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Abstract

A method to determine both the correspondences and the structure from the camera
location is presented. Straight image segments are used as features. The location
uncertainty is coded using a probabilistic model. The finite length of the image
segments is considered, so a more restrictive equation (respect the usage of infinite
straight lines) is used, and hence the spurious rejection is improved. The probabilis-
tic modelling derives all the location uncertainty from image error and from camera
location error. Thus, the uncertainty is fixed from a physical basis, simplifying the
tuning for the matching thresholds. Furthermore, covariance matrices representing
the reconstruction location error are also computed. Experimental results with real
images for a trinocular system, and for a sequence of images are presented.

Key words: structure from camera location, straight segment, probabilistic
methods, trinocular stereo, robust feature matching.

1 Introduction

The determination of correspondent features along an image sequence, to-
gether with the computation of the underlying scene structure is a classical
problem in computer vision. This paper proposes a solution considering as in-
put the camera location known up to some uncertainty. The feature used is the
straight segment; i.e. this paper is devoted to solve the correspondences and
the structure from the camera location, using straight segments as features.
The two main contributions are the consideration of the finite length for the
segment, and the use of a probabilistic model for matching and fusion. High
rejection of spurious correspondences is achieved. Furthermore, an estimate
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of the structure error is reported in the form of a covariance matrix for each
reconstructed 3D segment. Experiments with a trinocular triplet and with a
15 images sequence are presented.

The proposal uses a predict-match-update loop which computes correspon-
dences and structure sequentially, so structure and correspondences are avail-
able after each image processing; the precision is improved as new images are
considered. The predict and update steps are computed by means of recur-
sive least-squares (a Kalman filter with constant state). The match step is
computed using the split-track data association for multiple target in clutter
[3]. The next image segments are matched with the computed structure from
previous images.

An image straight segment is defined by its infinite supporting line, location
along this supporting line, and length. The supporting line is detected reliably.
However, the length and the location along the supporting line are unreliable
because of extraction defects and occlusions. Our contribution is a pairing
constraint for straight segments that includes both supporting line pairing
(collinearity condition) and location along the supporting line (overlapping
condition). The overlapping is coded as the matching between the image seg-
ment midpoints. Midpoint matching is only approximate because they are
not invariant under perspective projection, and because extreme points are
detected unreliably. Because of that midpoint matching (overlapping) is con-
sidered with a lower weight than the collinearity. The proposed constraint
considers both collinearity and some degree of overlapping so the segment fi-
nite length are considered. In any case, the proposed representation follows a
general model for coding uncertain geometrical information, so the segments
can be treated like any other geometrical feature.

Points and straight segments are commonly used as features in geometri-
cal computer vision. Points impose more restrictive constraints than recti-
linear features in problems involving structure and motion [20,21], however
the matching for straight segments is easier because lines encodes informa-
tion of wider image areas in a single feature; on the other hand, in artificial
environments, straight image segments correspond with relevant 3D features
(doors, corners, industrial parts boundaries). Several methods are available
for straight segment detection, one hand methods that compute poligonal ap-
proximations to image contours, see [14] for a comparison, on the other hand
methods that determine segments directly from image gradient [4].

The prediction-match-update scheme has been proposed for straight segment
image matching [8]; the matching is computed for proximal images with un-
known motion. [7] uses image tracking for matching and then the 3D structure
segments are computed fusing the matched image segments, the camera lo-
cation is considered known. Jezouin and Ayache [9] consider the computed



structure from the previous images for matching with the next image. They
process image sequences considering points and lines separtely. This paper
presents a similar approach, but we use the straight segment as a unique fea-
ture composed of its midpoint and its supporting line. In [12], a structure from
camera location algorithm based on the same ideas is presented, however, the
pairing constraint presented in this paper has been modified to consider the
camera location independently. Experimental results have been extended to
include ground true solution for stereo reconstruction and the processing of a
sequence of images.

The use of probabilistic methods to recognize and fuse uncertain geometrical
information is a classical technique in multisensor fusion [2,17]. Probabilistic
methods profit from the well-established optimal estimation theory for fusion,
and from the tracking and data association theory for matching [3]. In [6],
Cox reviews data association algorithms to determine the correspondences in
feature-based computer vision.

One of the experiments with real imaginery is a trinocular stereo system based
on the proposed structure from camera location. Trinocular stereo systems
represent a trade off between low spurious rate and matching complexity.
Ayache proposed in [1] a trinocular stereo for straight segments based on
the epipolar constraint. Shen and Paillou [15] proposed a trinocular stereo
for straight segments using Hough transform. Our contribution to trinocular
stereo systems is the ability to tune all the thresholds as a function of physical
parameters such as camera position and orientation covariance, image error in
pixels, and false negative probability for the statistical tests; this is due to the
usage of probabilistic methods. Our system can be easily extended to consider
more images, as shown in the experimental results (Sec.6.2).

The proposed system only uses geometrical information from CCD cameras.
It can be easily extended to fuse information from other geometrical sen-
sors modeled with probabilistic methods, e.g. laser range finders. Additional
constraints such as parallelism, verticallity; or parametric information (color,
average gray level, ...) can be used to improve matching. The applications
cover robot navigation in indoor environments, dimensional control quality,
object recognition and urban scene reconstruction from aerial images.

Next, Section 2 is devoted to present the geometrical model; the representa-
tion of the geometrical entities used are also presented. Section 3 introduces
notation and presents the sequential processing for the images. Section 4 de-
fines the pairing constraint between and image segment and its corresponding
3D segment. Next, Section5 describes in detail the statistical tests used for
matching. Finally, Section 6 presents the experimental results and Section7
the conclusions. Detailed form for some complicated expressions are included
as appendixes at the end of the paper.



2 Modelling Geometric Information

A probabilistic model, named SPmodel [17], has been selected to represent
the uncertain geometrical information. It is a general model for multisensor
fusion whose main qualities are: homogeneous representation for every feature
irrespective of its number of d.o.f; and that the error is represented locally
around the feature location estimate. The error is not represented additively,
but as transformation composition. These qualities for multisensor fusion are
also recognized as important for computer vision in [13].

Additionally, we have added a modification in the original SPmodel, so can it
combine uncertain relations with deterministic relations. Sensorial information
is uncertain due to measurement errors, however, some relations are known
with probability 1, e.g. a projection ray is known to pass through the camera
optical center. Next the modified SPmodel is presented.

The SPmodel is a probabilistic model that associates a reference G to locate
each geometric element G. The reference location is given by the transforma-
tion ty ¢ relative to a world reference W. To represent this transformation,
a location vector Xwq, composed of three Cartesian coordinates and three
Roll-Pitch-Yaw angles is used:

Xwag = (xayazadjag? ¢)T

twe = Trans(z,y, 2) - Rot(z, ¢) - Rot(y, #) - Rot(z, ) (1)

The estimation of the location of an element is denoted by Xy, and the esti-
mation error is represented locally by a differential location vector dg relative
to the reference attached to the element. Thus, the true location of the element
is:

Xwae = Xwae @ dg

where @ represents the composition of location vectors (the inversion is rep-
resented with ©). Notice that the error is not added, but composed with the
location estimate. The differential location error dg is a dimension 6 normally
distributed random vector. Although ds has 6 components, the model forces
some components to zero in two cases:

symmetries .- Symmetries are the set of transformations that preserve the
element. The location vector xy o represents the same element location
irrespective of that dg component value. For example, consider the reference
S which locates a 3D segment (Fig. 1 (a)); rotations around the X direction



yield references that represent the same 3D segment. Theoretically those
components could take any value; however, a zero value is forced.

deterministic components .- There are components of Xy known with
probability 1. Among all the equivalent references for the element, one whose
deterministic component is null is selected; then, the corresponding compo-
nent is forced to be zero. For example (Fig. 1 (b)) the reference, R, associated
to a projection ray; R can be attached to the optical center, expressing its
location with respect to the optical center frame C, xcg (and hence dg)
always has its X, Y, and Z components null.

To mathematically represent which components are null, dg is expressed as:

d¢ = Bipc

where pg, the perturbation vector, is a vector containing only non-null com-
ponents of dg. Bg, the self-binding matriz, is a row selection matrix which
selects the non-null components of dg.

Based on these ideas, the information about the location of geometric element
G is represented by a quadruple, the element uncertain location:

LWG = [}A(WGa f)Ga CG? BG]

So, the random vector defining the element location is expressed as:
Xwa = Xwa @ Bipe (2)

Pe = E[pc|; Co = Cov(pe)

where pg is a normal random vector, whose mean is ps and whose covariance
matrix is Cg. When pg = 0 we say that the estimation is centered.

There are geometrical elements whose location is input data for the problem:
the camera, and the image segments. On the other hand, the 3D segment
location is output of the algorithm and is computed from the input data; the
3D segment is the geometrical element used to represent the scene structure.
Additionally, we define an intermediate geometrical element, the 2D segment,
to define the constraint which relates an image segment with a 3D segment.
The 2D segment comprises the projection ray for the image segment midpoint,
and the projection plane for the image segment supporting line. Next, the
model of these four elements is presented in detail.
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Fig. 1. (a) A 3D segment several equivalent associated references S. (b) A projecting
ray R, located with respect to the optical center C.

2.1 Camera Uncertain Location

We use letter C' to designate camera reference. We model the camera as a
normalized one. The associated reference origin is attached to the camera
optical center. The z axis is parallel to the optical axis, and pointing towards
the scene. The x axis pointing to the right. The y axis is defined to form a
direct reference (see Fig.1(b)). Camera location has neither any symmetry
nor any deterministic component in its differential location vector, so it has
no null components (its self-binding matrix is the identity):

Be=1

Camera location estimate Xy can be obtained from camera calibration or
from another sensorial information. Covariance matrix C¢ is input data for
the problem and should represent the camera location estimate uncertainty.

2.2 Image Segment Uncertain Location

We use letter P to designate references attached to image segments. The
associated reference (Fig.2) is attached to the image segment midpoint; its y
axis is normal to the supporting line and pointing to the “light” side of the
segment; so it codes the gray level gradient of the segment; z axis is parallel
to the camera z axis. The x axis is defined to form a direct reference.



Fig. 2. Image segment in the normalized camera. Letter “F” is used to determine
which image plane side we are referring to.

As an image segment belongs to the image plane, its z, 1, and # components
are deterministic. So, its self binding matrix is:

100000
Bp=1010000
000001

The image segment location centered estimate is defined, with respect to the
camera location, from the extreme points coordinates in the normalized image
as (see Fig.2):

~ T
Xcp = (xCPa?JCP, ]-7 0707 ¢CP) (3)
2 _ . S _ Zstxe. ~ _ ys+
¢CP = atan2 (ye — Ys; Te — Is) ) Tcop = 52 <, Ycp — ysze

The covariance assignment for image segment is one of the central points of
this work. The covariance in the ¢ and y components are taken from the in-
finite supporting line. The standard deviation for the z component is defined
as proportional to the segment length. According to the proportionallity con-
stant, the allowed deviations of the midpoint along the segment supporting
line can be fixed; the values are fixed to allow deviations up to 40%-80% the
segment length. This covariance assignment mimics the one proposed in [22],
however there it is used for 3D segments, while in this paper it is used for
image segments.

Figure 3 sketches a comparison between the 95% acceptance regions for the
origin of the reference that locates the image segment: considering it as an
infinite line, or considering it with the proposed model. Modelled as a line,
the region is unbounded along the line because every point can represent
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Fig. 3. 95% acceptance regions for the image segment reference origin. Left, when
modeled as infinite line; right, when modeled as proposed in this paper.

the line; however, in our model, an ellipse along the segment represents the
acceptance region.

It should be noticed how segment length is not considered as a geometrical
parameter, but it is used to define the element covariance. In fact, the seg-
ment is only located by its midpoint and its orientation. Intuitively, the image
segment has been modeled as “a point with orientation,” and its standard
deviation along the segment supporting line is set proportional to its length.

Next the quantitative expression for the covariance matrix is given:

Cp = NCLNT (4)

where C' is the covariance for the image segment in pixels; N is the Jacobian
matrix for the transformation which converts from image segment in pixels
to the image segment in the normalized camera. We have chosen that expres-
sion in order to deal with the pixel aspect ratio. Appendix B gives a detailed
expression for N as function of the image segment location estimate (3), and
the camera intrinsic parameters.

The form for C} is:
» = diag (03, oy, aé)
e 0, is set proportional to the image segment length, n (in pixels).
Op = KN (5)

The experimental values for £ have been tuned in [0.2,0.4].
° 05 and 035 are computed from the covariances of the image segment ex-

treme points. Due to systematic errors some correlation between the ex-
treme points location noise exists; the correlation effect is dealt splitting
the extreme points covariance in two terms: o2, completely correlated co-
variance ( 0 — 2px.), and o2, non-correlated covariance (0.25 — 0.5px.). In
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Fig. 4. The 2D segment (D) is an intermediate element used to relate the image
segment (P) with the 3D segment (S); it includes both the projection ray for the
midpoint and the projection plane for the supporting line. Letter “F” is used to
determine which image plane side we are referring to.

[10] is detailed this expression and the tuning

2.8 2D Segment

We use letter D to designate references attached to 2D segments. This geomet-
rical element is used as an intermediate element to define the relation between
an image segment and a 3D segment (Fig.4). A 2D segment is composed of
the projection elements of the corresponding image segment: the projection
ray for the image segment midpoint, and the projection plane for the infinite
supporting line. Its covariance is also directly derived from that of the image
segment.

The associated reference is attached to the camera optical center; the optical
center belongs to every projection element. Its —y axis points towards the
image segment midpoint. The z axis is normal to the supporting line projection
plane. The x axis form a direct reference. An additional remark: the z direction
is defined so that it also codes the image segment gray level gradient. As it is
attached to the optical center, its general location vector of a 2D segment is



(with respect to the camera frame):

~ ~ N T
Xcp = (0, 0,0,%¢ep, Ocp, ¢CD)

See AppendixC for 1cp,f0cp and dop expressions as function of image seg-
ment location (3).

As the translation components are deterministically null, the self-binding ma-
trix only selects 1, # and ¢ components:

000100
Bp=1000010
000001

The 2D segment covariance matrix is related with that of the image segment:

CD - KDPOPKSP

where C'p was presented in (4). A detailed expression for the Kpp matrix as
function of the image segment location vector is given in Appendix C.

2.4 3D Segment

The letter S is used to designate references associated to 3D segments. The
reference is attached (Fig.1 (a)) to a segment point, which approximately cor-
responds to the segment midpoint. The reference x axis is aligned with the
segment direction. In this work, the 3D segment location estimate is always
computed from the integration of several 2D segments (corresponding to dif-
ferent points of view). The integration also yields as result the 5 x 5 covariance
matrix Cl.

The only symmetry for this element is the rotation around its direction, so its
self-binding matrix is:

100000
010000
Bs=1001000
000010
000001
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3 Sequential Processing for the Images

This section is devoted to the predict-match-update loop used to process
the sequence. We consider the scene static, so the update step is a recur-
sive weighted least-squares estimation. It is equivalent to consider a Kalman
filter with constant state and without state noise. The matching step is based
on the Split-Track [3] filter for matching.

3.1 Notation

This section states the notation used to define the matches, focusing in the
indexes.

Cameras: {Ly¢,} k& =1...n. Defines the camera k location with respect
to the world frame, n stands for the total number of images.

3D Segments: {stgc} ¢ = 1...myg. Defines the location for segment
i after processing k images. The total number of kept 3D segments, my,
varies with k. my; increases when several matches are possible, decreases
when a pairing hypothesis marked as spurious.

Detected 2D Segments: {LClek} [ = 1...pg. Defines the location for
2D segment [, of image k with respect to the camera k. The total number
of image segments in image k is p,. This notation is intended to represent
the 2D segment detected, irrespective of the correspondences.

o p® 1=1...my, k=1...n Lo-
kg

cates the 2D segment in image k£ which corresponds to 3D segment Ly gx.
Notice the difference with respect to the previous notation.

Correspondent 2D segments: {L

3.2  Problem statement

Using the previous notation, the correspondence problem is stated as:

given: The 2D segments and the cameras location:

determine: The correspondences and the 3D segments location:

{LCkDEk)} k=1...n,i=1...my

{Lyo} k=1..ni=1._..m

11



BEGIN
{LWSil} = initial_guess_from first_image (LWCI, {LCID;})
FOR k£ =2 TO n DO; every 3D segment from k£ — 1 images
FOR ¢ =1 TO mj DO; with respect to all 2D segments image k

({stf} , {LCkDEk) }) =matches_i_segment wrp_k_image (LWSl(c—l ,Lwc,, {LCle;c })

END FOR
IF (k mod nypi ) == 0 THEN
({stg@} , {LCkng) }) = uniqueness_test ({stk} , {LCkDU“) })
END IF
END FOR
END

Fig. 5. Correspondences and reconstruction algorithm.

3.3  Correspondence Computing

A sequential processing is proposed; every image except the first one is processed
in the same way. Algorithm in Figure5 presents the overall framework. Ini-
tially, a scene structure is computed from the first image; this structure is used
only to compute the correspondences between the first and the second image;
the algorithm is detailed in Sec. 5.3. Afterwards, for each image the correspon-
dences between the 3D segments detected up to the previous iteration and the
current image 2D segments are computed. Formally expressed:

given: {stfq}, {LClek}, {Lwe, }
determine: {LCkD(k)}, {LWSf}

Figure 6 shows the processing performed for each 3D segment, Ly, ¢x-1, with

respect to every 2D segment {LClek} in the k£ image:

1.- One Step innovation test. The innovation is computed using equation
8 in Sec. 4, considering the 3D segment location as the estimation, and the
2D segment and the camera location as the measurements. Afterwards the
innovation test presented in Section 5.1 is applied. Three cases can happen:
a.- Only one 2D segment fulfills the test. The 2D segment is added
to the list of observations for the 3D segment.

b.- More than one 2D segment fulfill the test. A new 3D segment is
created for each additional pairing. The observation list up to £k — 1 ob-
servation is the same for all of them. For the k observation, each of the

12
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kimage
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3D segment
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match
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Fig. 6. Detailed algorithm for correspondences_i_segment respect k_image. i.e
Correspondence computing for each 3D segment whit respect to all the 2D segments
in image k.

accepted 2D segment is used.

c.- None of the 2D segments fulfills the test. Three cases are consid-
ered:

Spurious .- The 3D segment cannot be detected in the current image.
In the previous images it was detected only once or twice. It is removed
from {LWS[c .

Temporallyloccluded .- The 3D segment was matched in 2 or more
images previously, but not in the current one. It might be detected in
the forthcoming images.

Permanently occluded .- The 3D segment was detected in more than
3 images previously; it has not been detected in the last 3 images. It is
a reconstructed segment but it is not consider for matching any more.

2.- Fusion. All the 2D segments corresponding to a 3D segment, {LCkng) ,

13



are fused to determine the new location estimate for the 3D segment, Ly g.
It is computed using recursive weighted least-squares [3]; each observation
is weighted according the inverse of its covariance. All the computations are
equivalent to consider a Kalman filter whose state is constant and without
state noise, the state would be the 3D segment location which is constant.
As the estimated state is constant we cannot properly refer to it as a Kalman
filter. In order to deal with non-linearities, and to consider not initial infor-
mation about the 3D segment location, a extended and iterated information
filter formulation is considered.

Using recursive least-squares, the more images are considered the smaller
the fused segment covariance is; this indefinite covariance reduction is not
realistic. Dealing with long sequences is important to “forget” old observa-
tions. It can be done using a sliding window; i.e. fusing only the most recent
(6-10) images. We apply recursive fusion of the considered images because
reduces the complexity and the memory overhead with respect to the batch
fusion.

3.- Coherence after fusion test. The coherence after fusion among all the

correspondent observations {LCkng) }, and the new location estimate, Ly g,
is tested (see Sec.5.2).

As the previous processing is performed independently for each 3D segment,
the same image segment can be paired with more than one 3D the segment.
Several authors [1,6] state the ability of the uniqueness constraint to reduce the
spuriousness; because of that every Nuniq images a uniqueness test is applied.
Section 5.2 is devoted to present this test.

4 Measurement Equation

This section is devoted to formalize the pairing constraint between an image
segment (P) and a 3D segment (S5), see Figure4. The camera detects the
image segment (P); however, the proposed pairing constraint does not use
the image segment (P) but the 2D segment (D). As mentioned in Section 2.3,
the 2D segment uncertain location, Lo p, is derived directly from that of the
image segment, L¢op.

The SPmodel method to define pairing constraints is used. The pairing con-
straint is defined in terms of the location vector xpg of the 3D segment with

respect to the 2D segment. Let

T
xps = (Tps,Yps, Zps, Ys, Ops, dps)

The pairing constraint is an implicit equation that states which xpg compo-

14



nents should be zero; these null components are:

e 2ps. Otherwise, the 3D segment would not belong the projection plane.

e Opg, rotation around y axis. It should be zero, otherwise, the 3D segment
would not be in the projection plane.

e 1pg. Otherwise, the 3D segment midpoint would not belong to the image
segment midpoint projection ray. Theoretically, the segment midpoint is not
inwvariant under perspective projection; however we consider it as invariant
but this constraint, as shown later, is considered with a low weight.

To sum up, the nullity of zps and fps considers the collinearity in the image
between the image segment and the 3D segment. The nullity of zpg considers
the overlapping condition; due to the covariance assignment for image seg-
ment along the segment direction, the overlapping constraint has normally
lower weight than the collinearity ones. The low weight for this constraint
is justified by the unreliable segment extreme points extraction, and by the
approximate consideration that the midpoint is invariant under perspective
projection. Experimental results confirm the validity of this assignment.

The above ideas are formalized mathematically as follows:

f (xps) = Bpsxps =0 (7)
100000
Bps=1001000
000010

considering that xps = Sxcp © Xwe @ xws and (2), equation (7) can be
expressed as:

f (xps) =f(Pp,Pc,Ps) =
Bps (@BEPD © Xcp © BEpe © Xweo @ Xiys @ ngs) =0 (8)

So we have an implicit function which relates three perturbation vectors, pp,
Pc, and pg corresponding to the 2D segment, the camera, and the 3D segment
respectively, i.e. the normal random vectors involved in the problem. The
camera and 2D the segment perturbation vectors act as measurement error,
while the 3D segment perturbation is the vector whose estimation is improved.

Fusion and matching is based on a linear measurement equation. Thus, it
is necessary to have a linearization for equation (7). Besides, we are using
the equation to compute the correspondences and the structure as stated in
Section 3. Let us consider the equation which relates the location estimate for

15



L, ¢-1 with a 2D segment detected in image £, LCkD(k), and the camera k

loca’gion, Ly, . The linearized equation using the subindex notation presented
in Section 3.1 is:

Ppyw
f <pD.(k)’ Pc,, pS'-(kl)> ~ fz(k) + Hi(k)ps_(kfl) + ng) D; =0
k3 k3 1 ka

expressed as the explicit linear measurement equation normally used in opti-
mal estimation:

Zl(k) = Hi(k)ps_(k—l) + ng)v, Py ~ N (0, CS_(k—l)> , v~ N (0, Rz(k))(g)

where:
(k) _ _plk) _ o
z;, = _fi = —BDSXDEk)Si(k—l)
H(k)_ of
© = ops
<pDEk)0,Pok0,pSi(k1)0>
of of
k ot ot
GE ) = opPp -0 -0 -0 dac -0 -0 -0
PDEk)f PO = apsi(k-—l)* PDlgk)f PO = ,Psi(k—l)*
P,®
VvV = D;
Pc;
C.w 0
(k) _ D,
RM =
0 Cg,

C ) is computed as shown in Sec.2.3, C¢, computed from calibration, and
CS;k—l) comes from the previous iteration. Detailed expressions for the previous
equations, as function of the location estimates for the camera, 2D segment,

and 3D segment are available in Appendix D.

5 Matching

This section is devoted to present the detailed algorithms used for prediction,
coherence after fusion, and uniqueness tests. The initial structure guess for
the first image is also explained.

16



5.1 Prediction Test

This test verifies the compatibility between a 3D segment, L u-1) location

estimate with &£ — 1 images, and a 2D segment detected in image k, LCle(k).

It is the classical [3] x? test applied to equation (9).

Vglgk)slgcfl Cilvglmsffl <X (10)
V) gh—1 = ZZ(-k) — HZ-(k)pS(k) — Gl(-k)v (11)
T T
C,=H"Cy B + GV RPGY (12)
where v k) g1 18 the innovation when considering the 2D segment LCkD(k) as

an observation of the 3D segment L u-1). Xg,a is the percentile 1 — « for a
x* distribution with 3 d.o.f (3 is the vector v, g1 dimension) and « is the
false negative probability. L

At this stage the gray level compatibility among all the correspondent image
segments is also verified.

5.2 Coherence After Fusion and Uniqueness Test

This test is used to verify the coherence among all the observations, {L ¢ p® },

k =1...n; corresponding to a 3D segment L, ¢»v; the 3D segment location
has been fused from the n; 2D segments. We use the batch test proposed by
Tardés in [16], also proposed in [3]:

ny —1
#(k) (k) ~x(k)T

§ :ngs_nk (Gi( )Rz( )Gi( ) ) V) gne < X%nkf'&,a (13)

k=1 ~*“ ¢ v

The d.o.f for x? are 3n, — 5: the measurement equation dimension is 3, ny
measurements are considered, and 5 because the dimension for the estimated
value (the 3D segment) is 5. The matrix G;‘(k) is a linearization matrix as ng);
however, the linearization is done using the location estimate after fusing all
ny images. ng) is linearized using the location estimate with £ — 1 images.
Notice also that v,,u)¢n, is the residual considering 3D segment after fusing
ny images with resplectlto each of the 2D segments used to fuse it; because of
that, the nj superindex is used.

Unlike the usual recursive test [3], we use the previous batch test. Theoretically
both test are equivalent for a linear system; however our problem is non-linear.
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Fig. 7. Working space sketch. Dgl) represents the 2D segment detected by the first

camera, Slm represents the initial guess for the corresponding 3D segment.

The batch test overperforms because all the linearizations are made around
the last estimate.

Finally, the score of test (13) is used for testing uniqueness. When more than
one 3D segment is in correspondence with the same 2D segment, then only
the 3D whose score is the lowest is kept, the rest are considered as spurious.
This test is applied after processing several images.

5.3  Initial Guess from First Image

The correspondences computing for the second image needs an initial guess
for the scene structure; this guess is computed from the first image. Some
assumptions are made about the working space where the 3D segments can be
located. This region, defined by ymin and ymay, is depicted in figure 7; e.g. in the
experimental results, ¥y, = 500mm. and y.,;, = 8000mm.. The assumptions
for the initial location are: its reference is parallel to the 2D segment in image
1, the 3D segment belongs to the projection plane, the 3D segment midpoint
belongs to the image segment midpoint projection ray, and it is located in the
middle of the working space. Mathematically expressed:

X st =Xy, pon X pog
T
~ o o Ymin + Ymax
XDEI)Sil = (0, Yps, 0, 0, 0, 0,> y Ybps = 5

The covariance for the initial guess is defined as:
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T
Co=H" G

o, = |ymin - ymax| P |7T|
y 2x1.96 = ? 2x1.96

T
M) pM MW" ) + diag (O, Uz, 0,0, 035)

7 13 13 13

where HZ-(I) and GZ(-I) come from the linearized measurement equation, consid-
ering that the 3D segment is in the proposed initial location. The covariances
in y and ¢ components have been defined in such a way that the acceptance
region for a 95% x? test are [Ymin, Ymax] and [—%, %] respectively. The first
matricial addend represents the covariance due to the observation with the
camera. The second addend represents the covariance for depth and for orien-
tation inside the projection plane, so that the acceptance region for a x? test

is contained in the working space depicted if Fig. 7.

6 Experimental Results

This section presents two experiments with real indoor images. The first ex-
periment is a trinocular stereo reconstruction based on the proposed ideas; we
focus on two aspects: the matches, and the reconstruction quality compared
with a ground true solution. The second experiment is the sequential process-
ing of 15 images (5 trinocular images) of a robot moving along a corridor, to
show the covariance evolution as the image sequence is processed.

6.1 Trinocular Reconstruction

The three images were taken with a trinocular rig, and were processed sequen-
tially as proposed. The experiment considered as input the camera calibration
parameters (Tsai camera model [19]). The sizes of the triangle formed by the
optical centers were 400mm., 375mm., and 700mm. The gray level images were
512 x 500 x 8, focal length was 6mm; the radial distortion was 0.003mm.™>
(maximal distortion ~ 5Px.). Segments were extracted using Burns method
[4], segments shorter than 15 Px. or with gray level gradient smaller than 20
gray levels per Px. were removed. The number of segments for the 1st, 2nd
and 3rd images were 188, 172, and 182 respectively. Figure8 (a), (b) and (c)
shows the extracted segments in each image. Labels identify the segments in
each image, so no relation exists among segments with the same label in dif-
ferent images. We will refer a segment in an figure, for example segment 13 in
figure 8(a), as 13(8a); i.e., the 13th segment in figure 8a.

The ground true location for some 3D segments was computed using two
theodolites. Figure8 (d) shows the ground segments backprojected in camera
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(c) (d)

Fig. 8. Trinocular reconstruction input image segments for cameras 1 (a), 2 (b), and
3 (c). (d) shows the ground true solution projected on camera 1.

1. The reconstruction is compared with the ground true computing the Maha-
lanobis distance (using the observed segment covariance matrix) between the
computed 3D location and the ground true solution.

The image segments in figures 8(a),8(b) and 8(c) were used to compute 3
reconstructions. Each of them with a different value for k (see eq. (5)): 0.0002,
0.2 and 10. The 0.0002 value encoded the perfect correspondence between
image segment midpoints, the 0.2 value represented a matching constraint that
allowed deviations of the midpoint along the segment direction up to the image
segment length; the 10 value encoded a situation which only considered the
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image 2 image 3 total CPU
K a | pred. | aft. fusion | pred. | aft. fusion | match | spurious | sec.
0.2 0.75 | 470 215 491 159 114 1 2.2
0.0002 || 0.90 | 3057 253 108 100 90 3 4.2
10 0.5 | 978 810 13444 1436 76 > 10 21.5
Table 1
Summary for each reconstruction complexity.
ground true segment label
K 1 2 3 | 4 5 | 6|7 8|9 10|11 |12 | 13
0.2 |[1224.2 | 22.4 [188 [14.9 | 134 |45 [1.1 |46 [3.2 [92 | 7.1 | 6.8 | 7.9
0.0002 ||9158.2 |197.4 |32.9 |337.7|1916.5 5.1 |2.6 |8.1 [430.3|158.1|177.0
percentiles for x? with 5 d.o.f.
o |10.99 0.95]0.90|0.75 | 0.50 | 0.25
x2 || 15.1 | 11.1 | 9.24 | 6.63 | 4.35 | 2.67
Table 2

Mahalanobis distance between the ground true and the reconstructed segment. La-
bels identifying segments correspond with those in Fig.8(d). Percentiles for x? with
5 d.o.f. are also shown

collinearity for matching. Camera covariance values (tuned experimentally)
were:

_q; 2 2 2 2 2 2
CC’k — dlag (UPa p;0p,00,00; UO)
Upzl.()mm. 00 =0.1°

The assignment for the image segment covariances (see eq.6) were:

0ee=2.0Px. o0,.=1.0Px.
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Fig. 9. (a), (c) and (e) camera 1 backprojection for reconstructions with & = 0.2,
kE = 0.0002, and k = 10 respectively. (b), (d) and (f) corresponding top views.
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The reconstruction top view and its backprojection on camera 1 are shown,
for each k value, in Fig. 9. Table 1 columns summarize the tuning parameters
and the number of hypotheses evolution along the sequential processing; there
is one row per each k value. o column shows the significance level for both
the prediction (see Sec. 5.1) and after fusion (see Sec. 5.2) tests. Columns
“pred.” and “aft. fusion” shows hypotheses number after the corresponding
tests. Column “total match” shows number of reconstructed segments, after
the unigness test. “Spurious” shows the spurious matches, checked by hand.
CPU column shows the execution time on a Sparc 20 workstation (segment
extraction not included).

Table 2 shows the Mahalanobis distance between reconstructed and ground
true segments. There is one column per each ground true segment; labels
correspond with labels in Figure 8(d). There is a row for the experiment with
k = 0.2 and another for the experiment with x = 0.0002; the experiment
with x = 10 was not considered. Theoretically this distance should follow a
x? distribution with 5 d.o.f; a table for this distributions is included in 2. So,
the magnitude of the error can be evaluated considering the corresponding
percentile.

First we will focus on the x = 0.2 value. It was a trade-off solution between
problem complexity, number of spurious and solution accuracy. The matching
is satisfactory. Segments that were collinear but did not overlap were not
matched as unique segment, for example: segments in the set of pigeon holes:
58(9a), 59(9a), 62(9a) and 64(9a). Image segments that overlapped but with
different length were also matched. e.g. the segment 2(9a) in the bookcase
corresponded to image segments 21(8a), 38(8b), and 82(8¢c). Also 67(9a), in
the set of pigeon holes, corresponded to image segments 118(8a), 106(8b), and
119(8c). The spurious was the reconstructed 1(9a) which corresponded with:
19(8a) in the right stair wall, 20(8b) in the pattern on the stairs, and 1(8c)
in the left stair wall. The estimated reconstruction quality can be appreciated
qualitatively in top view 9 (b). The set of pigeon holes, the staircase, and the
bookcase can be easily identified. The reconstructed 27(9b) is seen in top view
as too long, because the matched segments 62(8a), 31(8b) and 40(8c) had
their extreme points poorly extracted because several near image segments
were extracted as only one. The estimated reconstruction was coherent with
the computed covariance because the corresponding residuals in table 2 were
compatible with those of the y? with 5 d.o.f. The biggest residuals appeared
in ground true segments 1(8d), 2(8d), and 3(8d) which corresponded with
13(9a), 103(9a) and 108(9a) respectively. All of them were 3D segments far
away from where the pattern for camera calibration were fixed; the pattern
were stationed more or less where the set of pigeon holes appears in Fig. 9 (a).

Reconstruction with x = 0.0002 detected fewer segments than with x = 0.2,
despite greater «, 0.9 instead of 0.75 (see table 1). For example, 71(9a), 73(9a),
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67(9a) and 56(9a), in the set of pigeon holes, were not detected in 9 (c); the
same for 2(9a) in the bookcase, and 63(9a), 68(9a) in the stairs. These matches
were not detected because the midpoint pairing were not fulfilled. This showed
that midpoint match was a too much strict condition. The quality of the
reconstructed segments was worse, because the pairing between the midpoints
was considered exact while it is only approximated. It can be seen in the top
view reconstruction how segments 41(9d) and 43(9d) were located at the start
of the stairs (near the bookcase), despite their location is in the middle of
the stairs block (see Fig.9 (c)). Residuals in table2 were too much big to be
compatible, so the computed covariance was not able to represent the location
error.

Reconstruction with x = 10 produced a lot of spurious matches; e.g.: segment
35(9e) matches 97(8a), 80(8b) and 96(8c¢). It were not able to match separately
segments that were collinear but did not overlap: 41(9e), 54(9¢) and 52(9e)
included several collinear but not overlapping segments. Reconstruction in top
view (Fig.9 (f)) was very poor. It can be also seen in table 1 that a lot of
hypotheses were dealt. It was because the matching constraint considering
image segments with nearly infinite length were not very restrictive. This
implied not only CPU overhead, but also memory overhead.

6.2 Sequence Processing

To show the reconstruction covariance evolution along a sequence of images,
a second experiment was performed. A mobile robot moved along a corridor
taking 5 trinocular frames, i.e. 15 images. Figure 10 shows images 3,7 and
15; figure 11 shows a corridor plane and the robot locations. These 15 images
were processed sequentially as proposed in Section 3; the unigness test was
applied after processing images 3,7,11 and 15. In order consider only the recent
observations for the 3D segment location, a 8 images sliding window is applied;
i.e for the reconstruction and after fusion tests, only the 8 most recent images
were utilized.

The camera location with respect to the robot was available from camera cal-
ibration. A precise robot location computed using 2 theodolites was available.
The trinocular rig used to take the images was the same as the experiment in
Section 6.1. Covariance values for image segments and camera locations were
op = 3.0mm., oo = 0.2°. All this information were taken from the “Cpsunizar
Experiment” [5].

In Figure 10 the images 3rd, 7th and 15th are shown with the reconstructed

scene backprojected; a view of the reconstructed scene is also shown. It can
be noticed the quality of the reconstruction. Only segments 4,6 and 7 were
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Fig. 10. The reconstructed 3D segments after processing 15 images(a). Gray level
images 3(b),7(c) and 15(d); the reconstructed 3D scene from 15 images has been
backprojected. Correspondent segments have the same label. Note that in figures
(b),(c) and (d) all reconstructed segments are backprojected, so as the robot ap-
proched to the door only a part of reconstructed scene was sensed by the camera.

detected in the corridor right side. It was because in that area there were re-
flections and most of the other vertical segments were broken at the extraction
stage. Figure 11 shows the evolution of the reconstructed segments covariance.
In order to simplify the figure, only the covariance for the midpoint of the ver-
tical segments is plotted after processing images 3,7 and 15. It is also shown
the the corridor plane i.e the ground true solution.
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Fig. 11. Top view of the vertical reconstructed segments; ground true solution (dot
lines) is also represented. The robot locations are shown as triangles. The covariance
for the midpoint point of the vertical reconstructed segments is shown (solid lines).
After processing 3 images (a), 7 images (b) and 15 images (c). Note that some
ellipses has been cut in the right hand side of the figure, in such ellipses the center
is marked with an “x”

From Figure 11 it can be seen how as the number of processed images was in-
creased, the uncertainty in the fused features is reduced. Another effect is that
the nearer a segment is to the camera the more precise is the corresponding
observation and hence more precise is the computed reconstruction. So, as the
robot advanced along the corridor, the farther segments were observed more
precisely because two reasons: one because more observations were considered,
and second because the new observations covariance were smaller. Due to the
weighted least mean squares algorithm, lower covariance observations weight
more in the final solution. The covariance for the farther segments 10(10a),
11(10a) 8(10a) is so big in depth because of the linearization. Actually, the
area of possible locations for a segment far from the camera is asymetric: it
is smaller between the segment and the camera than between the segment
and infinity. However, the model proposed assigns a eliptical region symetric
around the detected segment.

The robustness of the matching increases as more images are processed. It
can be seen how the spurious match detected after processing 3 images was
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removed when more images were considered; after processing 7 and 15 images,
none a match was spurious.

7 Conclusions

A method to compute the correspondences and the structure for an image
sequence from the camera location has been presented. The features used in
the image are the straight segments. The location uncertainty is represented
with a probabilistic model. The constraint for matching and fusion considers
the collinearity between the segments supporting line and the overlapping
of the segments. The overlapping is modeled considering the image segment
midpoints as correspondent, but this correspondence has a lower weight than
collinearity.

The use of a probabilistic model for the image segment produces matches with
a low spurious rate, and sequentially increasing precision reconstruction. The
fusion weights more the more precise observations. The parameter tuning, i.e
covariance tuning, can be done from a physical basis such as camera calibration
error and image error in the extracted features. The standard deviation along
the image segment direction is assigned heuristically as proportional (x is the
proportionally constant) to the image segment length, in order to consider
the segment finite length. Experiments showed how a too much small value
for £ (0.0002) or a too much big value (10.0) yielded poor results, however
an intermediate value as k = 0.2 produce quality in the reconstruction and
matches while keeps the complexity low. The input covariance are propagated
and all the acceptance tests are computed as x? tests, so the acceptance regions
are defined as function of «, the false negative risk for the test. In our opinion,
the good performance is because probabilistic models profit from the well
established theories of optimal fusion and data association.

The proposed method has good performance with short and long sequences.
The use of a probabilistic sequential processing, allows to combine the vision
with another sensors. The presented trinocular system has a performance,
both time and spurious rate, comparable with that of a classical trinocular
systems as [1]. Besides, it can be easily extended to consider more images; the
threshold tuning can be done on physical basis .

The 3D segment location from 2 images is an overconstrained problem if the
finite segment length is considered. If the segment is considered as the cor-
responding supporting line, at least 3 images are necessary for the problem
to be overconstrained. Some works consider that the finite length consider-
ation is also important for the structure and motion problem [21,18] using
straight segments. All this goes to show that it is important to consider the
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segment length when dealing with segments. The straight segment represen-
tation proposed in this paper has been successfully used to compute structure
and motion from image correspondences [11].

Implementation

The implementation of the stereo trinocular algorithm and the data used in
the experiments is available for noncommercial use. The can be accessed at
http://www.cps.unizar.es/~josemari/StereoDemo.html
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Appendixes

A Transformations

The locations for the references are expressed as transformations. There are
two mathematical representations for the transformation ¢ty g: a 6 component
location vector Xy ¢, and an homogeneous matrix Hyyg:

T
Xwa = (CUWG, ywas 2was Ywa, Owa, ¢WG)

n"wa, OWG, AWG, PWG,

nwa, owag, Owa, PwaG,
Hyq=

nwa, owa, Owa, Pwa.

0 0 0 1

Location vector form is well suited for theoretical discussion and for covari-
ance assignment; however, the mathematical operations such as composition,
inversion or derivation is better expressed using the homogeneous matrix.
Conversion between them:

CowaSOwaStwa— CowaSOwaCihowa+

CowaChwa Twa
SowaCwa SowaSYwa
S SOw S + S SOy-C —
Hye = | SowaCoie dwaStwaSvwa dwaStwaCvwa e
CowaCwe CoweSvwa
—SOwa COweaSYwe COwaCihwe 2wa
0 0 0 1
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where C and S stands for cos and sin respectively.

Twa Pwa,
Ywa Pwa,
Xwa R e (A.2)
Ywa atan2 (owa., awa. )
Ow e atan2 (—nWGZ, +/"va, + ”%VG,,)
owa atan2 (nwgy, nWGE)

B Image Normalization Jacobian

C¢0PC¢MP 4 S¢0PS¢MP —C¢0PS¢MP + S¢0PC¢MP 0
N = —S¢0PC¢MP + C¢CPS¢MP S¢0PS¢MP + C¢0PC¢MP 0
0 0 o

(82) reost o (1-(22)7)

where ¢cp were defined in (3). ai and — are the pixel sizes in the x and y

directions, expressed in mm. S and C stands for the sin() and cos() functions.
qSMp is defined as:

QZ;MP = atan2 (av sin dA)Cp, Qt, COS dA)CP)

C 2D Segment Definition

The 2D segment location with respect to the camera frame is expressed as:

~ ~ N T
Xcp = (0, 0,0,%¢ep, 0cp, ¢CD)

where:

bop = atan2 (0,,a,), Ocp = atan2 (n',, /2 +n'2), dep = atan2 (n'y, n',
x Yy Yy

where:
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n'y=cos gcp + Jop €08 dep — Eopfop Sin pop (C.1)
n'y=sin gop + Lpp sin dop — Ecpliop €os pop

/ ~ 7 ~ N
n',=YcpSin cp + Tcop oS pop
—1

\/1+§:2C’P+Q%’P

Topsingcp — Yop COS Pcp

0]

a, = (C.2)
A . - A - 2
\/1 + (CUCP sin ¢cp — Yop COS ¢CP)
and the corresponding covariance is defined as function of Kpp:
0 _singpp 0
Ipp
Kpp = 0 _singppsingpp sindpp (03)
R @QP cos ¢QP cos¢pp
cos¢pp _ singppcosypp 0
Ipp Ipp

where:

Upp = —\/f%P +2p+1, thpp =atan2(1,d.), épp = atan2 (o,,n,)
and where:

i ~ < ~
a, = (x cpSin ¢cp — Yop COS ¢CP)

1 . Lo R N 2
Ng =1 (1 + (xcp sin ¢cp — Yop €OS ¢>CP) )
[l
_]_ . . N . N
Oy = (P (ycp sin ¢cp + Top cOS </JCP)

lop | = /1 + &2p + 2p
||nID|| = \/1 + j20P + ?J%P + i"?}P?)(ZJP + (?Jép + Q%‘P) cos? (ZJCP‘F

+ (@6p + 2%p) sin® pop — (8 pgor + §Epicr + opfer) 28in pop cos pop

The values of Z¢p, yop, and QASCP are taken form the image segment location
with respect to the camera frame (3).

D Measurement equation

The detailed expression for the matrices and vectors used in the linearizations
are:
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IDs

f= Zps (D.1)
atan2 (—n n%e +n2
DSz DSz DSy
0 —Zps  Yps Mpsz ODSg Apsy 0 0
G=| —ips  Zps 0 nps, ops, aps, 0 0
sin ppg —cospps 0 0 0 0 costYps —sinypg
nep,Zes— —nep, Zos+ nep, Yos—
—ncep, —Nep, —Ncebp,
+nep,Ycs +nep,Tos +ncp,Zcs
acp,Zcs— —acp, 2cs+ acp,Ycs—
H=|-acp, —acp, —acp.
+acp.Ycs +acp,Zcs +acp,Tcs
0 0 —0c¢s, €08 Yps+ —ocs, COSYps+ —ocs, COSYps+

+acs, sSinYps  +acs, sinps  +acs, SinPpg
(D.2)

Previous expressions are given as functions of the homogeneous matrices Hep,

Hps and Heg. These matrices can be computed directly from the location

estimated for the 2D segment, Hep, the camera Hy ¢, and the 3D segment
location Hyyg.
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