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Abstract— This paper describes a new non-invasive brain-
actuated wheelchair that relies on a P300 neurophysiological
protocol and automated navigation. When in operation, the user
faces a screen displaying a real-time virtual reconstruction of the
scenario and concentrates on the location of the space to reach.
A visual stimulation process elicits the neurological phenomenon
and the electroencephalogram (EEG) signal processing detects
the target location. This location is transferred to the autonomous
navigation system that drives the wheelchair to the desired loca-
tion while avoiding collisions with obstacles in the environment
detected by the laser scanner. This concept gives the user the
flexibility to use the device in unknown and evolving scenarios.
The prototype was validated with five healthy participants in
three consecutive steps: screening (an analysis of three different
groups of visual interface designs), virtual-environment driving,
and driving sessions with the wheelchair. On the basis of the
results, this paper reports the following evaluation studies: (i) a
technical evaluation of the device and all functionalities; (i7) a
users’ behavior study; and (7i¢) a variability study. The overall
result was that all the participants were able to successfully
operate the device with relative ease, showing a great adaptation
as well as a high robustness and low variability of the system.

I. INTRODUCTION

Brain-computer interfaces (BCI) are systems that allow to
translate in real-time the electrical activity of the brain in
commands to control devices. They do not rely on muscular
activity and can therefore provide communication and control
for people with devastating neuromuscular disorders such as
the amyotrophic lateral sclerosis, brainstem stroke, cerebral
palsy and spinal cord injury. It has been shown that these
patients are able to achieve EEG controlled cursor, limb move-
ment, a prosthesis control and even they have successfully
communicated by means of a BCI (see [1], [2], [3] among
others).

Recently there has been a great surge in research and
development of brain-controlled devices for rehabilitation.
Although in animals this research has been focused on invasive
methods (intracraneal), the most popular recording method for
humans has been the electroencephalogram (EEG). So far,
systems based on human EEG have been used to control a
mouse on the screen [4], for communication like an speller
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[1], [5], an internet browser [6], [7], etc. Furthermore, the
research on brain-machine interfaces applied to human control
of physical devices has been broadly focused mainly in two
directions: neuroprosthetics and brain-actuated wheelchairs.
Neuroprosthetics focuses on the motion control or hand or-
thosis, which usually improves the upper body possibilities
of users with mobility impairments, such as reachability and
grasping [8], [9], [10]. Wheelchairs focus on the facilitation
of assistance in mobility to accomplish complex navigational
tasks to improve life quality and self-independence of users.

Following the non-invasive brain-actuated robot control
demonstrated in 2004 [11], there have been some attempts
to develop a brain-actuated wheelchair. Some devices follow
the clinical protocol where the EEG signals are synchronized
with visual, auditory or tactile events or stimuli, using one
of the common Event-Related Potentials (evoked potentials in
the human brain associated with external stimuli, see [12] for
review). One example is the wheelchair developed by Griser
et al. [13], which uses steady-state potentials [14]. These
potentials are visually elicited by a stimulus modulated at a
fixed frequency, and appear as an increase on EEG activity at
the stimulus frequency. Another example is the Teo, Burdet
et al. wheelchair [15], which uses P300 potentials [16]. These
potentials manifests themselves as a positive deflection in the
EEG at a latency of approximately 300 ms, after the desired
target stimulus (visual, auditory or tactile) is presented within a



random sequence of non-target stimuli. Both devices use high-
level motion primitives (e.g., go to the kitchen) in a menu-
based system. Another synchronous device is the Bastos et al.
wheelchair, which uses the desynchronization of alpha rhythms
in the visual cortex that occur when the eyes are open or closed
[17] !. This desynchronization is used as a binary input to
select low-level motion primitives (e.g., front, back, left, right)
in a sweeping menu-based system. From an interactional point
of view, the advantage of these synchronous prototypes is the
high accuracy in the thought recognition process (above 94%).
However, these protocols have low information transfer rates
(approximately 4 to 15 bits per minute, i.e., one selection each
4 to 15 seconds) since they repeat the external cue dozens of
times to improve the signal-to-noise ratio. From a navigational
point of view, the advantage is that the user does not need
to concentrate while the robot executes navigation. However,
systems based on high-level navigation limit the wheelchair
to move in preprogrammed and static scenarios. On the other
hand, systems based on low-level navigation (e.g., front, back,
left, right) rely on very slow motions (accommodating to the
information transfer rate) even in simplistic scenarios.

Another wheelchair concept was jointly developed by
Millan, Nuttin et al. [18]. This device is based on an asyn-
chronous protocol that analyzed the ongoing EEG activity
to determine the user’s mental state, which can change at
any time. The system deciphers the user’s steering directions
(forward, right, and left) and uses an obstacle avoidance
system that executes navigation. From an interactional point of
view, the great advantage is that brain control is spontaneous
(not attached to external cues, adding a new degree of freedom
for the user) and doubles the usual bit rates of the synchronous’
approaches, with a precision of approximately 65%. However,
the mental process requires constant mental effort for the user.
From a navigational point of view, the safety of the system was
improved with the inclusion of an obstacle avoidance system
which filters commands (possibly erroneous) that could lead
to collisions.

A. Overview and Contributions

This paper describes a new brain-actuated wheelchair con-
cept that relies on a synchronous P300 neurophysiological pro-
tocol integrated in a real-time graphical scenario builder, incor-
porating advanced autonomous navigation capabilities (Figure
1). When in operation, the user faces a screen displaying a
real-time virtual reconstruction of the scenario, constructed by
a laser scanner. On the basis of this representation, the user
concentrates on the location of the space to reach. A visual
stimulation process elicits the neurological phenomenon and
the signal processing detects the target area. This location is
then given to the autonomous navigation system that drives the
wheelchair to the desired location while avoiding collisions
with the obstacles detected by the laser scanner. From an
interactional point of view, this system has similar properties
to those of the P300-based synchronous brain-computer inter-
faces (high accuracy but low transfer rates). This is because

Notice that this is a neurological phenomenon that requires the control of
the blinking muscular process.

accuracy was considered important in the selection process
(above 94%) given the critical safety nature of the device
[19]. Despite the low information transfer rate (2 orders per
minute), once the order is given the user can relax, since
the navigation is automated, avoiding the exhausting mental
processes of other devices. From a navigational point of view,
the great advantage is that the user selects destinations from
a set of generated points in the environment (medium-level
commands) that are safely and autonomously reached by the
navigation system. This is because the system incorporates
real-time adaptive motion planning and modeling construction
of the scenario, and thus it is able to deal with non-prepared
and populated scenarios. Furthermore, the automation in the
navigation process allows the maneuverability in complex
scenarios using state-of-the-art technology in robotics. This
Human-Robot Interaction framework improves the information
flow between the human robot since it involves medium-
level task-relevant interaction (selection of points of the space
to reach), which is more efficient than lower level schemas
(selection of direction of motion), and also due to a navigation
technology that expands these task-relevant commands into a
complex motion activity in the real world [20].

This work has paid due attention to the methodology
and experimental validation of the device. In this direction,
the prototype was validated with five healthy participants in
three consecutive steps: screening, virtual-environment driving
(training and instruction of participants), and driving sessions
with the wheelchair (driving tests along established circuits).
On the basis of the results, this paper reports the following
evaluation studies: (i) a technical evaluation of the device and
all functionalities (i.e., the brain-computer interface, graphical
interface, and navigation technology); (i7) a users’ behavior
study based on an execution analysis, an activity analysis
and a psychological analysis; and (ii7) a variability study
among trials and participants. The overall result is that all
the participants were able to successfully use the device with
relative ease, showing a great adaptation as well as a high
robustness and low variability of the system.

IT. BRAIN-COMPUTER SYSTEM
A. Neurophysiological protocol and instrumentation

There are two broad categorizations of EEG-based brain-
computer interface systems. Those that are controlled by the
voluntary modulation of the brain activity [21], [22] and those
based on an event-related response to an external stimulus
[23], [24]. In the latter category, the user focuses attention on
one of the possible visual, auditory or tactile stimulus, and
the Brain-Computer Interface (BCI) uses the EEG to infer the
stimulus to which the user is attending. The neurophysiological
protocol followed in this study was based on the P300 visually-
evoked potential [16]. This potential manifests itself as a
positive deflection in the EEG at a latency of approximately
300 ms, after the desired target stimulus is presented within
a random sequence of non-target stimuli. Roughly, it is
elicited in the electrodes covering the parietal lobe (Figure
2). A characteristic of this potential, relevant to this BCI
system, is that neurophysiological studies [16] revealed that
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Fig. 2. Best viewed in color. (a) Typical P300 response. The red (dashed) line
shows the EEG activity on one channel (elicited by the target stimulus), and
the green (solid) line corresponds to the non-target stimuli. (b) Topographical
plot of the distribution of 72 values (which indicates the proportion of single-
trial signal variance that is due to desired target [25]) on the scalp at 300 ms.
The parietal and occipital lobes (mid-low part of the scalp) are the areas with
highest r2.

the elicitation time and the amplitude of the potential were
correlated to the fatigue of the user and to the saliency of
stimulus (in terms of color, contrast, brightness, duration, etc).
The general instrumentation of the brain-computer interface
(BCI) was a commercial gTec EEG system (an EEG cap, 16
electrodes and a gUSBamp amplifier) connected via USB to
the onboard computer. The location of the electrodes was
selected according to previous P300 studies [26]: at FP1,
FP2, F3, F4, C3, C4, P3, P4, T7, T8, CP3, CP4, Fz, Pz,
Cz and Oz, according to the international 10/20 system. The
ground electrode was positioned on the forehead (position
FPz) and the reference electrode was placed on the left
earlobe. The EEG was amplified, digitalized with a sampling
frequency of 256 Hz, power-line notch-filtered and bandpass-
filtered between 0.5 and 30 Hz. The signal recording and
processing, as well as the visual application were developed
under BCI2000 platform [25] and placed on an Intel Core2
Duo @ 2.10GHz running Windows XP OS. From now on,
this computer will be referred to as the high-level computer.

B. Graphical interface

In order to command the wheelchair, the user must select
destinations or motion primitives by concentrating on the pos-
sibilities displayed on the computer’s screen (Figure 3a). The
graphical interface (i) displayed information of the real-time
reconstruction of the environment and additional information
for the order selection, and (i7) developed the stimulation
process to elicit the P300 visual-evoked potential.

1) The visual display: The graphical aspects of this module
were based on a previous study involving a robotic wheelchair
with a tactile screen, adapted for cerebral palsy users [27].
The information displayed on the screen was a reconstruction
of the real scenario for the user’s command selection (Figure
3b). The environment 3D visualization was built from a 2D
map constructed in real-time by the autonomous navigation
technology. The use of a sensor-based online map instead
of an a priori map endowed the system with the necessary
flexibility to work in unknown and evolving scenarios (sensor-
based maps rapidly reflect changes in the environment, such as
moving people or unpredictable obstacles like tables or chairs).
To facilitate the user’s awareness of the situation, the map
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Fig. 3. (a) A snapshot of a participant navigating along a corridor.
(b) Information represented in the visual display, which is an environment
abstraction displayed from the user’s point of view.

was displayed on the screen, originating from a virtual camera
located at the operator’s eye level. In other words, the visual
information on the screen was a simplified reconstruction of
the user’s perception.

The rest of the displayed information was used for command
selection (Figure 3b). First, there was a predefined set of
destinations relative to the wheelchair’s location within the
map, which corresponded to locations in the environment that
the participants might select to reach. These locations were
represented in the display by an N x M polar grid referenced
to the wheelchair. The grid intersections represented real
locations in the scenario, and its dimension was customiz-
able. In this case, a grid was used to represent locations at
(2m, 4m,8m) x (—60°, —30°,0°,30°,60°) from the current
wheelchair location, where the first grid row was the one with
farthest destinations. The obstacles were depicted by walls,
which hid the unreachable destinations of the grid. In addition
to this, there were also specific actions available, represented
by icons at the lower section of the visual display. The first set
of actions turned the vehicle £90° in reference to its current
position. The icons were located on the right and left-hand
sides of the lower part of the screen and were represented by
a turning arrow in the respective directions; the traffic light
buttons validated the user’s commands or stopped the vehicle;
and the eraser represented the “remove selection” option. In



the current version of the interface, the “stop” and “remove
selection” options were not used, but they have been taken
into account for the next interface prototype.

All elements shown on the display could be customized
in terms of color, texture, shape, size, and location. This
was important in the screening sessions to equilibrate the
user’s capabilities and preferences with the performance of
the system (recall that the shape and the latency of the P300
potential were correlated to these visual aspects).

2) The stimulation process: The other aspect of the graph-
ical interface was the stimulation process, to elicit the P300
visual-evoked potential when the user was concentrating at-
tention on a given option. An option was “stimulated” by
displaying a circle on the selection (Figure 3b). One sequence
of the stimulation process was a stimulation of all options
in random order as required by the P300 oddball paradigm.
Notice that this process required 20 stimulations (number of
options in this display) and imposed a subsequent 20-class
classification problem for the pattern recognition strategy. In
order to reduce the duration of a sequence and the dimension
of the pattern recognition problem, the Farwell and Donchin
[23] stimulation paradigm was followed. In this paradigm, the
flashing of the stimuli was carried out by means of rows and
columns instead of flashing each option individually. Thus, in
this interface there were 9 stimulations (number of rows plus
number of columns) and two classification problems of 5 and
4 classes (the target option is the intersection of the target
row and target column). The number of sequences and all
scheduling of the stimulation process (exposition time of each
stimulus, inter-stimulus duration, and inter-sequence duration)
could be modified to equilibrate the user’s capabilities and
preferences with the performance of the system.

C. Pattern recognition strategy

Pattern recognition is a supervised learning module that is
trained to recognize the P300 evoked potential and thus to infer
the stimulus that the user is attending to. The first step was to
train the system via offline experiments, where the user faced
the graphical interface with the stimuli described above. In
this process the user concentrated on a previously predefined
sequence of selections that covered all classes. The data was
recorded and used to train the classification algorithm using a
supervised learning technique consisting of two steps: feature
extraction and classification algorithm.

In order to extract the features, Krusienski et al. study
[26] was followed as the feature extraction technique. The
P300 signals were characterized in the time domain so the
information was in its waveform and latency times. In this
study, for each EEG channel, one-second sample recordings
were extracted after each stimulus onset. These segments of
data were then filtered using the moving average technique
and decimated by a factor of 16. The resulting signals were
plotted and the channels with the best P300 response were
selected by visual inspection (the selected number of channels
varied between six and ten, depending on the participant).
The resulting data segments for each channel selected were
concatenated, creating a single-feature vector for the next stage
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Fig. 4. Finite state machine that models the execution protocol of the options
displayed on the screen to command the wheelchair.

(i.e., if 10 channels were selected, the feature vector length was
256/16 samples * 10 channels = 160).

The next step was the classification algorithm. In this
system, the P300 signal was elicited for one of the four rows
or five columns during the sequence of stimulation. Thus,
there were two classification problems of 4 and 5 classes. For
each of these subproblems the StepWise Linear Discriminant
Analysis (SWLDA) was used, extensively studied for P300
classification problems [23], and used with very good results
in online communication using visual stimulation [28] and au-
ditory stimulation [29]. Briefly, SWLDA is an extension of the
Fisher Linear Discriminant Analysis (FLDA) which performs
a reduction in the feature space by selecting the most suitable
features to be included in a discriminant function (FLDA
looks for a separating hyperplane subdividing the feature space
into two classes by maximizing the distance between the
averages of the two classes and also minimizing the variances
of the data features inside each class). In this system, SWLDA
was used for the P300 classification, obtaining a performance
higher than 90% in less than an hour of training for every
participant that performed the experiments.

D. Execution protocol

The execution protocol was the way the participant utilized
the possibilities of the visual display described in subsec-
tion II-B (communication protocol between the user and the
wheelchair). This protocol was modeled by a finite state
machine (Figure 4). Initially the state is Waiting command. In
this state, the wheelchair is stopped (i.e., not performing any
action). When the user concentrated on one of the options,
the BCI developed the stimulation process and, if the pattern
recognition did not make an error, the desired option was
selected. When the option was a command (either a destination
or a turn), the state changed to Waiting validation. In this
state, the BCI developed the stimulation process and a new
option was selected. If the option was the validation, the
relevant action was transferred to the autonomous system
of the wheelchair (command plus validation is referred to
as a mission) and the state changed to Wheelchair moving;
otherwise, the stimulation process restarted until a command
was selected and later validated. Moreover, stop and “remove
selection” options did not change the state or the previous
selection, which would remain selected. While the state was
Wheelchair moving, the stimulation process was blocked (i.e.,
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Fig. 5. The first row represents the computer hardware, whereas the second row represents the logical components. An event trace of the three integrated

and running computers is shown below, illustrating a typical flow of information, starting when the user selected a destination. The flow of information and
its direction are illustrated by arrows. Vertically, time increases downwards, and the vertical rectangles below the boxes represent a code execution. The dark
boxes enveloping certain portions of code represent an iterative execution task.

there was no stimulation), and the system waited for an ex-
ternal flag from the autonomous navigation system, informing
that the command was executed. Once the flag was received,
the state changed to Waiting command.

III. ROBOTIC WHEELCHAIR

This section describes the robotic wheelchair. First, the
mechatronic design of the device is described, including the
computers and the sensors, and then the autonomous nav-
igation system that performs the model building and local
planning.

A. Mechatronic Design

The robotic wheelchair was constructed based on a com-
mercial electric wheelchair that complied with the basic user
mobility and ergonomic requirements (Figure 1). Two Intel
Pentium III 800Mhz computers were installed on board. The
first computer performed the low-level control (real-time oper-
ative system, VxWorks) controlling the rear wheels that work
in a differential-drive mode. The second computer was used for
medium-level control, performing the navigation computations
and managing the communications between the wheelchair
and the BCI system. Both computers were connected via
RS-232 and Ethernet. The main sensor was a SICK planar
laser placed at the frontal part of the vehicle, operating at
a frequency of 5Hz, with a 180° field of vision and a
0.5° resolution (361 points). This sensor provided information

about the obstacles in front of the vehicle. The wheelchair was
also equipped with wheel encoders to measure the odometry
(position and orientation). In the experiments, the maximum
translational and rotational velocities were set to v,,4, = 0.3%
and Wy = ().7%d respectively, based on experience with
participants using the wheelchair [27].

B. Autonomous Navigation System

The task of the autonomous navigation system was to drive
the vehicle to a given destination while also avoiding obstacles,
both static and dynamic, detected by the laser sensor. The
goal location was provided by the user by means of a brain-
computer interface (see previous section). As mentioned in the
introduction, this medium-term navigation implemented with
online modeling and planning capabilities allowed the system
to provide mobility skills even in situations where the user
was moving in an unknown environment (which prevented
predefined strategies) or where the environment varied with
time (e.g., moving people or changes in the location of
furniture). In order to implement such a complex navigation
system, it was necessary to combine several functionalities
[30], integrated on two modules: the model builder and the
local planner.

The model builder integrated the sensor measurements to
construct a local model of the environment and to track the
vehicle location. A binary occupancy grid map was chosen to
model the static obstacles as well as the free space, and a set
of extended Kalman filters were chosen to track the moving



objects around the robot. A specific technique [31] was used
to correct the robot’s position, update the map, and detect and
track the moving objects around the robot. The static map
traveled centered on the robot. This map had a limited but
sufficient size to present the required information to the user
(as described in the previous section) and to compute the path
so as to reach the selected goal.

The local planner computed the local motion based on the
hybrid combination of tactical planning and reactive collision
avoidance. An efficient dynamic navigation function (D*Lite
planner [32]) was used to compute the tactical information
(i.e., main direction of motion) required to avoid cyclic
motions and trap situations. This function is well suited for
unknown and dynamic scenarios because it works based on the
changes in the model computed by the model builder. The final
motion of the vehicle was computed using the ND technique
[33], which uses a “divide and conquer” strategy, based on
situations and actions to simplify the collision avoidance prob-
lem. This technique has the distinct advantage that it is able
to deal with complex navigational tasks such as maneuvering
in the environment within constrained spaces (e.g., passage
through a narrow doorway). In order to facilitate comfortable
and safe operation during navigation, shape, kinematics, and
dynamic constraints of the vehicle were incorporated [30].

IV. COMMUNICATION SYSTEM AND INTEGRATION

The Communication System and Integration performs the
integration between the Brain-Computer System (section II)
and the Robotic System (section III), which operated as the
link between them, managing all the tasks related with the
synchronization and information flow (Figure 1).

Th system was based on a TCP/IP connection between the
high-level computer (that ran the BCI) and the medium-level
computer of the wheelchair (that ran the navigation system)
(see Figure 5). The software architecture was composed of a
server and two clients, integrated within the previous systems:
(i) the BCI client was multiplexed in time with the BCI
system with a period of 30 ms; (i¢) the wheelchair client
encapsulated the navigation system as a thread, and (7i7) a link
server located between the clients concentrated the information
flow and made the system scalable for further additions. The
communication between the medium-level computer and the
low-level computer (wheel control) of the wheelchair was also
TCP/IP-based. In this case, the client was integrated within
the navigation system and the server was integrated within
the low-level motion controller.

The temporal information flow and synchronization of the
modules are displayed in Figure 5. A typical execution was:
first the BCI computed a goal location (8 bytes of information),
which was transferred to the link server via the BCI client.
The navigation system client received this information from
the server and made it available for the navigation system.
Within a synchronous periodical task of 0.2s, the navigation
system read the location of the wheelchair from the motor
control system and laser sensor, requested the robot odome-
try from the low-level computer, executed the mapping and
planning module, and sent the computed translational and

rotational velocities to the low-level computer. There were
three variables computed by the navigation system that needed
to be transferred to the BCI: the map model (400 bytes),
the model location (12 bytes), and the wheelchair location
within the map (12 bytes). These variables, located in the
navigation thread, were accessible by mutual exclusion by
its client, which sent them to the link server that transferred
them to the BCI client. When the wheelchair reached the final
location, the navigation system triggered and sent a flag to
stop this information transfer process. The BCI then restarted
the stimulation process to obtain a new goal location.

The maximum bandwidth between the high-level com-
puter and the medium-level computer of the wheelchair
was 2kbytes/s (when the navigation system was moving the
wheelchair). The bandwidth of the communication between
the computers of the wheelchair was 0.lkbytes/s. Neither
information transfer rates overcame the 100Mb/s bandwidth of
the internal network and therefore did not impose a significant
computation time for the clients and servers.

There were two time-critical tasks in this integration: the
low-level motion controller and the autonomous navigation
system. The first task was encapsulated in a dedicated com-
puter (low-level computer of the wheelchair) with a real-
time operative system. The autonomous navigation system
was integrated in another dedicated computer (medium-level
computer) and integrated within a thread-based system with
timeouts to preserve the computation cycle (0.2s). For more
information on the implementation of these tasks refer to [30].

V. VALIDATION

The objective of this study was to assess the perfor-
mance and adaptability of the brain-controlled mobility device
(wheelchair) driven by able-bodied users in real settings. In the
following sections, the recruitment of participants is discussed,
followed by a detailed account on the experimental protocol.

A. Participants

Participation recruitment for the study began after obtaining
the protocol approval by the University of Zaragoza Insti-
tutional Review Board. Selection was made by the research
team. After being informed about the content and aims of the
study, all participants signed informed consent.

A set of inclusion and exclusion criteria was applied for
the recruitment of users in order to obtain the conclusions
for the study over a homogeneous population. The inclusion
criteria were: () users within the age group 20 — 25 years;
(7i) gender (either all women or all men); (4i7) laterality
(either all left-handed or all right-handed); and (iv) students
of the engineering school in the University of Zaragoza. The
exclusion criteria were: (¢) users with history of neurological
or psychiatric disorders; (i¢) users under any psychiatric
medication; and (i7¢) users with episodes of epilepsy, dyslexia
or experiencing hallucination. In addition to these criteria, the
study was constrained by ergonomic conditions so as to suit
the users to the wheelchair size and design: (i) user weight of
6020 kg; (i¢) height of 1.704+0.20 m; and (4i7) lean or thin
bodily constitution.
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Five healthy, 22 years old, male and right-handed students
of the University participated in the experiments. None of
them had ever utilized an electric wheelchair before. The
participants were duly informed about the whole protocol of
the study before they signed the consent forms. Permission to
reproduce video recording and photographic images was duly
granted from the participants.

B. Experiment Design and Procedures

The study was accomplished in three phases in the BCI
laboratory of the University of Zaragoza. The first phase
involved a screening session and one experiment designed to
select the visual aspects (colors, textures, etc) of the graphical
interface. The second phase consisted of driving training
and a test on a wheelchair simulator — which emulated the
underlying mechanisms of the user interface and wheelchair
navigation — to train and evaluate whether the participant was
ready to use the wheelchair. The last phase consisted of real-
time navigation in the wheelchair along established circuits to
evaluate the rehabilitation device. Each phase lasted one week.
The design and procedures of the three phases as well as the
ethical concerns of the study are described next.

1) Screening and analysis of visual aspects of the interface:
The objective of this session was to screen the participants for
the next stage and to design the aesthetic factors (the color,
contrast and brightness of the stimulus and background as
well as floor and wall textures) of the interface explained in
subsection II-B in order to equilibrate the user’s capabilities
and preferences with the performance of the system? (recall
that the shape and time of the P300 potential is correlated to
these visual aspects [16], which affected the performance of
the pattern recognition system). An experiment was performed
with three predefined groups of factors in order to limit the
complexity of the experiment, which were tested as follows.
One experimental test consisted of the repetition, for each
group of factors, of the typical P300 screening (the participant
concentrated his attention on a predefined sequence of targets

2Notice that different participants could have different factors depending
on the results.

of the visual display while the EEG was recorded). After each
trial, the participants were asked to fill in neuropsychological
and cognitive assessment forms and their level of preference
for each variation of the graphical interface. This process was
repeated 3 times, always maintaining the same order of the
groups of factors. For each participant, this session lasted 3—4
hours.

2) Driving training and wheelchair-simulator test: The
second phase consisted of driving training and a wheelchair
simulator test to familiarize the participants with the device
and to evaluate whether the participant was ready to participate
in the final experimentation session using the wheelchair.

This phase was accomplished in two steps. In the first step,
each participant completed 3 experiments of P300 screening
with the graphical interface to gather EEG data and train the
classifier. Next, the participants performed an online accuracy
test to qualify for the next phase. In the second phase, the
instructor explained how to interact with the user interface so
that the participants became familiar with the working protocol
and its relation to the navigation task. The participants then
participated in a driving test that consisted of a navigation
trial with the wheelchair simulator along a virtual circuit
(common for all participants). The duration of the participant’s
individual training varied from 45 to 60 minutes depending
on the participant, whereas the duration of the virtual circuit
experiment lasted from 50 to 60 minutes. The participants that
completed the virtual circuit qualified for the real wheelchair
navigation.

3) Experimentation with brain-actuated wheelchair: The
objective of this battery of experiments was to create the basis
for a technical and users’ behavior evaluation of the brain-
actuated wheelchair: to explore the navigation capabilities of
the system and to assess the performance of the participants
and their ability to accomplish complex maneuverability tasks,
to avoid obstacles and to navigate in open spaces in real
settings.

Two circuits were designed for the participants to solve
by autonomously navigating with the wheelchair (Figure 6).
The first circuit was designed to accomplish complex ma-
neuverability tasks and avoidance of obstacles in constrained



(Task 1)

(Task 2)

Fig. 7. The first row shows snapshots of the experiments with the wheelchair. The first two figures correspond with Task 1, and the following two figures
with Task 2. The second row shows the map generated by the autonomous navigation system and the trajectory of the wheelchair in one real experiment of
each task. Black zones indicate obstacles, white zones indicate known areas, and gray zones indicate unknown areas.

spaces. The second circuit involved navigation in open spaces.
Each participant performed two trials of the first task (named
“S” circuit) and then two trials of the second task (named
“corridor” circuit). After each trial, the participants were asked
to fill in neuropsychological and cognitive assessment forms
and to express their feelings about the wheelchair during
navigation. For each participant, this session lasted 4 hours.

4) Ethical concerns of the study: Due heed was paid to the
significance of ethical aspects in the context of the qualita-
tive nature of this research. To comply with ethical issues,
responsibility, reflection, and transparency were maintained
during the conduct of the entire protocol, such as the selection
of participants for the investigation, research queries, and
study design. A short briefing on the research procedure was
given to introduce the participants to research process, and
then participants signed informed consent. Furthermore, a
research supervision was maintained during the entire study.
The participants were encouraged to express themselves and
were allowed to discontinue participation at any time during
the experiment. The researchers gave support as facilitators
during the different sessions of the study and continuously
observed the participants’ cognitive and emotional states (e.g.,
attention, frustration, or fatigue).

VI. RESULTS AND ANALYSIS

This section reports the results of the experiments previously
described. The experimental methodology had two preparatory
phases before the evaluation phase of the rehabilitation device.
The main results of these preparatory phases are briefly
outlined (see [34] for more details).

The first experimentation phase was a screening session
with three different graphical interfaces. To perform the anal-
ysis, two technical metrics were established, related to (i)
the quality of the signals and (i) the performance of the
classifier, as well as four neuropsychological and cognitive
assessment metrics: workload, user learnability, confidence
and preference. In general, the results showed that the group
of aesthetic factors displayed in Figure 3 showed the best
compromise. Thus, it was decided to use this group of factors
for all participants.

The second phase consisted of a driving training and a
brain-actuated wheelchair simulator test. The analysis was
performed using as technical metrics the path length, time,
number of missions, number of collisions, command usage
frequency, and if they completed the virtual circuit or not. All
the participants completed the circuit, and they showed a high
understanding of the interface and navigation performance and
thus, all qualified.

The last phase consisted of real-time navigation with the
wheelchair along pre-established circuits. On the basis of
these experiments, this section describes an evaluation of
the rehabilitation device. Three different but complementary
points of view are focused on: a performance study of the
intelligent wheelchair, a users’ behavior study, and a variability
study among trials and participants. The overall result of the
experiments was that all the participants were able to carry
out the navigation tasks along the pre-established circuits with
relative ease (see Figure 7).



A. Intelligent Wheelchair Performance Evaluation

This subsection describes a general evaluation of the brain-
actuated wheelchair and a particular evaluation of its two
main systems: the brain-computer system and the navigation
technology.

1) Overall performance: The metrics proposed in [27]
were followed to evaluate the performance of autonomous
wheelchairs.

o Task success: degree of accomplishment of the navigation

task.

o Path length: distance in meters traveled to accomplish the
task.

o Time: time taken in seconds to accomplish the task.

o Path length optimality ratio: ratio of the path length to
the optimal path (the optimal path was approximated by
visual inspection as 12m for the Task 1 and 32m for the
Task 2).

o Time optimality ratio: ratio of the time taken to the opti-
mal time (the optimal time was approximated assuming
an average velocity of 0.15™, resulting in 80s for the
Task 1 and 227s for the Task 2).

o Collisions: number of collisions.

o BCI accuracy: accuracy of the pattern recognition strat-
egy.

The results are summarized in Table I.

TABLE 1
METRICS TO EVALUATE THE WHEELCHAIR PERFORMANCE
Task 1 Task 2

min max  mean std min max  mean std
Task Success 1 1 1 0 1 1 1 0
Path length (m) 12.8 19.0 15.7 2.0 375 414 393 1.3
Time (s) 448 834 571 123 507 918 659 130
Path opt. ratio 1.07 159 1.20 006 | 1.10 1.22 1.16  0.02
Time opt. ratio 6 10 5.40 1.54 2 4 275 0.8
Collisions 0 0 0 0 0 0 0 0
Useful BCI acc. | 0.88 1 0.95 0.04 | 0.81 1 094  0.07

All the participants succeeded to autonomously navigate along
the two circuits, which was the best indicator of the device
utility. The path length and time taken were very similar for
all the participants indicating a similar performance among
participants. The path optimality ratio indicates that there
were a low difference between the optimal path length and
the performed by the participants (1.2 and 1.16 on average
respectively for Task 1 and Task 2, i.e an increase of 10% to
20%). However, the time optimality factor indicates that was
a large increase (5.4 and 2.75 on average respectively for Task
1 and Task 2, i.e. between 3 and 5 times more time). This is
due to the BCI time to develop the stimulation, recognize the
command desired and recover from BCI errors. No collisions
occurred during the experiments because of the autonomous
navigation system. From the BCI point of view, the interaction
with the wheelchair was also satisfactory since the lowest
performance of the pattern recognition system was 81% and
the mean performance was above 94%.

These results were very encouraging since the experiments
were carried out in scenarios designed to evaluate maneuver-
ability and navigation in open spaces, and covered many of
the typical real navigation situations of these devices.

2) Brain-Computer System: This evaluation was divided
into an evaluation of the pattern recognition (BCI accuracy)
and an evaluation of the graphical interface design. Some met-
rics were proposed to evaluate the accuracy of brain-computer
interfaces [35]. Based on them, the following measures were
used in this study:

o Real BCI accuracy: ratio of BCI correct selections to total

number of selections.

o Total errors: number of total incorrect selections of the
BCI.

o Useful errors: incorrect selections of the BCI that the
participant decided to reuse.

o Useless errors: incorrect selections of the BCI that the
participant decided not to reuse.

o Useful BCI accuracy: ratio of good selections plus useful
errors to total number of selections.

o Mission time: mean time to accomplish one mission.
The global navigation task is accomplished by iteratively
setting navigation missions.

The results are summarized in Table II.

TABLE II
METRICS TO EVALUATE THE PATTERN RECOGNITION STRATEGY
Task 1 Task 2

min  max mean std min max  mean std
Real BCI accur. 0.85 1 0.93 0.05 | 0.77 1 0.92  0.07
Useful BCI accur. | 0.88 1 0.95 0.04 | 0.81 1 094  0.07
# Total errors 0 4 1.6 1.35 0 7 1.9 2.13
# Useless errors 0 3 1.3 1.16 0 6 1.5 1.9
# Useful errors 0 1 0.3 0.48 0 1 0.4 0.52
Mission time (s) 53.8  64.2 59.4 2.9 63.1 80.8 72.1 5.6

The real accuracy was on average greater than 92%, which
indicated a high accuracy. The standard deviation was low
and very similar in both tasks, revealing a congruent and ho-
mogeneous behavior among the participants and tasks. There
is a distinction between real and useful accuracy because in
some situations, although the BCI system did not recognize
the participant’s selection, the BCI selection was used by the
participant to achieve the task®. These BCI errors were referred
to as useful errors, while the incorrect selections that were not
reused were referred to as useless errors. Notice that 20% of
the errors in the tasks were useful for the participants, and thus
the useful accuracy was 94%, greater than the real accuracy.
Furthermore, these errors did not increase the number or time
taken to select and validate during a task.

Another error-related issue was that, although there were on
average 1.3 and 1.5 useless errors respectively to Task 1 and
Task 2, their effect was only a delay in the execution time
until a new selection was made. During the experiments, the
BCI system never set an incorrect mission for the autonomous
navigation system. This was because the probability of the
situation was below 0.3% (in the usage protocol there must
be a BCI failure in a selection first and then another BCI
failure that results in the selection of the validation option).

The other aspect of the brain-computer interface was the
design of the graphical interface used to achieve the navigation

3This situation is common in open spaces. For example, in the situation
displayed in Figure 3a, many goal locations in front of the vehicle could be
used to navigate along the corridor.



tasks. Some of the metrics proposed in [27] were adapted to
assess the user’s interfaces of intelligent wheelchairs. Based
on them, the following measures were proposed:

o Command utility: command usage frequency.

o Usability rate: number of selections per mission.

o Misunderstandings: number of errors by misunderstand-
ings in the interface (they could arise due to a misunder-
standing of the usage protocol or to a visual representa-
tion of the objects).

The results are summarized in Table III.

TABLE III
METRICS TO EVALUATE THE GRAPHICAL INTERFACE
Task 1 Task 2
min  max mean std | min max mean std
# 1st grid row 0 1 0.1 0.3 0 4 2.7 1.3
# 2nd grid row 0 4 1.7 1.1 1 10 43 2.8
# 3rd grid row 1 9 5.6 24 1 9 3.7 2.5
# Left arrow 0 2 1.1 0.6 0 1 0.1 0.3
# Right arrow 1 6 2.1 1.6 0 1 0.1 0.32
# Validations 8 14 9.6 1.9 7 12 9.2 1.9
Usability rate 2.0 2.4 2.1 0.1 | 2.0 2.6 22 0.2
# Misunderstandings 0 0 0 0 0 0 0 0

In general, the design of the interface was enough to correctly
use the system, since all the participants were able to operate
it and carry out the navigation task. The command utility
was greater than zero for all the participants and commands,
indicating that they used all functionalities on the screen (there
were no useless commands). The frequency of usage was
highly dependent on the driving style and this will be analyzed
in subsection VI-B. Regarding the usability rate, the mean rate
indicated very low extra selection rates (in theory 2 selections
per mission are needed). Notice that this increase could come
from BCI errors (see above) or from misunderstandings of the
interface (affecting the interface design). Although there were
no misunderstanding errors reported by the participants, the
possibility that errors occurred but participants did not become
aware of them could not be eliminated.

In summary, these results indicated that the pattern recog-
nition strategy and the graphical interface of the brain-
computer interface were suitable for controlling the intelligent
wheelchair.

3) Navigation System performance: There have been sev-
eral metrics proposed to evaluate navigation of intelligent
wheelchairs [36], [27]. The more representative ones for this
case are:

o Task success: represents whether the participant com-

pleted the task successfully.

o Collisions: number of collisions.

o Obstacle clearance: minimum and mean distance to the

obstacles.

o Number of missions.

The results are summarized in Table IV.

The performance of the navigation system was remarkable
since all missions were successfully accomplished (all desti-
nations were achieved without collisions). In total, the system
carried out 188 missions traveling a total of 550.5 meters with
an average velocity of 0.16™* (5 times less than the usual
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TABLE IV
METRICS TO EVALUATE THE NAVIGATION SYSTEM

Task 1 Task 2

min max mean std min max mean std
Task success 1 1 1.00 0.00 1 1 1.00 0.00
# Missions 8 14 9.60 1.90 7 12 9.20 1.93
# Collisions 0 0 0.00  0.00 0 0 0.00  0.00
Path length (m) 12.84  19.02 1574 199 | 3752 4144 3931 133
Velocity (m/s) 0.10 0.15 0.13  0.01 0.16 0.19 0.18  0.01
Time in motion (s) 100 160 124.4 19 206 247 220 12
Clearance min (m) 0.67 0.88 0.79  0.07 | 047 0.71 0.61 0.07
Clearance mean (m) 2.83 3.16 3.02 0.2 3.19 334 3.28 0.05

human walking velocity). There were zero collisions during
experimentation.

One of the main difficulties of current navigation systems is
to avoid obstacles with safety margins and to drive the vehicle
between close obstacles [30]. The mean minimum clearance
was of 0.79 and 0.61, and the mean clearance was of 3.02 and
3.28, respectively for Task 1 and Task 2, which indicated that
the vehicle carried out obstacle avoidance with good safety
margins.

One indicator of navigation performance is the adaptability
to environments with different constraints and another is the
average velocity. In Task 2 (open spaces), the average velocity
was 0.187F, which was greater than the average in Task
1, 0.13%. These measurements indicated that the navigation
system adapted to the conditions of the environment, obtaining
an increase in the average velocity in open spaces and a
reduction when the maneuverability became more important.

In general, the navigation system successfully solved all the
navigation missions without collisions in environments with
different conditions and constraints (covering a wide range of
real situations).

B. Users’ Behavior Evaluation

In this subsection an evaluation of the participants’ behavior
is described while using the wheelchair. Three different but
complementary points of view are focused on: an execution
analysis (to study what the participants did and their perfor-
mance), an activity analysis (to study how the participants per-
formed the tasks) and a psychological assessment (to study the
participants’ workload, learnability, and level of confidence).
These three studies together will give a measure of the degree
of accomplishment and adaptability of the wheelchair to the
participants.

1) Execution Analysis: To measure the degree of accom-
plishment of the navigation task the following metrics were
used: (i) task success; (i7) number of missions; (iii) path
length; (iv) total time; and (v) useful BCI accuracy. These
metrics were selected based on other studies [27] and the
results are summarized in Table V. The results shown are the
average of the two trials executed for each task.

TABLE V
TASK ACCOMPLISHMENT
Task 1 Task 2
P1 P2 P3 P4 P5 P1 P2 P3 P4 P5
Task Success 1 1 1 1 1 1 1 1 1 1
# Missions 8.0 9.0 105 115 9.0 8.5 8.5 105 11.0 75

Path length (m) 149 166 179 158 13.6 | 393 40.0 382 409 382
Total time (s) 469 538 659 696 493 569 605 823 740 560
Useful BCT acc. | 094 095 090 093 1.00 | 1.00 098 0.84 092 097
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Fig. 8. Time (in seconds) in which the wheelchair was halted and time in
which the wheelchair was in motion. The addition of these two terms is the
total time taken to accomplish the task. These results are the mean of the two
trials of each task executed.

All the participants succeeded in carrying out all navigation
tasks. The number of missions is an indicator of the intermedi-
ate steps required to execute and solve the complete navigation
task. Participants 1, 2, and 5 needed fewer missions than the
other participants, which showed an efficient mission selection
for both types of navigational tasks. Another metric for the
individual navigation performance is the distance traveled.
Participants 1 and 5 performed the circuits with a short path
length and with the lowest number of missions. More inter-
esting results were provided by the execution times of each
participant since it involved a combination of BCI accuracy
and efficient mission selection. On one hand, participants 1,
2, and 5 performed the tasks in less time than the others,
showing the highest BCI performance and mission selection.
On the other hand, participants 3 and 4 presented the lowest
BCI accuracy and the most inefficient mission selection (many
missions to solve the navigation task), thus having the longest
navigation time. Furthermore, the great difference in time was
due to the BCI accuracy (participants 3 and 4 showed the
lowest performance) that led to a higher time to set a mission
(Figure 8).

Based on the previous parameters, one can infer that there
are two groups that explain how efficiently the participants
used the system. The better mission selection with which
participants 1, 2, and 5 performed the tasks reflected a more
efficient use of the rehabilitation device. However, the results
showed that participants 3 and 4 presented lower accuracy
interaction with the wheelchair and higher number of missions,
which suggested less efficient use than the others. The fact
that all the participants succeeded in solving the navigation
task and zero collisions occurred during the execution of both
navigation tasks (see Table I) suggested a high robustness of
the BCI-based wheelchair system as well as adaptability to the
potential users.

2) Activity Analysis: The activity analysis addresses the
users’ interaction strategy with the wheelchair in order to
achieve navigation tasks. Following [37], there were two types
of activity that apply to this context: the supervisory-oriented
activity and the direct control-oriented activity. Supervisory-
oriented activity is defined by less amount of intervention and
a selection of goals that explores the automation facilities,
mainly trajectory planning and obstacle avoidance. This mode
is characterized by a higher number of selections involving
far goal destinations, a lower number of left- and right-arrow
selections, and a lower number of missions. Direct control
activity is characterized by an increased user intervention and

less confidence on the navigation capabilities of the system.
This mode is operatively described by a higher number of
selections on the arrow icons (to position the wheelchair), near
range goal selections, and a higher number of missions.

The hypothesis is that the participants used different naviga-
tion styles to solve both navigation tasks. The metrics proposed
in [27] were adapted to study the interaction strategy made by
the participants during the execution of the navigation tasks:

o Discriminant Activity: denoted by D 4, measures the ratio

of goal selections minus total of left and right turns to
the total number of selections:

Dy= tDest. — fTurns

(D

tSelections

o Path length (in meters) per mission, denoted by Pjy.

o Time (in seconds) in which the wheelchair was in motion
per mission, denoted by T};.

o Control activity descriptor: denoted by C'4, measures the
ratio of turn selections to the total number of selections:

tTurns 2)

Ca= tSelections

o Supervisory activity descriptor: denoted by S 4, measures
the ratio of 1st grid row destinations to the total number
of selections:

_ #lstGridRowDest.

gSelections

Sa 3)

The discriminant activity D 4, the path length per mission
Pps, and the time in which the wheelchair is in motion
per mission T, are general metrics to differentiate between
navigation styles. High values of these metrics indicate a
supervisory-oriented activity, while low values indicate a
control-oriented activity. Furthermore, control-oriented activity
is also characterized by high values of C' 4, while supervisory
activity is also characterized by high values of S 4. Table VI
shows the results for these metrics.

TABLE VI
METRICS FOR THE ACTIVITY ANALYSIS
Task 1 Task 2
min max mean std min max mean std
Dy 0.18 0.67 0.40 0.18 0.88 1.00 0.95 0.05
Py (m) 1.44 1.90 1.68 0.20 3.71 5.12 4.44 0.66
T (s) 11.22 1450 1286 1.29 | 19.77 28.07 2427 3.34
Cy 0.17 0.39 0.28 0.09 0.00 0.06 0.02 0.26
Sa 0.00 0.08 0.01 0.03 0.00 0.57 0.30 0.20

Values of D 4, Py, and T, were lower in Task 1 than in Task
2, which suggested a control activity during the first task and
a supervisory activity during the second task. Furthermore, in
Task 1, the participants exhibited a tendency towards control
activity, since C'4 values were higher in comparison to values
in Task 2, while in Task 2 the participants showed a tendency
towards supervisory activity, since S4 values were higher
in comparison to values in Task 1. These results indicated
that the participants used the two interaction strategies to
solve the navigation tasks. The results also suggested that
the participants had two mental models of the machine and
switched between them to accomplish the maneuverability
tasks or navigation in open spaces.
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Fig. 9.  Metrics used for the psychological assessment in the two tasks.

(a,b) Workload assessment on a scale of 0 to 4 (from almost no effort to
considerable effort). (c,d) Learnability assessment on a scale of O to 4 (from
difficult to easy to learn). (e,f) Level of confidence assessment on a scale of
0 to 4 (from least confident to highly confident).

3) Psychological Assessment: This study consisted of a
psychological test battery to study behavioral aspects such
as workload, learnability and level of confidence, which gave
indications of the participants’ adaptability to the rehabilitation
device. The following metrics were used for this study:

o Workload based on effort: this parameter measures the
amount of effort and workload exerted by the participant.

o Learnability: this parameter describes the ease of learning
how to use the device during the navigation tasks.

o Level of confidence: this parameter describes the confi-
dence experienced by the participant during the naviga-
tion tasks.

The participants filled in questionnaires after the experi-
ments to evaluate the previous metrics. The results are sum-
marized in Figure V.

Regarding workload and effort, participants 2 and 3 reported
more workload than the participants 1, 4, and 5. In general,
all the participants reported more effort in Task 1 than in Task
2, probably because Task 1 was more cognitive-demanding in
terms of planning the complex maneuvers. Participants 2, 4,
and 5 experienced difficulties in learning to solve the first
maneuverability task, but all showed a great improvement
later. This could be explained by the fact that the first trial
corresponded to the first time that they used the wheelchair to
solve a predefined task. Because of performing always in first
place the Task 1, the learning is almost achieved during that
task. That reason leads to the learning results shown on the
Task 2, where all the participants selected the maximum value
possible. Furthermore, the complex maneuvers performed on
Task 1 (which was considered more difficult than the Task
2) probably accentuated this fact. The results suggest that the
participants had gradually learned the device usage. The last
metric used was the level of confidence that the participant
felt while operating the device. All the participants showed
a great level of confidence, which was incremented during

tasks except for participant 3. This could be due to his low
performance in the execution of the tasks (due to the lowest
BCI accuracy, see Table V). In general, there was always an
improvement in all metrics: the participants experienced less
effort, higher learning skills and felt more confident, which
reflected a high adaptability of the participants to the device.

C. Variability Analysis

This study analyzed two types of variability degrees during
the experimental sessions: intra-user and inter-user. Intra-user
variability measured the variability of a user among trials
of the same task, whereas inter-user variability measured the
variability of execution among users during the execution of
the same task. Within these results, the aim of this analysis
was to measure the degree of homogeneity of the developed
system (i.e., whether a homogeneous group of participants
offered similar results in similar experimental conditions). The
following metrics were defined for the variability study:

o Selections/minute: number of selections per minute.

o Missions/minute: number of missions per minute.

o Distance/minute: effective distance traveled by the

wheelchair per minute.

o Useless BCI errors/minute: number of useless errors by

the BCI system per minute.

The results are summarized in Table VII. To measure the

TABLE VII
METRICS FOR THE VARIABILITY STUDY

TASK 1
Pl P2 P3 P4 P5
Tr.1 Tr.2 | Trl Tr.2 | Trl Tr2 | Trl Tr2 | Trl Tr.2
Sel/min 215 220 | 221 200 | 221 216 | 223 215 [ 223 214

Miss/min | 1.01  1.03 | 1.0 1.00 | 093 098 | 1.01 097 | 1.12 1.07
Dist/min 1.86 194 | 1.44 236 | 162 1.64 | 1.16 1.66 | 143 193
Err/min 0.13  0.13 | 020 0.00 | 025 020 | 022 0.1 | 0.00 0.00
TASK 2
Pl P2 P3 P4 P5
Tr.1 Tr2 | Trl Tr2 | Trl Tr2 | Trl Tr2 | Trl Tr.2
Sel/min 1.66 190 | 1.87 1.57 | 203 190 | 1.99 1.90 | 1.64 1.78

Miss/min | 0.83 095 | 089 0.79 | 0.78 0.74 | 092 0.86 | 0.82 0.79
Dist/min | 4.68 3.71 | 3.67 434 | 254 3.10 | 3.09 3.58 | 448 3.76
Err/min 0.00 0.00 | 0.09 0.00 | 039 025 | 015 0.17 | 0.00 0.10

variability, the Pearson’s correlation coefficient was applied to
the above defined metrics: values close to one indicated low
variability, while values far from one indicated high variability.

1) Intra-user variability: The intra-user variability repre-
sented the degree of variability between the two trials executed
for each participant in each task. These results are shown in
Table VIII.

TABLE VIII
INTRA-USER VARIABILITY
| PI P2 P3 P4 P5
Variability Task 1 | 1.000 0.865 0.998 0945  0.960
Variability Task 2 | 0.985 0989 0983 0992 0.994

This coefficient was greater than 0.94 (except for participant
2 in Task 1) indicating that the variability between trials
was not substantial. This low intra-variability denoted that the



participants determined that their way to solve each task was
correct, and therefore they tried to perform equally in both
executions.

2) Inter-user variability: Represented the degree of vari-
ability among participants in each navigation task. Results of
this analysis are shown in Table IX.

TABLE IX
INTER-USER VARIABILITY
Task 1 Task 2

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5
P1 1 0962 0987 0.953 0981 1 0960 0917 0953  0.998
P2 - 1 0.944 0952 0977 - 1 0.964 0988 0.970
P3 - - 1 0.978  0.980 - - 1 0.990 0.926
P4 - - - 1 0.984 - - - 1 0.961
P5 - - - - 1 - - - - 1

The coefficient was greater than 0.92, indicating a low inter-
variability. This low variability denoted that the users executed
the task in a similar and analogous way. The inter- and intra-
variability results indicated that under the same experimental
conditions, the group performed similar actions, giving the
system a high degree of homogeneity and invariability against
different users in a variety of situations.

VII. CONCLUSIONS AND FUTURE WORK

This paper describes a new brain-actuated wheelchair con-
cept that relies on a synchronous P300 brain-computer inter-
face integrated with an autonomous navigation system. This
concept gives the user the flexibility to use the device in
unknown and evolving scenarios using the onboard sensors.
Furthermore, once the user sets the destination he/she can
relax, avoiding exhausting mental processes.

The system was used and validated by five healthy par-
ticipants in three consecutive steps: screening, virtual envi-
ronment driving, and wheelchair driving sessions. During the
real experiments, the system showed high performance and
adaptability, since all participants accomplished two different
tasks with relative ease. The experiments were carried out in
settings designed to cover typical navigation situations, such as
open spaces and complex maneuverability. The BCI accuracy,
the performance of the graphical interface as well as the
performance of the navigation system were high, indicating
that the integration of these technologies was satisfactory.
The variability study suggested that the results had a low
variability, giving the system a high degree of homogeneity.

Currently, the researchers are working on the improvement
of the system. To address the low information transfer rate,
which is a common problem of all event-related potential
approaches, a P300 continuous control of the system is being
developed, in an attempt to reduce the total time to solve the
tasks. In order to address the synchronous operation, in which
the user had to be continuously concentrated on the task, an
interesting improvement the researchers would like to work
on is the adoption of asynchronous P300 control to support
an idle state, as in [38]. Although the BCI accuracy was high
(94%), the researchers are working on the integration of a
BCl-based online error detection system (which is a direction
followed in many laboratories [39], [40]). Another direction

that the researchers are exploring is the substitution of the
virtual reconstruction displayed on the graphical interface by
an augmented reality with real-time video in devices that are
not co-located with the users, such as the brain-teleoperation
of a robot [41].

In future, it would also be important to perform experimen-
tal validation with potential users of the developed system.
These users would be those who have lost almost all voluntary
muscle control, due to diseases such as Amyotrophic Lateral
Sclerosis (ALS), spinal cord injury, or muscular dystrophy.
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