply RANSAC in conjunction with

the 5-point method [21] in order to estimate the epipolar ge-

ometry. Then the relative Euclidean motion up to an unknown

scale in translation can be recovered.

However, we can exploit the fact that in our SLAM system

each frame is associated with a large set of three-dimensional

feature points. First, we create a candidate set of SURF feature

pairs by matching features between the current frame and

the loop frame based on their descriptors. Then, we create

a dense surface model using the three-dimensional feature

points visible in the loop frame. Next, the unknown depth of

the candidate SURF features of the loop frame is calculated

using this dense surface model.1 The computationally very

efficient k-nearest neighbour regression algorithm proved to

be sufficient for our needs. In other words, we calculate the

depth of SURF features by simply interpolating the depth of

nearby 3D points.

Finally, a 6 DoF loop constraint Tloop is calculated based

on the 2D-3D SURF correspondences using the P4P-method

plus RANSAC. Given this initial pose estimate, more matches

can be found using perspective-warped image patches, and the

pose is refined using robust optimisation. However the relative

change in scale sloop due to scale drift has to be computed

as well, so we also calculate the depth of the SURF features

visible in the current frame using a dense surface model, giving

a set of 3D-3D correspondences. We estimate sloop robustly as

the median scale difference over all correspondences.

B. Loop Closure Correction

Let us consider a loop closure scenario in a large-scale

map. After the loop closure is detected and matches are found

between the current frame and the loop frame, the loop closing

problem can be stated as a large BA problem. We have to

optimize over all frames and points in the map. However,

optimising over a large number of frames is computationally

demanding. More seriously, since BA is not a convex problem,

and we are far away from the global minimum, it is likely that

BA will get stuck in a local minimum.

One solution would be to optimise over relative constraints

between poses using pose-graph optimisation [12][22]. The

relative constraints between two poses Ti and Tj can be

calculated easily: ∆Ti,j = Tj · T−1
i . But while an optimi-

sation over the 6 DoF constraints would efficiently correct

translational and rotational drift, it would not deal with scale

drift, and would lead to an unsatisfactory overall result as we

will show experimentally in Section V. Therefore, we perform

optimisation based on 7 DoF constraints S, which are elements

of the group of similarity transformations Sim(3):

S =

[

sR t

0 1

]

(21)

1The underlying assumption is that the scene structure is smooth enough.
However, this assumption is not only vital if dense surface models are used,
but always if we aim to calculate the 3D position of a blob feature no matter
which method is used. In other words, the 3D position of a blob is only
properly defined if its ‘carrying’ surface is smooth enough.

where s ∈ R
+ is a positive scale factor. A minimal rep-

resentation sim(3) can be defined be the following 7-vector

(ω, σ, υ)⊤ with s = eσ . Indeed, it can be shown that Sim(3)
is a Lie group, sim(3) is the corresponding Lie algebra and

their exponential map is:

expSim(3)

ω

σ

υ

 =

[

eσ expSO(3)(ω) Wυ

O 1

]

=

[

sR t

0 1

]

(22)

with W = eσ
(

I+ 1−cos(θ)
θ2 (ω)× + θ−sin(θ)

θ3 (ω)2×

)

. Further-

more, expSim(3) is surjective, so an inverse relation logSim(3)

exists. Similarly to SE(3), the Jacobian of the incremental

update expSim(3)(δ) · S is linear in S.

In order to prepare for the 7 DoF optimisation, we transform

each absolute pose Ti to an absolute similarity Si, and each

relative pose constraint ∆Ti,j to a relative similarity constraint

∆Si,j by leaving rotation and translation unchanged and

setting the scale s = 1. Only for the loop constraint ∆Sloop

do we set the scale to sloop 6= 1 (using the estimate obtained

as explained in the previous section). We define the residual

ri,j between two transformations Si and Sj minimally in the

tangent space sim(3):

ri,j = logSim(3)(∆Si,j · Si · S
−1
j) . (23)

The graph of similarity constraints is optimised by minimising:

S(S2, ..., Sm) =
∑

i,j

r⊤i,jΛ∆Si,jri,j (24)

using LM. The first transform S1 is fixed and defines the

coordinate frame. The corresponding Jacobian is sparse. We

exploit the sparseness pattern using the CSparse library.

After the similarities S
cor
i are corrected, we also need to

correct the set of points. For each point xj , a frame Ti is

selected in which it is visible. Now we can map each point

relative to its corrected frame:

xcor
j = (Scori)−1(Tixj) . (25)

Afterwards, each similarity transform S
cor
i is transformed back

to a rigid body transform T
cor
i by setting the translation to st

and leaving the rotation unchanged. Finally, the whole map

can be further optimised using structure-only or full BA.

V. EXPERIMENTS

We performed the evaluation of our SLAM system using

the Keble College data set [4] — a sequence where a hand-

held sideways-facing camera completes a circuit around a

large outdoor square. Images were captured using a low cost

IEEE Unibrain camera with resolution 320×240 at 30 FPS,

and using a lens with 80 degree horizontal field of view.

Our SLAM framework performed almost in real-time. For the

5952 images in the sequence, the run-time was 465 seconds

which corresponds to frame rate of more than 12 FPS. The

computation was performed on a desktop computer with an

Intel Core 2 Duo processor and an NVIDIA 8800 GT GPU

which were used for dense optical flow computation.

(a) before optimisation (b) 6 DoF optimisation

(c) 7 DoF optimisation (d) aerial photo

Fig. 2. Keble college data set

The trajectory before loop closure is shown in Fig. 2 (a). It

consists of 766 keyframes, 11885 points and 84820 observa-

tions. In the optimisation back-end, BA with a sliding window

of 10 keyframes was used. A loop closure constraint ∆Tloop

was successfully calculated and refined using the method

described in Sec.IV. A relative scale change of 1 : 0.37 was

detected. The large amount of drift can be partially explained

by the fact that the visible scene is always very local and that

only a rough intrinsic calibration was available. Also, future

improvements in our visual odometry implementation could

lead to a reduction of drift during exploration. Nevertheless,

a certain amount of drift during exploration is unavoidable

and our main focus is how to deal with drift when it occurs.

A traditional 6 DoF graph optimisation such as [12] closes

the loop but leaves the scale drift unchanged which leads to

a deformed trajectory as shown in Fig. 2 (b). However, if

we perform graph optimisation using the similarity transform,

the result looks significantly better (see Fig. 2 (c)). The

graph optimisation converged after two iterations, taking 1.05
seconds in total. After graph optimisation, ten iterations of

structure-only bundle adjustment were performed, taking 0.31
seconds. The application of full BA over all 766 keyframes did

not lead to a notable further improvement (not shown here),

but 10 iterations would take over 200 seconds.

In addition to this real-world experiment, we also performed

a series of simulation experiments in full 3D space. A simu-

lated camera was moved on a circular trajectory with radius

10m. The camera is directed outwards. A set of 5000 points

was drawn from a ring shaped distribution with radius 11m.

The camera trajectory consists of 720 poses. In this simulation

environment, our full SLAM system was applied including

feature initialisation and fixed-window bundle adjustment with

size 10. Only the camera was not simulated and data associ-

ation was given. The difference between the true trajectory

and the estimated one is shown in Fig. 3 (a). In this particular

(a) before

optimisation

(b) 6 DoF

optimisation

(c) 7 DoF

optimisation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1 1.2
 0

 0.2

 0.4

 0.6

 0.8

R
o

o
t
m

e
a

n
 s

q
u

a
re

 e
rr

o
r

in
 m

S
c
a

le
 c

h
a

n
g

e

Gaussian image noise in pixel

7 DoF optimisation
6 DoF optimisation

Scale drift

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 0.2 0.4
 0

 0.01

 0.02

 0.03

 0.04

R
o

o
t

m
e

a
n

 s
q

u
a

re
 e

rr
o

r
in

 m

S
c
a

le
 c

h
a

n
g

e

Gaussian image noise in pixel

(d) whole plot (e) close-up

Fig. 3. Simulation experiments

example, we simulated Gaussian image noise with a standard

deviation of one pixel. Fig. 3 (b) and (c) show loop closure

correction using SE(3) and Sim(3).
We varied the amount of image noise from 0 to 1.2 pixels

and performed 10 simulation runs for each setting. An impor-

tant result of our experiment is that there is a clear relation

between scale drift and image noise (see Fig. 3 (d), thin curve).

This indicates the correctness of our characterisation of scale

as a parameter in SLAM which drifts during exploration in a

similar way to rotation and translation. If we define the first

pose as our origin, there is still a scale ambiguity of possible

maps. Therefore we define a measure between the corrected

poses Tcori and the true poses Ttruei using the minimum of the

sum of square differences

M = min
s

∑

i

(ttruei − stcori)2 (26)

over the scale s. By dividing M by the number of frames and

taking the square root, we obtain the root mean square error

RMSE =
√

M
720 . The average RMSE over the ten simulation

runs is shown in Fig. 3 (d). One can see that Sim(3) optimisa-

tion (red curve) outperforms SE(3) optimisation (green curve)

by a large amount, particularly if the scale change is large.

But interestingly, even for small scale changes of one to four

percent the Sim(3) optimisation performs significantly better

than SE(3) optimisation (see Fig. 3 (e)).

Finally we did an experiment to illustrate that our optimi-

sation framework naturally extends to multiple loop closures.

Imagine an aircraft flying over a sphere and performing

monocular SLAM using a downward directed camera (see

Fig. 4 (a)). First we perform visual odometry, and afterwards

we compute a set of loop closure constraints (shown as blue

line segments in Fig. 4 (b)). In this particular example, Sim(3)
optimisation leads to a small RMSE of only 0.328 (Fig. 4 (c)),

whereas SE(3) optimisation results in an RMSE of 2.187.
Videos illustrating the experiments are available on-line2.

2http://www.doc.ic.ac.uk/˜strasdat/rss2010videos

(a) aircraft

over sphere

(b) before

optimisation

(c) 7 DoF

optimisation

Fig. 4. Multi-loop-closure example: An aircraft is flying over a sphere and
doing SLAM using a single downward-directed camera.

VI. CONCLUSIONS

We have presented a new monocular SLAM algorithm,

based consistently on non-linear optimisation, which we be-

lieve takes advantage of the best current knowledge of the hard

problem of large scale monocular SLAM to achieve state of the

art results. Our algorithm is suitable for sequential operation

in large domains, currently at near real-time rates. Importantly,

our approach explicitly acknowledges the issue of scale drift

at all stages, and offers a practical way to resolve this drift

effectively upon loop closures. We show experimentally, both

in simulation and using a real outdoor sequence, that a certain

amount of scale drift is unavoidable during exploration and

this must be taken into account during loop closure to achieve

the best results. Also, we have shown that our optimisation

approach naturally extends to multiple loop closures.

BA over all frames and scene points is the gold standard

for SfM problems where camera networks are typically strong.

However, a lightweight approach of 7 DoF graph-optimisation

plus structure-only BA seems to be sufficient to accurately

close large loops. It is unclear and worth further investigating

whether full BA leads to significant better results for the weak

camera networks which occur in monocular SLAM.

ACKNOWLEDGMENTS

This research was supported by the European Research

Council Starting Grant 210346, the Spanish MEC Grant

DPI2009-07130 and EU FP7-ICT-248942 RoboEarth. We are

very grateful to colleagues at Imperial College London and

the University of Zaragoza for discussions and software col-

laboration. Special thanks to Giorgio Grisetti for the insightful

discussion about pose-graph optimisation.

REFERENCES

[1] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer. Fast and incremental
method for loop-closure detection using bags of visual words. IEEE

Transactions on Robotics (T-RO), 24(5):1027–1037, 2008.

[2] D. Chekhlov, M. Pupilli, W. W. Mayol, and A. Calway. Real-time and
robust monocular slam using predictive multi-resolution descriptors. In
Proceedings of the 2nd International Symposium on Visual Computing,
2006.

[3] J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel. 1-point
RANSAC for EKF-based structure from motion. In Proceedings of the

IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), 2009.

[4] L. A. Clemente, A. J. Davison, I. Reid, J. Neira, and J. D. Tardós.
Mapping large loops with a single hand-held camera. In Proceedings of

Robotics: Science and Systems (RSS), 2007.

[5] M. Cummins and P. Newman. Highly scalable appearance-only SLAM
— FAB-MAP 2.0. In Proceedings of Robotics: Science and Systems

(RSS), 2009.
[6] T. A: Davis. Direct Methods for Sparse Linear Systems. SIAM, 2006.
[7] A. J. Davison. Real-time simultaneous localisation and mapping with

a single camera. In Proceedings of the International Conference on

Computer Vision (ICCV), 2003.
[8] E. Eade. Monocular Simultaneous Localisation and Mapping. PhD

thesis, University of Cambridge, 2008.
[9] E. Eade and T. Drummond. Scalable monocular SLAM. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2006.
[10] E. Eade and T. Drummond. Monocular SLAM as a graph of coalesced

observations. In Proceedings of the International Conference on Com-

puter Vision (ICCV), 2007.
[11] J. Gallier. Geometric Methods and Applications for Computer Science

and Engineering. Springer-Verlag, 2001.
[12] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg.

Hierarchical optimization on manifolds for online 2D and 3D mapping.
In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), 2010.
[13] R. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, second edition, 2004.
[14] G. Klein and D. W. Murray. Parallel tracking and mapping for small AR

workspaces. In Proceedings of the International Symposium on Mixed

and Augmented Reality (ISMAR), 2007.
[15] G. Klein and D. W. Murray. Parallel tracking and mapping on a camera

phone. In Proceedings of the International Symposium on Mixed and

Augmented Reality (ISMAR), 2009.
[16] K. Konolige and M. Agrawal. FrameSLAM: From bundle adjustment

to real-time visual mapping. IEEE Transactions on Robotics (T-RO),
24:1066–1077, 2008.

[17] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid. A constant
time efficient stereo SLAM system. In Proceedings of the British

Machine Vision Conference (BMVC), 2009.
[18] M. Montemerlo and S. Thrun. Simultaneous localization and mapping

with unknown data association using FastSLAM. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA),
2003.

[19] J. M. M. Montiel, J. Civera, and A. J. Davison. Unified inverse depth
parametrization for monocular SLAM. In Proceedings of Robotics:

Science and Systems (RSS), 2006.
[20] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd. Real-

time localization and 3D reconstruction. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2006.
[21] D. Nistér. An efficient solution to the five-point relative pose problem.

IEEE Trans. Pattern Anal. Mach. Intell., 26(6):756–777, 2004.
[22] E. Olson, J. J. Leonard, and S. Teller. Fast iterative alignment of

pose graphs with poor initial estimates. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2006.
[23] P. Pinies and J. D. Tardós. Large scale SLAM building conditionally

independent local maps: Application to monocular vision. IEEE Trans-

actions on Robotics (T-RO), 24(5):1094–1106, 2008.
[24] T. Pock, M. Unger, D. Cremers, and H. Bischof. Fast and exact solution

of total variation models on the GPU. In Proceedings of the CVPR

Workshop on Visual Computer Vision on GPU’s, 2008.
[25] E. Rosten and T. Drummond. Fusing points and lines for high

performance tracking. In Proceedings of the International Conference

on Computer Vision (ICCV), 2005.
[26] D. Scaramuzza, F. Fraundorfer, M. Pollefeys, and R. Siegwart. Absolute

scale in structure from motion from a single vehicle mounted camera by
exploiting nonholonomic constraints. In Proceedings of the International
Conference on Computer Vision (ICCV), 2009.

[27] J. Solà, M. Devy, A. Monin, and T. Lemaire. Undelayed initialization
in bearing only SLAM. In Proceedings of the IEEE/RSJ Conference on

Intelligent Robots and Systems (IROS), 2005.
[28] H. Strasdat, J. M. M. Montiel, and A. J. Davison. Real-time monocular

SLAM: Why filter? In Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA), 2010.
[29] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle

adjustment — a modern synthesis. In Vision Algorithms: Theory and

Practice, volume 1883 of Lecture Notes in Computer Science, pages
298–372. Springer-Verlag, 2000.

