Structure and Motion from Straight Line
Segments

Abstract

A method to determine both the camera location and scene structure from im-
age straight segment correspondences is presented. The proposed method considers
the finite segment length in order to use stronger constraints than do those that
use the infinite line that supports the image segment. The constraints between
image segments involve a weak pairing between image segment midpoints. This al-
lows deviations of the midpoint only in the segment direction. Experimental results
are presented of structure and motion computations from the image straight line
segment-matching using two real images.
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1 Introduction

Structure and motion computing from correspondent straight features is a
classical problem in computer vision. Usually, the straight image segments are
modelled as their underlying infinite supporting line. This model can be easily
represented with the available mathematical representations for lines. Its main
pitfall, compared with the use of points, is that the constraints for lines are less
restrictive. A review of structure and motion problems using points and lines
is presented by [1]. In this, the usage of points is shown to be more restrictive,
always.

Most man-made environments can be represented with line segments. This
makes it possible to enforce the previous knowledge of the straightness of
the contours. Normally, relevant image segments correspond to relevant 3D
scene features. It should be noted that the semantically relevant feature is
not the infinite supporting line of the segment but the finite length segment.
Despite this, only a few works ([2,3]) have proposed models that include the
finite length of the line segments in structure and motion computing. The
consideration of the segment finite length has renewed interest in the usage of
straight features in structure and motion problems.

Preprint submitted to Elsevier Preprint 10 April 1999



Taylor and Kriegman [3] proposed an optimization procedure for image seg-
ments. The goal function is the image residue between the image infinite sup-
porting line and the reconstructed 3D segment supporting line. The segment
finite length is considered because the residue between the supporting lines is
only computed in the region of the supporting line where the image segment
is detected. They propose an algorithm to compute the structure and motion
from straight segment correspondences in a sequence with no previous knowl-
edge of camera location. The evaluation of the residues only in the detected
image segments improves the solution but does not constrain the motion along
the infinite supporting line. Consequently, at least three images are needed to
compute the solution.

Zhang [2] proposed, for the first time, an algorithm to compute structure
and motion from two images using only straight segment matching as the
input. He proposed to maximize the overlap in the image between the image
segments and the corresponding reconstruction by using epipolar geometry,
and as a result, reconstruction computation was not required. Mathematically,
the problem was reduced to a non-linear optimization problem. To compute
the initial guess for non-linear optimization, he proposed to sample the solution
space and use a few high overlapping solutions as starting points for further
optimization.

The work presented in this paper is closely related to that of Zhang. Ex-
perimental results are presented of structure and motion computation using
straight segment correspondences and two images. The solution is also pre-
sented as an optimization problem and the initial guess is also computed by
sampling the parameter space. This paper differs in the image optimization
by considering the image segment midpoints as correspondent. However, this
constraint is considered only weakly and deviations are allowed for along the
image segment direction. It is well known that image segment midpoints are
not correspondent due to the unreliable extraction of the segment extreme
points, as well as, the segment midpoint not being invariant under perspective
projection. However, the detected direction for the image segment is reliable.
The proposed weak pairing between image segment midpoints uniquely com-
bines the line and point properties of the image segments. A reconstruction
and reprojection scheme is proposed, which considers any number of images
greater than or equal to two.

Section 2 presents the probabilistic model used to represent the imprecise lo-
cation of the geometrical entities. Section 3 presents the equation that relates
the image segment location, the camera location and the 3D segment location.
In section 4 the solution of the structure and motion problem from straight
correspondences is posed as a non-linear optimization. Section 5 presents the
method in which initial guesses for the non-linear optimization with two im-
ages are computed. Experimental results with a pair of real images are pre-



sented in section 6. Finally section 7 is devoted to conclusions.

2 Modelling Geometric Information

A probabilistic model, named SPmodel [4], has been selected to represent the
imprecise geometrical information. This is a general model for multi-sensor
fusion mainly with the following qualities: homogeneous representation for
every feature irrespective of the number of degrees of fredom (d.o.f for short
in the rest of the paper), and a local representation for the error around the
feature location estimate. The error is not represented additively, but as a
transformation composition. These qualities for multi-sensor fusion are also
recognized as important for computer vision in [5].

Moreover, a modification has been introduced in the original SPmodel that
combines umprecise relations with deterministic relations. Sensorial informa-
tion is imprecise due to measurement errors. However, some relations are
known with a probability of one, e.g. a projection ray is known to pass through
the optical centre of the camera.

The SPmodel is a probabilistic model that associates a reference G' to locate
each geometric element G. The reference location is given by the transforma-
tion ty ¢ relative to a world reference W. To represent this transformation,
a location vector Xw¢q, composed of three Cartesian coordinates and three
Roll-Pitch-Yaw angles, is used:

Xwa = (ZC, Y, z, 1/)7 07 ¢)T

twa = Trans(z,y, z) - Rot(z, ¢) - Rot(y, #) - Rot(x, ) (1)

The estimation of the location of an element is denoted by Xy, and the esti-
mation error is represented locally by a differential location vector dg relative
to the reference attached to the element. Thus, the true location of the element
is:

Xwa = Xwae @ dg

where @ represents the composition of location vectors (the inversion is rep-
resented by ©). Note that the error is composed with the location estimate,
instead of being added. The differential location error d¢g is a normally dis-
tributed random vector with a dimension of six. Some components of dg are
set to zero in the following two cases:

symmetries .- Symmetries are the set of transformations that preserve the
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Fig. 1. (a) Several equivalent associated references, S, for a 3D segment. (b) A
projecting ray R, located with respect to the optical centre C.

element. The location vector Xy represents the same element location
irrespective of that dg component value. For example, consider the reference
S, which locates a 3D segment (Fig. 1 (a)). Rotations around the X direction
yield references that represent the same 3D segment. Theoretically those
components could have any value, but a zero value is used.

deterministic components .- There are components of Xy known to have
a probability of one. Among all the equivalent references for the element,
the one with a null deterministic component is selected. The corresponding
component is then forced to be zero. For example (Fig. 1 (b)) the reference,
R, associated with a projection ray; 2 can be attached to the optical centre,
expressing its location with respect to the frame of the optical centre C, xcg
(and hence dg) always has null X, Y, and Z components.

To represent null components mathematically, dg is expressed as:

d¢ = B{pa
where pg, the perturbation vector, is a vector containing only non-null compo-
nents of dg. Bg, the self-binding matriz, is a row selection matrix that selects

the non-null components of dg.

Based on these ideas, the information about the location of geometric element



G is represented by a quadruple, the element imprecise location:

LWG' = [)ACWGa f)Ga CG? BG]

Thus, the random vector defining the element location is expressed as:
Xwa = Xwa @ Bipe (2)

Pe = E[pc|; Co =Cov(pe)

where p¢g is a normal random vector, with a mean of ps and a covariance
matrix Cg. When pg = 0, the estimation is regarded as centred.

There are geometrical elements whose location is used as input data for the
problem, e.g. the image segments. The 3D segments and the cameras location
are the output of the algorithm and are computed from the input data. The
3D segment is the geometrical element used to represent the scene structure.
Moreover, we define an intermediate geometrical element, the 2D segment, to
define the constraint that relates an image segment to a 3D segment and the
camera location. The 2D segment consists of the projection ray for the image
segment midpoint, and the projection plane for the image segment supporting
line. Next, the model of these four elements is presented in detail.

2.1 Camera imprecise location

We use the letter C' to designate the camera reference, and model the camera as
normalized, i.e. f = 1. The associated reference origin is joined to the optical
centre of the camera. The z axis is parallel to the optical axis, and pointing
towards the scene. The x axis points to the right. The y axis is defined to
be a direct reference (see Fig.1(b)). Camera location has neither symmetry
nor deterministic components in its differential location vector, so has no null
components (its self-binding matrix is the identity):

Be=1

Camera location estimate Xy ¢ is obtained from the structure and motion
algorithm.



Fig. 2. Image segment in the normalized camera.

2.2 Image segment imprecise location

We use the letter P to designate references attached to image segments. The
associated reference (Fig.2) is attached to the image segment midpoint. Its y
axis is normal to the supporting line and pointing to the “light” side of the
segment. Consequently, it codes the grey level gradient of the segment. Its
z axis is parallel to the camera z axis. The z axis is defined to be a direct
reference.

As an image segment belongs to the image plane, its z, ¢, and # components
are deterministic. Therefore, its self-binding matrix is:

100000
Bp={1010000
000001

The image segment location centred estimate is defined for the extreme points
coordinates in the normalized image, with respect to the camera location, as
(see Fig.2):

R R R ~ T
Xcp = (f()Pa?JCP,LO,Oad)CP) (3)

5 = . £ __ TstTe. ~ _ +
bop = atan2 (Y, — Ys, Te — T5); Top = Tabbe  fop = ys2ye

The covariance assignment for an image segment, is one of the central issues of
this work. The covariance in the ¢ and y components is taken from the infinite
supporting line. The standard deviation of the x component is defined to be
proportional to the segment length. According to the proportionality constant
k, the allowed deviations of the midpoint along the segment supporting line



can be fixed. This covariance assignment mimics that proposed by [6], where it
is used for 3D segments. In this paper, we use it for image segments. The same
covariance assignment is also used by [7] for structure from camera location.

The quantitative expression for the covariance matrix is given by:

Cp=NC,NT (4)

where C'% is the covariance for the image segment in pixels; N is the Jacobian
matrix for the transformation that converts image segment in pixels to the
image segment in the normalized camera. We have chosen the above expres-
sion in order to deal with the pixel aspect ratio. Appendix B gives a detailed
expression for IV as a function of the image segment location estimate (3), and
the intrinsic camera parameters.

The form for C is:
» = diag (az, op, aé)
e 0, is set proportional to the image segment length, n (in pixels).
0y = KN (5)

The experimental values for £ have been tuned to give x > 1.

° 05 and 03) are computed from the covariances of the image segment extreme
points. Due to systematic errors, there is some correlation between the noise
from the extreme points location. This effect is dealt with by splitting the
extreme points covariance into two terms: o2, completely correlated covari-
ance ( 0—2px.), and o2, non-correlated covariance (0.25— 1px.). In [8] both
the expression and tuning are given

2 _ 2 g 2 _ 202
Oy = 0o+ 782, 0y = T8 (6)

Figure 3 shows a comparison between the 95% acceptance regions for the origin
of the reference that locates the image segment according to two different
assignments.

It should be noted that the segment length is not considered as a geometrical
parameter, but is used to define the element covariance. The segment is only
located by its midpoint and its orientation. Intuitively, the image segment has
been modelled as “a point with an orientation,” and its standard deviation
along the segment supporting line is set proportional to its length.
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Fig. 3. 95% acceptance regions for the image segment reference origin. Left, k = 0.2,
right K = 0.5
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Fig. 4. The 2D segment (D) is an intermediate element used to relate the image
segment (P) to the 3D segment (S). It includes both the projection ray for the
midpoint and the projection plane for the supporting line.

2.3 2D segment

We use D to designate references attached to 2D segments. This geometri-
cal element is used as an intermediate element to define the relation between
an image segment and a 3D segment (Fig.4). A 2D segment is composed of
the projection elements of the corresponding image segment: the projection
ray for the image segment midpoint, and the projection plane for the infi-
nite supporting line. Its covariance is derived directly from that of the image
segment.

The associated reference is attached to the optical centre of the camera, which



belongs to every projection element. Its —y axis points towards the image
segment midpoint. The z axis is normal to the supporting line projection
plane. The z axis forms a direct reference. The z direction is defined to code
the image segment grey level gradient. Since it is attached to the optical centre,
the general location vector of a 2D segment, with respect to the camera frame,
is:

L \T
Xcp = (0, 0,0,%¢p, 0cp, ¢CD)

See Appendix C for &CD, Ocp and ¢A>CD expressions as function of image seg-
ment location (3).

As the translation components are deterministically null, the self-binding ma-
trix only selects 1, # and ¢ components:

000100
Bp=1000010
000001

The 2D segment covariance matrix is related to that of the image segment:

CD = KDPCngp

where C'p has been presented in (4). A detailed expression for the Kpp matrix
as a function of the image segment location vector is given in Appendix C.

2.4 3D segment

The references associated with 3D segments are designated by S. The reference
is attached (Fig.1(a) and Fig.4) to a segment point, which approximately
corresponds to the segment midpoint. The reference x axis is aligned with the
segment direction. In this work, the 3D segment location estimate is computed
from the integration of several 2D segments corresponding to different points
of view. This integration also gives the 5 x 5 covariance matrix Cs.

The only symmetry for this element is the rotation around its direction. There-



fore, its self-binding matrix is:

100000
010000
Bs=1001000
000010
000001

3 Measurement Equation

This section is devoted to formalizing the pairing constraint between an image
segment (P) and a 3D segment () (see Fig.4). The camera detects the image
segment (P). However, the proposed pairing constraint uses the 2D segment
(D) and not the image segment (P). As mentioned in Section 2.3, the 2D
segment imprecise location, is derived directly from that of the image segment.

The SPmodel method is used to define pairing constraints, which are defined
in terms of the location vector xpg of the 3D segment with respect to the 2D
segment. Let

T
Xps = (JUDS, Yps, Zps, ¥ps; Ups, ¢Ds)

The pairing constraint is an implicit equation that indicates which xpg com-
ponents should be zero; these null components are as follows.

e 2pg. Otherwise, the 3D segment would not belong to the projection plane.

e Opg, rotation around y axis. This should be zero, otherwise the 3D segment
would not be in the projection plane.

e 1ps. Otherwise, the 3D segment midpoint would not belong to the image
segment midpoint projection ray. Theoretically, the segment midpoint is not
imwvariant under perspective projection. However, we consider it as invariant,
but it 1s shown later that this constraint is considered to have a low weighting.
Consequently, Fig. 4 the projection ray for the image segment midpoint does
not contain the origin of S reference.

In summary, the nullity of zpg and fpg takes into account the collinearity in
the image between the image segment and the 3D segment. The nullity of xpg
implies that the image of the 3D segment midpoint is the midpoint of the image
segment This is equivalent to considering that the image segment midpoints
are correspondent. Due to the assignment for image segment covariance along

10



the segment direction, the midpoint matching normally has lower weighting
than the collinearity. The low weighting for this constraint is justified by the
unreliable segment extreme points extraction, and by the approximation that
the midpoint is invariant under perspective projection. Experimental results
confirm the validity of this assignment.

The above ideas are formalized mathematically as follows:

f (xps) = Bpsxps=0 (7)
100000
Bps=[001000
000010

considering that:

Xps = OXcop © Xwe D Xws (8)
equation (7) establishes a relationship between the 3D segment location, the
camera location and the image of the segment. The image segment is repre-

sented by the 2D segment (D). This equation is used to determine the structure
and motion from the correspondences.

From equations (8) and (2), equation (7) can be expressed as:

f (xps) =f(Pp,Pc,Ps) =

Bps (@ngD O Xcp © Bipe © Xwe @ Xws ® ngs) =0 (9)
Consequently, we have an implicit function that relates three perturbation
vectors, pp, Pc, and pg corresponding to the 2D segment, the camera, and

the 3D segment respectively, i.e. the normal random vectors involved in the
problem.

4 Structure and Motion as a Weighted Minimization Problem

The structure and motion problem with m segments in n images can be stated
as the solution to the non-linear system:

11



where fi(k) is the measurement equation ( 7) between the 2D segment detected

by camera k corresponding to the 3D segment 7. Due to approximate midpoint
matching and noise, the previous system is over-constrained. A minimization
is proposed in order to solve it. The goal function is the summation of all
the weighted residues in which the weighting matrix is the inverse of the
measurement noise covariance:

> [ (XDE’“siﬂT R (XDEk)Siﬂ—l £ (x5 )| (10)

=1 k=1

where RZ(-k) <ngk)Si

depends on x

) is the measurement noise covariance. In general, this

pklg s which is the optimization variable.
1 k3

Considering (8) and C as the world frame, x can be decomposed to:

ka)Si

XDi(k)Si = @XCkDi(k) ) Xch oy, &) Xy S,

then, the problem can be expressed as:

given: {LCle;k)} k=1..n1=1...m

determine: {L¢ s}, {Lcc,} k=1...n i=1...m, up to a scale factor,

such that expression (10) is minimized.
where {} expresses a set of elements.

The previously stated problem optimizes both the structure and motion para-
meters. As a result, it needs to optimize 546 (n — 2) +5m parameters. These
are: five parameters for the second camera location (x¢,¢,), six for each of the
remaining cameras {Xc,¢,} k£ = 3...n, and five for each scene 3D segment
{xc,s,} i =1...m. The result, however, can be computed by optimizing only
the motion parameters as proposed in [9], in which a constraint between the
structure and motion was used. The evaluation of the total residue is presented
next only as a function of the motion. Given a value for the motion parameters
{x¢c,c, }, the structure {x¢, s, } is computed using a structure from the camera
location algorithm. The weighted residue is computed from the given motion
and the computed structure (10). A diagram of the structure from the camera
location algorithm is given in section 4.1. For normal and uncorrelated noise,
the total residual (10) would follow a x? distribution with

3mn—>5m—=6(n—2)—>5 d.of
The rest of this section is devoted to defining the terms involved in (10).

12



The ng) matrix is computed from the linearization of equation (9):

RM =GP .naH"
i i D) i

k
G — 8fi()
Z 0P (o)
i P ) =0,pc, =0,ps; =0
where:
0 —Zps  Yps
k - A
GZ( )= —YDs Tps 0

sin qASDS — Cos ¢;D5 0

C ) is the 2D segment location noise and is computed in section 2.3.

£*) i computed directly from x components. i and (k) scripts have been

i pMs;
dropped for simplicity:
Tcp
k .
fi( )= ZCD
Ocp

4.1 Structure from camera location

As previously mentioned, a structure from the camera location computation
is proposed in order to evaluate the residue function (10).

The scene structure from the camera location and the correspondences are
computed using LMSE solution for each 3D structure segment. It is com-
puted from a linearized version of equation (9); the detailed algorithm for this
structure computation is presented in [7]. It is given briefly by the following:

| SNEO)
l Pc,

expressed as the explicit linear measurement equation normally used in opti-

13



mal estimation:

2 = HPps, + Vv, v~ N (0,RP) (11)

)

The estimated value is pg,, which is the correction for the 3D segment location.
The camera and 2D segment location noise, pc, and p ), play the role of

measurement noise. Consequently, they are grouped in a measurement noise
vector v. The rest of the terms in (11) are:

Zz('k) = —fi(k) = _BDS)A(D.(k)Si
g _ Of
7 apS

<pDz(k) =0,pc,, =07psi=0>

(k) _of_ _Of
Gim=| oo =0,pc, =0,ps, =0 Pac =0,pc, =0,ps, =0
pD(k)f 7pok7 aPSi* pD(k)f aPOkf 7p5i7
3 1
Py
V = g
Pc;
)
0 Cg,

C ) is computed as shown in Sec.2.3, and C¢, is tuned experimentally. De-

tailed expressions for the previous equations, as functions of the location esti-
mates for the camera, 2D segment, and 3D segment, are available in Appen-
dix D.

5 Initial Seed for the Two Images Problem

The main disadvantage of the non-linear optimization methods is that they
need a good initial guess in order to converge to the absolute minimum of
the goal function. This paper focuses on the two images problem. In order to
find the minimum of equation (10), we compute the initial seed sampling the
parameter space as proposed by Zhang in [2]. The whole minimization method
can be summarized as follows.

(1) Sample the parameter space. The sample points should approximately be
uniformly distributed over the parameter space.
(2) Evaluate the goal function (equation 10) on every point.

14
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Fig. 5. Subdivision of an icosahedron face in order to obtain more direction samples

(3) Keep the samples that produced the lowest residue (in our case we kept
30 samples).

(4) Optimize the equation (10) with a classical optimization method (in our
case Levenberg-Marquardt) using each of the kept samples as an initial
guess. The minimum is then selected.

The rest of this section is devoted to the way in which the parameter space
is sampled. Considering two images, the parameter to be optimized is the
location of the second camera with respect to the first, i.e. x¢,¢,. Due to the
translation scale factor, only the translation direction should be considered.
Therefore, only five optimization parameters are considered:

e ar, Or, the two angles that define the translation direction.
® ap, Or, 7, the first two angles define the rotation direction. v defines the
rotation magnitude.

from o, Br, agr, Br and 7 the value for x¢, ¢, is straightforward. The rest of
the section is devoted to the ar, Br,ar, Br and v sampling. Irrespective of
whether the direction sampling o and 3 angles are for rotation or translation,
direction sampling is carried out using the directions defined by the icosahe-
dron faces. The centres of the faces produce 20 directions. Each triangular face
can be subdivided n times, as shown in figure 5, producing 20 x 4™ directions.

The v sampling can be carried out easily by uniformly sampling the rotation
interval [—a, a]. We consider the [—15 deg, 15 deg] interval and a sampling rate
of 2 deg.

As Zhang proposed [2], only half of the sampled translation directions should
be tested, since changing the translation sign leads to the solution changing
the structure sign, which is geometrically equivalent. As a result, it is sufficient
to try half of the translation samples and then test if the computed scene is
behind or in front of the cameras. If it is behind, it has no physical meaning,
and the real solution is achieved by changing the translation and scene sign.

6 Experimental Results

This section is devoted to showing the performance of the proposed pairing
constraint to recover the structure and motion from two real images. We focus

15



() (b)

Fig. 6. Input image pair for structure and motion computation. Equal numbers label
corresponding image segments.

on the ability to obtain a solution as a function of the x value (see eq. 5). It is
shown that weak pairing between the midpoints, i.e x > 0.1 performed well,
whereas strong midpoint pairing ( x < 0.01) performed badly. This confirms
that tight pairing between the midpoints is not correct, as stated by several
authors [2,3]. However, if deviations of the midpoints matching were allowed
along the image segments directions, the correct result could be achieved.

Figure 6 shows the two images (512 x 500 x 8 B&W) that were used as the
input. The corresponding image segments are labelled with the same numbers.
These images came from a trinocular rig, and, as a result, it was possible to
use the camera calibration as a ground true solution for the computed motion.
Camera calibrations were computed using the Tsai method [10]. The camera
focal length was 6mm., and the lens radial distortion was compensated for
the extracted image segment location. Image segments were detected with the
Burns algorithm [11]. Segments shorter than 15 pixels or those with a grey level
gradient smaller than 20 grey levels per pixel, were removed. The matches were
computed by a stereo program [7]; spurious matches were removed manually.
A total of 111 matches were retained after removing three spurious ones.

The tuning parameters for the initial seed algorithm were: range for the rota-
tion angles [—15 deg., 15 deg.], and rotation sampling step 2 deg.. Both initial
orientation and translation directions were computed from the icosahedron
faces with subdivision (n = 1). As a result. 48000 initial samples were used.
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trans. error (deg) .— orient. error(deg) —— log(residue) —
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Fig. 7. Optimization residue (log scale), orientation error (deg.) and translation
error (deg.) with respect to the x value. The dot horizontal line represents the 95%
x? with 106 d.o.f

H K ‘ estimated Xco102 ‘ error wrt. ground true ‘ tr. error. | ori. error H
ground true | (0.82,—0.56,0.15, —3.58, —8.86,0.71)T (0,0,0,0,0,0)T 0 deg. 0 deg.
1 (0.81,—-0.54,0.22, —4.43, —10.02,0.74)T | (0.01,0.02,0.07, —0.84, —1.16, —0.04)T | 4.3 deg. | 1.2 deg.
103 (0.82, —0.54,0.21, —4.13, -9.56,0.73)7 | (0.01,0.02,0.06, —0.54, —0.69, —0.03)" | 3.7 deg. | 0.7 deg.
10-3 (0.76,—0.59,0.26, —0.90, —4.68,1.33)7 | (—0.03,-0.04,0.12,2.79,4.13,0.87)7 | 7.5 deg. | 4.2 deg.
Table 1

Computed camera location compared with the ground true solution. x¢ic2 is the
camera 2 location wrt. the camera 1 (translation normalized to unitary vector,
angles in deg.). Error wrt. ground true is the location vector: efc%;fégd @ xgtimated

The number of retained seeds was 30. The parameters for the covariances used
in the optimization were: o.. = 2 pixels and o,. = 1 pixel used to tune the
image segment location noise (6).

Figure 7 shows the optimization residue, the orientation error and translation
error with respect to the s value. A logarithmic scale is used for x and the
residue. The translation error is the angle (deg.) between the ground true and
the computed translation. The orientation error is the angle (deg.), around
some axis, required to align the ground true and computed camera frame.
Table 1 shows a summary of various values.

Focusing on figure 7 it can be seen that there are two regions: weak midpoint
pairing (k > 0.1), and strong midpoint pairing (k < 0.1). In the weak pairing
region, the translation and rotation errors were small and the reconstructions
were good. Figures 8 and 9 show the reconstruction and its backprojection in
the images for the weak pairing case. Note that in both cases reconstruction
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Fig. 8. Reconstruction with x = 1. (a) and (b) show reconstruction reprojected on
images 1 and 2. (c) and (d) show the reconstruction on top and general view

are very similar despite the difference in the x value. The similarity for the
backprojection is even greater and it can be seen how there nearly equal. In
the strong pairing region, the orientation and translation errors were bigger
and the reconstruction had no meaning at all.
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Fig. 9. Reconstruction with £ = 103. (a) and (b) show reconstruction reprojected
on images 1 and 2. (¢) and (d) show the reconstruction on top and general view
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The residue after optimization was nearly constant in the strong pairing region.
However, in the weak pairing region it was reduced as x increased. With
strong midpoint pairing, the results had no meaning because midpoints are not
correspondent. The residue is dominated by the component orthogonal to the
segment direction. With the weak pairing, however, deviations along the image
segment were allowed. By increasing «, it was found that the solution was
approximately the same but the total residue was reduced because the weight
of all the deviations was reduced by the same proportion. The reason that the
solution could be obtained for any value £ > 0.1 can be explained as follows.
If only the infinite support lines (infinite k) were used to solve the problem,
every camera location would be possible and the residue would always be zero.
Considering midpoint matching, we have found that the residue mainly came
from the deviations of the midpoints. Once the midpoint matching becomes
weak, only deviations along the segment directions are allowed. Consequently,
if the K is increased, all the weighted residues decrease and the total residue
decreases, but the solution remains approximately the same.

As stated in section 4, the residue after optimization should follow, for 111
image segments in two cameras, a x? with 106 d.o.f.. Fixing a 95% confidence
region, the x? value is 131 (note that figure7 plots residue on a logarithmic
scale so that 131 is represented as 2.11). It is shown in figure 7 that the transi-
tion between the strong and weak pairing is related to the intersection of the
residue with the y? value.

7 Conclusions

The finite length of the straight segments produces constraints stronger than
if they were considered as their infinite supporting line. In this paper, it has
been proposed that the image segments midpoints should be considered as
correspondent, but giving a lower weight in the image segment direction. The
experimental results showed that the proposed constraint can be used to re-
cover the structure and the camera motion from straight segment correspon-
dences using only two images. This showed that the constraint is stronger than
if only infinite lines were used. This result, together with [2] and [3], confirms
the importance of considering the finite length of the segments.

The proposed image segment model and the weak midpoint correspondence
has also been used to compute correspondent image segments and the struc-
ture when the camera location is known [7]. Consequently, the proposed model
uniquely combines both the “point” and “line” properties of the straight seg-
ments. This model can be applied to sequences of images.
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Appendixes
A Transformations

The locations for the references are expressed as transformations. There are
two mathematical representations for the transformation ¢y, ¢: a six component
location vector Xy, and an homogeneous matrix Hyy:

T
Xwa = (JUWG, ywas 2was Ywa, Owa, ¢WG)
NwaG, OWG, OWG, PWG,

nwa, owaG, Owa, PwaG,
Hyq=

nwa, OwWa, Aawa, PWaG.,

0 0 0 1

Location vector form is well suited for theoretical discussion and for covari-
ance assignment. However, the mathematical operations such as composition,
inversion or derivation is better expressed using the homogeneous matrix. The
conversion between them is given by:

CowaSOwaStwa— CowaSOwaCihowa+

CowaChwa Twa
SowaCwa SowaSYwa
S SOw S + S SOy C —
Hueo = | SowaCowa dwaStwaSvwa dwaStwaCvwa o (A.l)
CowaCiwa CowaSvwa
—SOwa C9WGS¢WG CHWGCU)WG EWaG
0 0 0 1

where C and S stands for cos () and sin () respectively.

Twa Pwa,
Ywa Pwa,
Xwa w2 bwe. (A.2)
Ywa atan2 (owa., awa.)
Owa atan2 (—nWGz, +\/n%VGz + nﬁvgy)
owa atan2 (nwgy, nwaz)
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B Image Normalization Jacobian

C¢0PC¢MP + S¢OPS¢MP —C¢OPS¢MP + S¢CPC¢MP

0
N — *S¢0PHC¢MP + C¢CP§¢MP S¢CP§¢MP + C¢CP?¢MP 0
0 0 o

where ¢¢p were defined in (3). O% and - are the pixel sizes in the z and y

directions, expressed in mm. S and C stands for the sin() and cos() functions.
qSMp is defined as:

ngSMp = atan2 (av sin qgcp, v, COS écp)

C 2D Segment Definition

The 2D segment location with respect to the camera frame is expressed as:

N ~ ~ T
Xcp = (0, 0,0,%¢cp, Ocp, ¢CD)

where:

Yep = atan2 (0,,a,), Ocp = atan? (n'z, n'z + n’Z) . dcp = atan2 (', n',)
where:

n'y =cos dop + ep €0 pop — EopYop Sin pop (C.1)
n'y=sin gop + Lpp sin dop — Ecpliop €os pop
n' . =YcpSin ¢cp + Top oS Gop
—1

0, =

\/1 +3tp + Up

Tcpsin GSCP — YJcop COS GSCP

az = = ~ B (02)

\/1 + (i'CP sin ¢cp — Yop COS ¢CP)
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and the corresponding covariance is defined as a function of Kpp:

0 —sindpp 0
Ypp
Kpp = 0 _sinéppsingpp sindpp (03)
JppCOSPpp  COSPDP
cosppp _ singppcost¢pp 0
IpP Upp

where:

gDp = —\/i‘%P—f—@%P—F]_, @;DP = atan2 (l,a;), d;Dp:atan2 (om,nm)
and where:

li -~ 7 ~
a, = (ICP sin ¢cp — Yop €OS ¢CP)

1 . A R A 2
Ng =1 (1 + («TCP sin pcp — Yop COS ¢CP) )
[ ]
Oy = _—, (QCP sin <50P + Zcp cos écp)
o]

lofpll = /1 + 22p + §2p

Il = 1+ 825 + 320 + 2 pi2p + (p + §2p) OS2 opt

+ (2tp + 24p) sin? pep — (#3plce + Udpiop + Toplop) 28in dop cos pop

The values of Z¢p, yop, and ngSCp are taken form the image segment location
with respect to the camera frame (3).

D Measurement Equation

The detailed expression for the matrices and vectors used in the linearizations
are:

Tps
f= Zps
atan2 (—n n%e. 4+ n?
DSz DSx DSy
0 —Zps  Ups MDSz OpSy Apsy 0 0
G=| —ips Tps 0 nps, ops, aps, 0 0
sin ppg —cospps 0 0 0 0 costYps —sinypg
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Nep,20s— —N¢p.Rost nep,Yos—
—nc¢p, —Ncp, —Ncp,
+nep,Ycs +nep.Tos +nep,Tcs
acD,2CS— —acp,2cst acp,Ycs—
H=|-acp, —acp, —acp.
+acp.Ycs +acp,Zcs +acp,Tcs
0 0 o TOos.cos Yps+ —ocs, COSYpst+ —ocs, COSYps+

Previous expressions are given as functions of the homogeneous matrices Hep,
Hps and Heg. These matrices can be computed directly from the location
estimated for the 2D segment, Hep, the camera Hy ¢, and the 3D segment
location Hyyg.
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