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Summary. Much recent research on structure and motion recovery has concentra-
ted on the case of reconstruction of unstructured environments from an uncalibra-
ted video sequence. Here we show the advantages that accrue to both the motion
determination and structure recovery if constraints are available on the motion
and environment. We consider the case of a camera with fixed internal parameters
undergoing planar motion in an indoor environment for which several dominant
directions occur. The novelty of this work is that it is shown that under these cons-
traints the problems of both motion determination and 3D structure recovery can
be reduced to a sequence of one parameter searches. This low dimensional search
enables efficient, robust and reliable algorithms to be engineered. The resulting al-
gorithms are demonstrated on images of very visually impoverished scenes, and the
results are compared to ground truth.

1 Introduction

This work is targetted on a very pragmatic method of acquiring architectural
geometry for indoor environments: a camera is mounted on a mobile vehicle
and moved around the interior space. The motion constraints explicit in this
acquisition are:

1. The motion is planar — the camera translates parallel to the ground plane
and rotates about the normal to the ground plane;
2. The camera internal calibration is fixed.

The requirements on the environment are that it is mainly built of planes and
lines oriented in three perpendicular directions, and that it provides sufficient
parallel features to determine these three principal directions from vanishing
points. These are typically valid for indoor environments where floors, walls,
ceilings etc are aligned in three principal directions, and it will not be a
problem that other objects — tables, chairs etc — are not.

The objective then is to achieve a texture mapped ‘polyhedral world’
reconstruction using only visual information from a set of images acquired in
this manner.

We demonstrate that judicious use of these constraints enable both motion
determination and subsequent structure recovery to be reduced to a sequence
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of one parameter searches. These searches in turn are formulated as cost func-
tion optimizations over one parameter, and this can be accomplished either
by standard numerical optimization schemes (e.g. Levenberg-Marquardt al-
gorithm [20]), or the search space can be explored in the RANSAC [13] style
by solving for the parameter from a minimal set (in this case a set of one).
Both methods are employed here.

Much previous work has investigated model acquisition under these cir-
cumstances — indeed an entire EC project (RESOLV) was carried out on
this theme, though using a laser range scanner as the principal acquisition
device. Planar motion for a limited number of views has been investigated
in an uncalibrated framework by Beardsley and Zisserman [3] (2 views), and
Armstrong et al. [1] and Faugeras et al. [10] (3 views). The novelty in the
work described here is the reduction to a one parameter search.

The paper is organized as follows: section 3 describes the motion deter-
mination. In the case of planar motion there are only three parameters that
must be determined for each frame: the (X,Y) position of the camera on the
ground plane and its orientation ¢ which specifies camera rotation about the
ground plane normal. Section 4 then describes the construction of a piecewise
planar model of the environment given the camera motion. In both motion
determination and reconstruction use is made of the scene vanishing points,
and their determination is described first in section 2.

The method is demonstrated on the image sequence shown in figure 1.
For this sequence the ground truth camera position and the location of scene
features are available. The ground truth values were computed using a pair
of theodolites, and are accurate to within 0.5 deg in orientation and 10 mm
in position. These images are a subset of the cpsunizar benchmark [6].

2 Vanishing point and orientation computation

The objective of this section is to determine the vanishing points v,, vy,
corresponding to the two principal scene horizontal directions, and thereby
determine the orientation ¢ of the camera. Due to the planar camera motion,
both the vanishing line for horizontal planes (parallel to the ground plane)
and the vanishing point for the vertical lines (perpendicular to the ground
plane) have image positions that are fixed (invariant) over all views.

Much previous work has also been devoted to automatic vanishing point
detection(e.g. [4,8,9,18,19,21-23,26]), and our main contribution is not in
this area. Also it has been demonstrated that cameras may be calibrated
automatically from imaged parallel lines in scenes such as these [5,7,17] and
that radial distortion may be determined from imaged scene lines [12].

Thus it will be assumed henceforth that the camera is calibrated and
radial distortion has been modelled, so that linear projection may be assumed.
It will also be assumed that both the vanishing line 1, of the ground plane, and
the vertical vanishing point, v, have been identified. Both of these entities
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(d)

Fig.1. The image sequence used for the experimental validation. Only images
1,3,6,7,9,11 of the 12 image sequence are shown. The camera undergoes planar
motion in an environment composed mainly of planes and lines aligned in 3 principal
orthogonal directions. In this case these directions are d, into the corridor, d,
vertical in the corridor, and dy is perpendicular to these.
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Fig. 2. (a) The vanishing points v, and v, are on the vanishing line for the ground
plane, L,. (b) Definition of the angles (1, 82 used in the RANSAC scoring for vanis-
hing point detection. 3 measures the deviation between the line segment’s direction
and that of the line between the segments mid-point and each vanishing point.



4 Montiel and Zisserman

can be identified trivially by pooling information from multiple views, since
they are fixed over the image sequence.

The novelty here is that the vanishing points corresponding to the two
scene principal horizontal directions are computed simultaneously, and this
computation amounts to a one parameter search on the camera orientation.
Suppose the vanishing points are v; and va (see Fig2 (a)). Two vanishing
points corresponding to orthogonal world directions are related as v wvy; = 0
[15], where w is the image of the absolute conic computed from the internal
calibration matrix as w = K~ TK™1.

These vanishing points both lie on 1,, and once the position of one is
known (e.g. v1) then the position of the other (v3) follows from viwvy = 0.
Thus the search for both vanishing points can be achieved by a one parameter
search for v; along l,,, and this determines the orientation of the camera with
respect to vi. The advantage of coupling the search for the two vanishing
points is that there is then twice as much image data available for the single
cost function.

The algorithm presented in the next section detects a pair of vanishing
points (v1,va) corresponding to orthogonal scene directions, but there re-
mains an ambiguity as to which one corresponds to v, ( or v,). This ambi-
guity in the recovered orientation is n7. It is resolved in this case because in
the acquisition the orientation is in the interval [—%, %] Allocating vy or vy
to the world direction d, gives the absolute orientation of the camera.

2.1 Vanishing point detection

Due to the coupling, the two vanishing points can be detected from image
straight line segments by a one parameter search, which is solved using RAN-
SAC as follows:

1. Pre-filter: Remove all scene vertical line segments (assumed as those
that intersect with v,).
2. RANSAC
Repeat:
e Randomly select a line segment 1.
e Intersect 1 with the vanishing line 1, to yield a hypothesis for the
vanishing point v; as vi =1 x 1,,. The other vanishing point is given
by ve = (wvy) X 1,
e Compute the support for this hypothesis using the remaining line
segments by measuring the angles (81, 32) with respect to each of
the vanishing points (vy,vs) (see Fig 2 (b)). A segment supports a
vanishing point pair if one of the angles is below a threshold (one
degree in our experiments). The support is equal to the segment’s
length.
3. Select the vanishing point pair with greatest support.
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The position of the vanishing point can then be improved by optimizing a
cost function based on geometric error. However, this makes little difference
in practice in this case.

Over the 12 images the error between the computed and ground truth
orientation has mean —0.02° and median 0.06°. The mean and median of the
absolute errors are 0.35° and 0.15° respectively.

3 Motion determination

The objective of this section is to compute the three parameters specifying
the position (X,Y) and orientation ¢ of the camera at each frame. Initially
the relative motion §x,dY,d¢ of the camera between views will be computed,
and this is specified as a translation at an angle o with magnitude s, followed
by a rotation by an angle 6. Thus §X = ssina, dY = scosa, d¢p = 6.

The computation is partitioned into three steps, each of which involves a
one parameter search:

1. Compute the orientation 6: this is achieved by a one parameter search
on vanishing points, as described in section 2. The computation uses all
straight line features in the scene (excluding vertical lines).

2. Compute the direction of translation a: this is achieved by a one
parameter search for the epipole which, under planar motion, lies on the
vanishing line 1,,. The computation uses all point features in the scene. It
is described in section 3.1 below.

3. Compute the translation magnitude s: this is achieved by a one
parameter search for the ground plane homography. The computation
directly uses intensity patches on the imaged ground plane. It is described
in section 3.2 below.

An example of stages in this computation is given in figure 3.

At the end of this computation the relative position of the camera bet-
ween all successive views has been determined. The absolute position is thus
determined, and any cumulative error can be reduced by a global non-linear
optimization over the three parameters specifying the camera for each frame.

3.1 Determining the translation direction

The epipolar geometry between two views determines the translation direc-
tion (via the epipoles) but not the magnitude. Computing the epipolar geo-
metry in general involves specifying seven parameters, however here by using
the known camera orientation and incorporating the ground plane motion
constraint, only one parameter need be specified.

The key is to use the orientation # to compute the infinite homography
H,, between views, and warp the second image under this map. The infinite
homography accounts for the effects of camera rotation, and after warping
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Fig. 3. Homography registration of two successive images. The images used are (c)
and (d) of figure 1 for which the motion between views includes both translation
and rotation. (a) the two images after registration using the infinite homography
determined from the computed orientation. Note that distant scene features, such
as the door frame are coincident, this is because they are effectively at infinity. This
coincidence is a sensitive measure of the accuracy of the computed orientation. Clo-
ser features are not coincident, but lines joining corresponding features intersect at
the epipole. (b) the two images after registration using the ground plane homo-
graphy determined from the computed motion. Note that features on the ground
plane are registered, such as the intersection of the partition wall with the floor,
but features off this plane are not. It is this registration that is used to determine
the homography.

the situation is equivalent to a pure translation. This has three advantages:
the epipole is fixed in both views (e = €'), so only one parameter (its po-
sition along l,) need be determined; image disparity between corresponding
points is reduced only to the disparity arising from the point depths (no rota-
tion effects); and finally, distortions in the grey level neighbourhood of point
features (arising from camera rotation) are removed, which is important in
assessing potential matches between interest points.

Given these simplifications the one parameter specifying the epipole can
now be determined using standard robust methods based on a RANSAC
search for corresponding interest point features, see [15,25,27]. After determi-
ning the epipole in this manner, an improved estimate of the two parameters
0 and « is computed by a standard non-linear optimization.

3.2 Determining the translation magnitude

The homography that relates the image of the ground plane in two views can
be written as [15]:

Hyy =K (Rzl - A,ﬁﬁ}) K1 (1)
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where:

e 1 is the unit normal to the ground plane (which is known from v.) and
fixed throughout the sequence.

e t is the unit translation direction vector, which is known from the epipole
computed in section 3.1.

o \f = i is the motion magnitude s scaled by the camera distance to the

floor, dy.

Since dy is fixed throughout the sequence (and its value only determines
a global scaling), the only unknown parameter in the expression (1) for the
ground plane homography is s, the translation magnitude. Thus the compu-
tation is reduced to a one parameter search. Such one parameter searches
have been used previously for determining camera pan in mosaicing applica-
tions [16], but previous searches for ground plane homographies have gene-
rally involved a three parameter search [24].

Implementation details. The parameter s is determined by minimizing the
Sum of Normalized Squared Differences (SNSD) between one image and the
next, after warping the second image by the sought ground plane homography.

Three aspects of the search are described: the regions of interest in the
images (ROIs) where the SNSD is computed, the SNSD robust computation,
and the search space.

ROI selection. Indoor scenes often have poor visual texture (e.g. shiny flo-
ors in an office). Ideally the ROIs should avoid such areas and only include
textured regions on the floor plane. To achieve this discrete features are used
as a texture detector [14] and ROI are only defined for 8 pixel region around
Harris points and Canny straight lines. ROIs closer than 100 pixels to the
vanishing line are discarded because they contribute little information on the
motion magnitude.

SNSD robust computation. To improve the robustness against outliers (pixels
that do not belong to the plane), instead of summing the Normalized Squared
Difference (NSD) for all the pixels in the ROI, the summation is only extended
over pixels with NSD lower than the median:

SNSD = » "NSD; Vj | NSD; < median (NSD;)
J

Search space. Ay is determined by optimizing the SNSD over a range of ¢
values. These values are chosen so as to produce evenly spaced shifts in the
image space (of 2 pixels), rather than evenly spaced translations in the scene.
Since motion in the image and the scene are projectively related, the values
are selected according to: Ay = m where Ay = y3 — y1 is the motion
in the image and y5 is a typical y coordinate in the second image.
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Fig. 4. Computed trajectories compared with the ground truth solution. Solid line,
ground truth; dash line computed by 3 parameters non linear optimization; dash-
dot line, computed by one parameter search. (a) the trajectories have the same
scale for both the x and y axes, together with a corridor map. (b) a magnification
of the computed trajectories.

3.3 Motion computation results

Figure 4 shows the results after the three steps of camera motion computa-
tion. The statistical characterization for the pairwise motion error are sum-
marized in the following table:

one parameter search | 3 parameters non linear
0 a |distance| @ «a distance

mean abs error 0.27° | 2.28° | 54 mm | 0.17° | 1.26° | 40 mm

median abs error | 0.26° | 1.24° | 33 mm | 0.09° | 0.52° | 18 mm

4 3D model reconstruction

The objective of this section is to compute a 3D box like reconstruction of
the scene, given the camera positions computed in the previous section. The
key idea is to use vanishing lines to reduce the search for scene planes to one
parameter. For example, suppose we are searching for the side wall. We know
the vanishing line of this plane in all images since we have already computed
v, and v,. In principle we could then compute the pre-image of this vanishing
line from two or more views — this would be a line on the plane at infinity
which determines the orientation (2 parameters) of all planes parallel to the
wall. It then only remains to determine the Y position of the wall plane (one
parameter). In practice it is more straightforward to use the vanishing lines to
determine a one parameter family of homographies induced by planes parallel
to the wall plane. This extends the one parameter search method of [2] for
scene planes to lines at infinity.
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In a similar manner to the one parameter search for the ground plane
homography, we can now determine the Y position of the plane by deter-
mining the parameter which maximizes the number of correspondences over
all views. That is, we define a single plane in the scene parametrized by
Y; the plane defines inter-image homographies between all successive views;
features are mapped between successive views by this one parameter set of
pairwise homographies, and matches sought; the parameter is determined by
optimizing over the aggregated number of matches.

In this manner the position of the walls and ceiling can be determined by
one parameter searches.

Implementation details. The homography between each view pair may
be written as: Hy; = K <R21 — ,utﬁT> K~ ! where:

e 11 is the plane unit normal. The direction of this vector is K1, where 1 is
the vanishing line of the plane. For example for the side walll = v, x v,.

e t is the translation between views, which is known from section 3.

e 4 is the distance of the plane from the current position of the camera
(Xi,Y;). For example for the side wall p = v — v;.

The cost function used in this case is the total number of lines matched
after homography warping of one image onto a successor. Lines are deemed
matched if: the contrast gradient of both lines have the same sign; and there
is an overlap greater than one third of their lengths.

4.1 Results

Figure 5 shows the total number of matches with respect to distance for the
ceiling and the partition wall on the right. It is evident that it peaks on a
single maximun. The accuracy of the reconstruction is extremely good. For
example for the ceiling, the ground truth and computed values of y are -0.55
and -0.56 respectively.

Figure 6 shows an image mosaic of the ground plane constructed using
the computed motion, and a texture mapped VRML model of the recons-
tructed planes. The mosaics for the planes were constructed automatically
by backprojecting from the images using the computed homographies. The
images are superimposed on the mosaic with a 50 pixel blend, and using the
closest image last.

5 Discussion and extensions

We have demonstrated that a box like model of a room/corridor can be built
on the fly by a series of simple one parameter searches for a camera undergoing
planar motion. The advantage of using uniparametric searches is that each
search can be made reliable and robust. It is also less expensive than searches
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Fig. 5. The total number of pairwise matched straight segments with respect to
the plane distance. (a) for the ceiling plane. (b) for the wall plane

Fig. 6. Upper: two general views of the 3D reconstruction. Lower: the mosaic for
the ground plane.
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over a greater number of parameters, for example the RANSAC stages only
require around 20 samples.

The results show the ability of the system to deal with elements that do
not conform to the box like model such as wires on the floor, the pillar on
the left wall and various people that appear in some of the images.

The method has been demonstrated for a sequence acquired by a camera
with fixed internal calibration mounted on a mobile vehicle. However, the
calibration does not have to be fixed (since the camera can be calibrated
from the vanishing points in each image) and a lower quality transport, such
as a trolley, could have been used (since all that is required is that the motion
is planar).

As future work this approach will be extended in three directions: first,
the motion computation will be improved by a global bundle adjustment to
remove cumulative motion drift error; second, the motion computation will
be extended to a complete closed sequence where the camera moves through
a network of corridors and returns to its starting point; third, the 3D model
construction will be extended to include perturbations from a box like room
in a similar manner to Facade [11] model building. The idea here is that once a
dominant plane has been computed for each (signed) direction, smaller planar
structures can be identified by examining the 3D features corresponding to
lesser peaks in the matching score function.
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