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NON-RIGID SFM
3D reconstruction of non-rigid objects from 2D tem-

poral tracks in a monocular image sequence.
So far most approaches are batch.
Our Goal: A sequential NRSfM method that is real-

time capable.

OUR CONTRIBUTION
A coarse to fine approach to efficiently estimate the

shape basis based on finite element modal anal-
ysis that allows to deal with dense shapes.

An online solution to NRSfM that estimates camera
pose and deformable shape on a per-frame basis.

OUR APPROACH
Stage 1: Computation of the shape basis using a 3D

shape at rest estimation. A coarse to fine modal
analysis for dense 3D shape estimation.

Stage 2: Online Expectation Maximization over a slid-
ing temporal window of frames to optimize non-
rigid shape and camera pose as the data arrives.

Suitable to code a wide variety of deformations:
from inextensible to highly extensible surfaces.

STAGE 1: COARSE TO FINE APPROACH TO MODAL SHAPE BASIS COMPUTATION

• Non-rigid mode shapes are ordered by frequency
spectrum: bending and stretching deformations.

• Bending is affordable even in dense shapes.
• Computing stretching modes may become pro-

hibitive (cost and memory) in dense shapes. We
propose to increase the density of some sparse
modes to a down-sampled shape basis.

STAGE 2: ONLINE SLIDING WINDOW EXPECTATION MAXIMIZATION

• Orthographic camera model:

wf =
[
uf1 vf1 . . . ufp vfp

]>
= GfSf+Tf+Nf

• Non-rigid 3D displacement per frame is mod-
eled by means of a probabilistic linear sub-
space with γf ∼ N (0; Ir) latent variables.

We propose an online EM-based to solve maximum likelihood as the data arrives. The distribution to be
estimated is wf ∼ N

(
Gf S̄ + Tf ;GfSS>G>f + σ2I

)
. In E-step:, we compute posterior distribution over latent

variables γŴ within a temporal sliding window ofW frames:

p
(
γŴ |wŴ ,ΘŴ

)
∼

f∏
i=f−W+1

N
(
βi
(
wi −GiS̄−Ti

)
; Ir − βiGiS

)
, βi = S>G>f

(
GfSS>G>f + σ2Ir

)−1

In M-step:, we optimize expected value of log-likelihood function w.r.t model parameters Θi. M-steps are nec-
essary to individually update each parameter. To update rotation matrices, we use a Riemannian manifold:

arg min
Θi

E

− f∑
i=f−W+1

log p (wi|Θi)

 = arg min
Gi,Ti,σ2

1

2σ2

f∑
i=f−W+1

E
[
‖wi−Gi

(
S̄ + Sγi

)
−Ti‖22

]
+pW log

(
2πσ2

)

CONCLUSIONS
Our coarse to fine approach to modal analysis al-

lows to extend our method to the case of dense
(per pixel) reconstructions.

A modal shape basis with Gaussian priors is suf-
ficient to model non-rigid shapes without addi-
tional temporal smoothness priors: no tuning reg-
ularization weights.

EXPERIMENTAL RESULTS

DENSE STRETCHING RIBBON SEQUENCE (q/p) = 78/2,273 points
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DENSE FLAG MOCAP SEQUENCE (q/p) = 594/9,622 points

Algorithm Sparse Flag 594 points Dense Flag 9,622 points

e3D(%) in / op (sec)‡ e3D(%) in / op (sec)‡

SBA† 7.10(38) 0.58/82.32 13.48(38) 25.67/895
BA-FEM† 3.72(10) 19.50/1.96 3.50(10) 300/75

3.49(40) 19.50/24.83 3.29(25) 300/186
EM-FEM 3.28(10) 19.50/1.53 3.41(10) 44.62/62

2.81(40) 19.50/2.28 3.08(25) 44.62/68

DENSE FACE REAL SEQUENCE (q/p) = 1,442/28,332 points

For all experiments (q/p) means number of points in sparse and dense mesh respectively.
†SBA [Paladini et al. ECCV’10], †BA-FEM [Agudo et al. CVPR’14].
‡in: initialization time (stage 1), op: online optimization time per frame (stage 2). Shape basis rank in brackets.
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