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Abstract

This paper addresses the modeling of the static and dynamic parts of the scenario
and how to use this information with a sensor-based motion planning system. The
contribution in the modeling aspect is a formulation of the detection and tracking
of mobile objects and the mapping of the static structure in such a way that the
nature (static/dynamic) of the observations is included in the estimation process.
The algorithm provides a set of filters tracking the moving objects and a local
map of the static structure constructed on line. In addition, this paper discusses
how this modeling module is integrated in a real sensor-based motion planning
system taking advantage selectively of the dynamic and static information. The
experimental results confirm that the complete navigation system is able to move
a vehicle in unknown and dynamic scenarios. Furthermore, the system overcomes
many of the limitations of previous systems associated to the ability to distinguish
the nature of the parts of the scenario.
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1 Introduction

Autonomous robots are currently being deployed in real environments such as
hospitals, schools or museums developing help-care or tour-guide applications
for example. A common characteristic of these applications is the presence of
people or other moving objects. These entities make the environment dynamic
and unpredictable and have an impact on the performance of many of the ba-
sic robotic tasks. One of these tasks, common for many robotic applications,
is mobility. In particular, dynamic scenarios involve two aspects in the mo-
tion generation context: (i) to model the scenario and (ii) to integrate this
information within the motion layer. This paper addresses both issues.

The majority of existing motion systems address dynamic scenarios by using
the sensor observations at high rate compared to the obstacles dynamics. In
other words, they assume a static but rapidly sensed scenario, which allows
fast reactions to the changes induced by the evolution of the moving objects.
Although this assumption works fine in many cases (obstacles moving at a
low speed), in realistic applications is no longer valid. This is because in real-
ity the object’s motion is arbitrary and, even assuming low speeds, in many
cases these systems fail. For instance, Figure 1 shows two common and sim-
ple situations where the static and dynamic parts of the scenario have to be
discriminated, modeled and consequently used within the motion generation
layer. To explicitly deal with dynamic objects is a must to improve the ro-
bustness of the motion systems.

In this work we are interested in those applications where the scenarios are
dynamic and unpredictable and, thus, require rapid reactions of the vehicles.
For instance, consider a robotic wheelchair (Figure 2). In this type of applica-
tion, the user places goal locations that the wheelchair autonomously attains.
In this context, the goals are usually in the field of view of the user, that is, in
the close vicinity of the robot. This is important to bound the spatial domain of
the motion generation. In general, the motion task has been usually addressed
from a global or local point of view (i.e. global or local motion systems). For
full autonomous operation both are required since they are complementary,
however their competences are different and related with the spatial domain
and the reaction time. In short, the larger the spatial domain is, the higher
the reaction time due to the computational requirements [1].

On the one hand, global systems address solutions with large spatial do-
mains. In static environments, successful global mapping and planning has
been demonstrated even though the computational requirements increase with
the size of the scenario. Dynamic scenarios impose additional difficulties since
it has been proved that the motion planning problem in the presence of dy-
namic obstacles is NP-hard [10] (even in simple cases such as a point robot
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Fig. 1. These figures depict two examples that illustrate the importance of mod-
eling and using the dynamic and static parts of the scenario in the motion layer.
The points are laser measurements. Situations where (a) the robot and a dynamic
obstacle move in a long corridor, and (b) the robot moves toward a door that is
temporally blocked by a moving obstacle. Without distinction between static and
dynamic obstacles, both the corridor and the door seem to be blocked and every
motion layer using the sensor measurements without processing would fail. To solve
both situations, we need to construct a model of the static and dynamic parts of
the scenario and use them consequently in the motion layer (adapting the motion
to the object dynamics).

and convex polygonal moving obstacles). In other words, global mapping and
planning are time consuming operations especially in dynamic scenarios. Thus,
they are not adapted to high rate perception - action operations.

On the other hand, in local systems the domain is usually bounded to achieve
high rate perception-action schemes (working within the control loop). Fur-
thermore, the motion problem in dynamic and unpredictable scenarios is local
in nature, since: (i) it makes no sense to maintain a map of dynamic objects
observed long time ago (e.g. two rooms away from the current location); and
(ii) moving obstacles can modify the route arbitrarily (e.g. humans) constantly
invalidating plans. That is why we focus our attention on local motion sys-
tems. These systems work within a high frequency perception - action scheme.
Real-time is achieved by limiting the model size (used to plan the motions) and
alleviating some constraints of the planner (to speed it up). The consequences
of these design choices are: (i) the maximum reach of the motion solution is
the model size, and (ii) the system might fail in some rare situations due to
the under-constrained motion planning strategies. Despite these limitations,
local systems are able to compute robust local motion in the large majority of
cases (see [43] for a discussion). Additionally, as discussed before, these local
techniques can be combined with global techniques improving the behavior in
long-term missions. In particular, in the robotic wheelchair application, the
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Fig. 2. A child using an autonomous robotic wheelchair in a crowded and populated
scenario. The number and dynamics of the moving obstacles is unpredictable. To
deal with the motion aspect in these scenarios is the context of this work.

high level (global) competences may rely on a human and the machine ad-
dresses local issues. This paper focuses on the construction of local models
in dynamic environments and their integration with local motion planning
systems.

The paper is organized as follows. Section 2 describes the related work and
the contributions of this work. Section 3 presents the modeling of the static
and dynamic scenarios, and in Section 4 this module is integrated with a local
motion planning system. In Section 5 we describe the experimental results to
validate the modeling and the motion generation in dynamic scenarios. Section
6 draws the conclusions.

2 Related Work and Contributions

This paper focuses on two aspects of the design of motion systems in dynamic
scenarios: (i) to appropriately model the scenario, and (ii) to consequently
integrate and use this model in the motion layer. Thus, we articulate this
section in these two directions and, finally, we outline the contributions of this
work.
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2.1 Modeling Dynamic Scenarios

Modeling dynamic scenarios has at least two aspects: the modeling of the static
parts of the environment and the identification and tracking of the moving
objects. On one hand, the modeling of static scenarios has been extensively
studied. The proposed algorithms include incremental maximum likelihood
mapping techniques [20,19,25], batch mapping algorithms [22] or online Si-
multaneous Localization and Map Building (SLAM) [12,11,49]. On the other
hand, the Tracking of Moving Objects (TMO) is also a well-studied prob-
lem [3,8]. However, a robust modeling of dynamic environments requires to
perform both tasks at the same time. This is because the robot position er-
ror affects the classification of the measurements and, consequently, the map
construction and the tracking of the moving objects.

The modeling techniques that address both issues simultaneously can be roughly
divided into global or local techniques. On one hand, there are global tech-
niques that address the mapping and tracking problem simultaneously. For
example, [52] presents a rigorous formulation of the TMO-SLAM problem as-
suming a known classification of the observations into static and dynamic.
The problem is factorized into an independent SLAM and an independent
tracking. In the implementation, the classification is based on the violation of
the free space in a local dense grid map and the tracking on a set of extended
Kalman filters (EKF). In [21] they use a feature based approach to detect the
moving objects in the range profile of the laser scans. Next, they use Joint
Probabilistic Data Association particle filters [44] to track the moving objects
and a probabilistic SLAM technique to build the map. The previous methods
do not take into account the uncertainty of the robot motion in the classifica-
tion step. Thus, difficulties may arise in the presence of large odometry errors
due to misclassification, since these errors affect the precision and the con-
vergence of the previous algorithms. Incorporating the classification process
within the estimation process is hard due to the combination of discrete and
continuous hidden variables and results in intensive computing algorithms.
For instance, in [22], an Expectation Maximization based algorithm filters the
dynamic measurements that do not match the current model of the static
parts while building a map of the environment. However, this technique is not
well suited for real time motion generation because of its batch nature and
because it does not explicitly model the dynamic features.

On the other hand, the usual strategy with the local techniques is to build the
map by filtering the measurements originated by the moving objects. Many
algorithms use a scan matching technique to correct the robot position and
incrementally build a local map [5,26,7,32]. The performance of these tech-
niques is affected by dynamic environments due to failures in the matching
process. Several authors have extended them to minimize the effect of the
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moving objects by discarding sectors with big correspondence errors [4] or by
using the Expectation Maximization (EM) method to detect and filter the
spurious measurements [23]. These type of methods are widely spread and
used, since they are well adapted to real time operation. However, they dis-
card dynamic information and do not explicitly track the moving objects. The
lack of a model for the dynamic parts hampers their filtering in subsequent
measurements and prevents the usage of this information for other tasks (e.g.
sensor-based motion planning).

2.2 Motion Generation in Dynamic Scenarios

The correct way to generate motion in dynamic scenarios is to address the mo-
tion planning with moving obstacles. Unfortunately it has been demonstrated
that this problem is NP-hard even for the most simple cases (point robot and
convex polygonal moving obstacles [10]). As a result, these techniques are not
well suited for real time operation. This is because they take significant time
to compute the plan and often, when it is available, the scenario has been
modified invalidating the plan. The problem of motion in dynamic scenarios
is usually simplified to achieve real time operation.

The usual simplification is to compute the motion with reactive obstacle avoid-
ance techniques, which reduce the complexity of the problem by computing
only the next motion (instead of a full plan). Therefore, they are very efficient
for real-time applications. Some reactive techniques have been designed to
deal with moving obstacles [16,18] and have demonstrated good performance.
Unfortunately their local nature produces trap situations and cyclic behaviors,
which is a strong limitation for realistic operation.

To overcome this limitation it has been suggested to combine these reactive
techniques with some sort of planning (see [1] for a discussion on integration
schemes and [30] for a similar discussion in the motion context). The more
widespread way to combine reaction with planning are the systems of tactical
planning [42,50,9,30,46,41,37]. They perform a rough planning over a local
model of the scenario, which is used to guide the obstacle avoidance. The
planning extracts the connectivity of the space to avoid the trap situations.
The reactive collision avoidance computes the motion addressing the vehicle
constraints. The advantage of these local motion systems is that the combina-
tion of planning and obstacle avoidance at a high rate assures robust collision
avoidance while being free of local minima (up to some rare cases related with
the relaxation of constraints of the planning algorithm [43]). However, none
of these systems constructs models of the dynamic and static parts of the
scenario. Thus, they cannot correctly cope with some typical situations (such
as those depicted in Figure 1) affecting the robustness of the system.
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2.3 Contributions

This paper contributes in two aspects of the motion generation where the
dynamic obstacles affect: (i) the construction of a model of the dynamic and
static parts of the scenario and (ii) its integration within a local system of
tactical planning.

• The first contribution is an incremental local mapping algorithm that ex-
plicitly solves the classification process. The method uses the Expectation
Maximization algorithm to compute the robot pose and the measurement
classification, constructs a local dense grid map and tracks the moving ob-
jects around the robot. The method could also be seen as a scan matching
algorithm for dynamic environments that includes the information about
the moving objects.

• The second one is the integration of the previous modeling within a local
sensor-based motion system based on a tactical planning scheme. The ad-
vantage is that the motion is computed by selectively using the information
provided by the static and moving obstacles in the planning - obstacle avoid-
ance paradigm. As a consequence, the system is able to drive the vehicle
in dynamic scenarios while avoiding typical shortcomings classically related
with mobility such as the trap situations or the motion in confined spaces.

3 Modeling dynamic environments

In this section, we outline the problem of modeling dynamic environments from
a Bayesian perspective. Next, we present a maximum likelihood algorithm to
jointly estimate the robot pose and classify the measurements into static and
dynamic; and we provide the implementation details for a laser sensor.

The objective is to estimate the map of the static parts and the map of the
moving objects around the robot using the information provided by the on-
board sensors. Formally, let Zk = {zk,1, ..., zk,Nz

} be the Nz observations ob-
tained by the robot at time k and uk the motion command executed at time
k. The sets Z1:k = {Z1, ..., Zk} and u0:k = {u0, ..., uk} represent the observa-
tions and motion commands up to time k. Let xk denote the robot location
at time k, Ok = {ok,1, ...ok,NO

} the state of the NO moving objects at time k
and M the map of the static environment 1 . From a Bayesian point of view,

1 The assumption here is that the map M does not change over time (note that
the map does not have a time index). The formulation states that the world can
be divided in two different types of features: static and dynamic. The static ones
are parameters (their value is fixed) while the dynamic ones require modeling their
evolution. This assumption is common in this context and in most of the algorithms
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the objective is to estimate the distribution p(Ok, xk,M | Z1:k, u0:k−1). Using
the Bayes rule and marginalizing out the state variables at the previous step,
we get the recursive Bayes estimator

p(Ok, xk, M | Z1:k, u0:k−1) = ηp(Zk | Ok, xk, M) (1)
∫ ∫

p(Ok, xk | Ok−1, xk−1, M, uk−1)p(Ok−1, xk−1, M | Z1:k−1, u0:k−2)dOk−1dxk−1

where η is a normalization factor. The term p(Zk | Ok, xk,M) is known as
the measurement model. The integral combines the motion model p(Ok, xk |
Ok−1, xk−1,M, uk−1) and the distribution of interest at k − 1 to predict the
state vector at time k. Notice that, since the map does not change over time,
it is a constant in the integration. We have used a Markov assumption to
discard previous measurements and commands and simplify both the motion
and measurement models.

The motion model, p(Ok, xk | Ok−1, xk−1,M, uk−1), represents the evolution of
the robot and the moving objects. Let us assume that the objects ok,i and the
robot xk move independently. Then, the joint motion model can be factorized
into the individual motion models of the robot and each moving object. If
the motion does not depend either on the map M , the motion model can be
written as

p(Ok, xk | Ok−1, xk−1, uk−1) = p(xk | xk−1, uk−1)

Nz∏

i

p(ok,i | ok−1,i) (2)

The likelihood term, p(Zk | Ok, xk,M), measures how well the observations
match the prediction done by the motion model. Computing this term requires
to solve the data association problem, i.e. to establish a correspondence be-
tween each measurement and a feature of the map or a moving object. In order
to model the data association, we introduce a new variable ck that indicates
which feature originated each measurement Zk. Since the correspondences are
unobserved, one has to integrate over all the possible sources ck

p(Zk | Ok, xk,M) =
∑

ck

p(Zk, ck | Ok, xk,M)p(ck | Ok, xk,M) (3)

that map static environments. Otherwise, if all features are considered dynamic, the
non-visible parts of the map become unusable after some time since their location
tends to a non informative distribution (their uncertainty increases in an unbounded
way). Furthermore, observability also becomes an issue due to the uncertainty in
the robot displacement.
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Fig. 3. Graphical representation of the problem including the data associations. The
circles represent the continuous variables and the squares discrete ones. The filled
nodes are the measurements whereas the empty ones represent hidden variables.

Figure 3 shows the graphical representation of the problem. The model con-
tains the continuous variables of Equation (1) and the discrete variables ck

representing the source of the measurements at each point in time (i.e. they
represent the classification or correspondence problem into static/dynamic).

In general, it is very hard to perform exact inference on such models due to
the integration over all the possible correspondences and the mutual exclusion
constraints. Therefore, one has to use approximations. It is possible to use
sequential Monte Carlo techniques [14,39] to approximate the full distribu-
tion. The drawback is a high computational cost due to the increasing size of
the map and the multiple hypotheses arising from different classifications. As
described in Section 2, most of previous works simplify the problem assuming
that the classification into static and dynamic is known. In practice the clas-
sification is not available and it is usually computed based on the distribution
p(Ok, xk,M | Z1:k−1, u0:k−1) using patterns and/or free space constraints.

In the next section, we propose an incremental mapping algorithm that jointly
computes the robot pose xk and the correspondences ck to obtain the estimate
of the map M and the location of the moving objects Ok.

3.1 Incremental mapping of dynamic environments

A key feature of previous approaches is a high computational time due to the
increasing size of the map, which hinders its application in the context of this
work (real - time operation). One simplification of the full modeling problem
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is incremental mapping [48,19]. The objective is to compute a single pose x̂k

of the vehicle at each point in time k (instead of a distribution). Thus, the
representation of the map and the moving objects, which can be probabilistic,
are conditioned on this deterministic trajectory.

Incremental mapping estimates at each point in time k the robot pose x̂k that
maximizes the likelihood term p(Zk | Ok, xk,M)

x̂k = arg max
x

p(Zk | Ok, xk,M)p(xk | x̂k−1, uk−1) (4)

The additional term p(xk | x̂k−1, uk−1) introduces the uncertainty of the last
robot motion uk−1 to constraint the possible solutions of the optimization algo-
rithm. Furthermore, the map M and the state of the objects Ok are computed
from the set of measurements Z1:k−1 and poses x̂1:k−1 up to time k − 1,

Mk = fM(x̂1:k−1, Z1:k−1) (5)

Ok = fO(x̂1:k−1, Z1:k−1) (6)

The robot trajectory x̂1:k−1 used by functions fM and fO is the deterministic
set of maximum likely poses. The detailed description of functions fM and fO

is given in the next sections. However, let us advance that for computational
reasons, they are incremental functions that use the estimates at k − 1, the
new pose and the last set of measurements.

The advantage of this framework is that the classification of the measure-
ments can be included within the maximum likelihood optimization using the
Expectation-Maximization (EM) algorithm. This is addressed in the next sec-
tion.

3.2 Expectation Maximization (EM) Maximum Likelihood approach

So as to solve Equation (4) the term p(Zk | Ok, xk,M) has to be maximized,
which requires to consider all the possible sources (static map or a dynamic
object) for each observation (see Equation (3)). The resulting expression has
no closed-form solution and it is difficult to maximize since the classification
variables ck are unknown in general (Figure 3). This subsection describes how
to use the Expectation Maximization (EM) [13,27] formulation to address the
static/dynamic classification process and solve Equation (4) to obtain x̂k.

The EM technique is a maximum likelihood approach to solve incomplete-
data optimization problems. Initially, it introduces some auxiliary variables
to convert the incomplete-data likelihood into a complete-data likelihood Lc

which is easier to optimize. Then, there is a two step maximization process: (i)
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the E-step computes the conditional expectation Q(x, x(t)) = Ex(t) [log Lc | Zk]
of the complete-data log-likelihood given the measurements Zk and the current
estimate x(t) of vector x to be maximized; and (ii) the M-step computes a new
estimate x(t+1) that maximizes the function Q(x, x(t)). This process is repeated
until the change in likelihood in the complete-data likelihood is arbitrarily
small. The original incomplete likelihood is assured not to decrease after each
iteration and, under fairly regular assumptions the algorithm converges to a
local maximum [27].

In the remainder of this section, we describe the application of the EM tech-
nique to maximize the likelihood term p(Zk | Ok, xk,M) of Equation (4). The
second term, p(xk | x̂k−1, uk−1), is just a prior over the robot poses. Since
it does not depend on the measurements, it only affects the M-step (Section
3.3.3) acting as a regularization term 2 .

Initially, we define some extra variables to build the complete-data likelihood
function. Although, in general the extra variables in the EM does not require
to have any physical meaning, in our case we use the correspondence vari-
able ck. This is because if this variable is known, the resulting likelihood is
much simpler and its maximization has a closed form solution (given that we
linearized the measurement equation).

Let the correspondence variable ck be a vector of binary variables cij with
j ∈ 0..No + 1 defined for each observation zk,i, i ∈ 1..Nz of Zk. So as to
ease the notation, we drop the time index k from the binary variables cij.
The possible sources are represented by the index j, where j = 0 for static
measurements, j ∈ 1..NO for the tracked objects, j = NO +1 for the unknown
sources. The value cij = 1 indicates that zk,i was originated by source j, and
cij = 0 otherwise.

Assuming that a single observation only belongs to one source (i.e.
∑

j cij = 1)
and that the measurements zk,i are independent, the complete-data likelihood
model is

Lc = p(Zk, ck | xk,Mk, Ok) =
M∏

i=1



ps(zk,i | xk,Mk)
ci0pu(zk,i)

ciNO+1

N∏

j=1

pd(zk,i | xk, ok,j)
cij



 (7)

where ps(.), pd(.) and pu(.) are the likelihood models for observations origi-
nated from the map (static), each of the tracked moving objects (dynamic) and
new discovered areas (unknown), respectively. Note that the binary variables

2 Under Gaussian assumptions, the inclusion of this term in the minimization still
has a closed form solution.
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cij select the likelihood model according to the origin of the measurements.
The complete-data log likelihood function is

log Lc =
Nz∑

i=1

[

ci0 log ps(zk,i | xk,Mk)

+ciNO+1 log pu(zk,i) +
NO∑

j=1

cij log pd(zk,i | xk, ok,j)



 (8)

The function Q(xk, x
(t)
k ) is the conditional expectation of the complete-data

log likelihood log Lc. As log Lc is linear in the unobservable data ck, in the
computation of Q(xk, x

(t)
k ) we replace each cij by its conditional expectation

given the current measurements Zk and the current estimates of xk, Mk and
Ok,

Q(xk, x
(t)
k ) = E

x
(t)
k

{logLc | Zk,Mk, Ok} (9)

=
Nz∑

i=1

[

ĉi0 log ps(zk,i | xk,Mk) + ĉiNO+1 log pu(zk,i) +
NO∑

j=1

ĉijpd(zk,i | xk, ok,j)





where

ĉi0 = E
x
(t)
k

{ci0 | Zk,Mk, Ok} (10)

ĉiNO+1 = E
x
(t)
k

{ciNO+1 | Zk,Mk, Ok} (11)

ĉij = E
x
(t)
k

{cij | Zk,Mk, Ok} (12)

3.3 Implementation for range sensors

In this Section we provide the implementation of the previous method for a
range sensor, e.g. laser range finder. First, we present the measurement models
associated to each type of measurement (static, dynamic, unknown). Based on
these models, we derive the equations for the E-Step and M-Step of the EM
algorithm based on the function Q(xk, x

(t)
k ) of the previous section. Finally,

we describe how to update the map Mk and the moving objets Ok using the
new pose x̂k. Algorithm 1 summarizes the steps of the algorithm.

3.3.1 Models

We next address the implementation of the functions fM(·) and fO(·) (see
Equation (5)), which compute the current estimates of the map Mk and the
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Algorithm 1 : Algorithm Summary
INPUT: xk−1, uk−1, Zk, Mk−1, Ok−1

t = 0,
% Prediction step

Compute the initial x
(0)
k using xk−1 and uk−1

Predict moving objects locations Ok|k−1

% Estimation of the robot pose
repeat

E-Step:

for each zi,k, do

Select the nearest occupied grid cell gi ∈ Mk−1 using the Mahalanobis
distance
Compute the Mahalanobis distance to each oj ∈ Ok|k−1, j ∈ 1..NO

Compute ĉi0, ĉij , ĉiNO+1
to form Q(xk, x

(t)
k )

end for

M-Step:

Compute x(t+1) = arg maxxk
Q(xk, x

(t)
k )

t = t + 1
until convergence or t > MaxIter

% Update models using xk = x(t)

Classify measurements into Zstatic, Zdynamic

Update Mk with static measurements Zstatic

Update filters Ok with dynamic measurements Zdynamic

OUTPUT: xk, Mk, Ok

moving objects Ok conditioned over the set of robot poses x̂1:k−1. Next, we
will describe the likelihood terms ps(.), pd(.) and pu(.) of Equation (7).

For the static map fM(·), we use a two dimensional probabilistic grid [38] to
represent the workspace. Each cell has associated a random binary variable
mi, where mi = 1 when it is occupied by a static obstacle, and mi = 0
if it is free space. The probability of the grid cells is computed using the
Bayesian approach proposed in [15]. This map representation is convenient in
our navigation context since: (i) it contains information of occupied and free
space, and (ii) it is suitable for unstructured scenarios.

We implement the function fO(·) using an independent extended Kalman filter
to track each of the moving objects. The state vector for each moving object
contains its position, its velocity and its size. The function fO(·) computes
the predicted positions of the moving objects at time k based on the vehicle
trajectory x̂1:k and the measurements Z1:k−1. We use a constant velocity model
with acceleration noise to predict the positions of the moving objects between
observations and a random walk model for the size of the object.

The complete-data likelihood function of Equation (7) represents how well
the observations fit the current estimate of the environment. This expression
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Fig. 4. (a) This figure illustrates how the error in the robot pose hinders the clas-
sification of the measurements. In particular, the effect of rotation error increases
for points far away from the sensor. The figure also shows how the information of
the object predicted position helps to improve the correspondences. (b) This figure
illustrates the differences between an end-point model and a complete one. In the
case of an end point model, both beams have the same probability. On the other
hand, a complete model will assign a lower likelihood to the top ray due to the fact
that it traverses an obstacle before reaching the final obstacle.

explicitly reflects the different possible sources for each measurement with the
models ps(.), pd(.) and pu(.) and the classification variables ck. The definition
of the measurement models depends on the previous representations and on
the sensor used (for instance, see [22,49] for laser range sensors ). We use a
correspondence oriented model where each likelihood term of Equation (7)
is computed based on the Mahalanobis distance between each observation
and its model conditioned on ck. We model the uncertainties using Gaussian
distributions and linearize the models to compute the Mahalanobis distance
as in [36] (see Appendix A).

This framework is convenient since: (i) the Mahalanobis distance takes into
account the measurement noise and the error of the last robot displacement,
which may have a big impact on the classification of each measurement (Figure
4a); and (ii) the use of a probabilistic metric improves the correspondences
computed in the E-step resulting in a better convergence and robustness [36].

In the previous model, we implicitly make two simplifications to decrease
the computational requirements of the algorithm: (i) we use an End Point
model [49], which ignores the path traversed by the ray and only considers
the end point (Figure 4b); (ii) instead of taking into account all the possible
correspondences between the measurements and the map of static obstacles in
Equation (7), we select the nearest neighbour occupied cell of the map for each
measurement. Although this is a simplification, nothing prohibits the usage of
more sophisticated techniques such as [23,35] in the framework.

14



We next describe the models for each type of measurements ps(.), pd(.) and
pu(.). The likelihood of a measurement associated to a cell of the static map
is modeled as a Gaussian,

ps(zk,i | xk,Mk) = N(zk,i; f(xk, qi), Pi0) (13)

where qi is the location of the correspondent point associated to the mea-
surement zk,i, f(xk, qi) is the transformation between the map and the robot
reference systems. The covariance matrix Pi0 takes into account the uncer-
tainty in the last robot motion, the position of the point in the map and the
measurement noise. The computation of Pi0 is described in Appendix A. We
refer the reader to [36] for further details.

We use the same model as the likelihood function for every dynamic object,

pd(zk,i | xk, ok,j) = N(zk,i; f(xk, ok,j), Pij), ∀j ∈ 1..NO (14)

where the function f(·, ·) and the covariance matrix Pij are the same as in
Equation (13) but applied to the estimated position of the moving object ok,j

(see Appendix A).

Finally, the classification variable ciNO+1
includes spurious observations and

those corresponding to unexplored areas and new moving objects. The likeli-
hood of such a measurement is difficult to quantify. It depends on the spurious
rate of the sensor and on where the measurement is,

pu(zk,i) =







punexplored if zk,i /∈ Mk

pspurious if zk,i ∈ Mk

(15)

The value pspurious is an experimental value measuring the spurious rate of
the sensor and punexplored is typically set to a higher value to avoid those
observations placed in unknown areas to influence the optimization process.

3.3.2 E-Step

The E-Step requires the computation of the expectation of the classifications
variables ĉij defined in Equations (10-12),

ĉij = E
x
(t)
k

{cij | Zk, xk,Mk, Ok}
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=
∑

cij

cijp(cij | Zk, xk,Mk, Ok) = p(cij = 1 | Zk, xk,Mk, Ok) (16)

where i = 1..Nz and j = 0..NO + 1. The expectation is conditioned on the
predicted position of the objects Ok, the last map estimate Mk and the current
estimate of xk. Using the Bayes rule, we obtain

p(cij = 1 | Zk, xk,Mk, Ok) =
p(zk,i | cij = 1, xk,Mk, Ok)p(cij = 1 | xk,Mk, Ok)

p(zk,i | xk,Mk, Ok)

=
p(zk,i | cij = 1, xk,Mk, Ok)p(cij = 1)

∑

l p(zk,i | cil = 1, xk,Mk, Ok)
(17)

The previous derivation assumes a constant value for the prior over the clas-
sification variables p(cij = 1 | xk,Mk, Ok) and computes the probability of the
observation, p(zk,i | xk,Mk, Ok), as the sum of all its potential sources. The
specific likelihood model to be used (ps(·), pd(·) or pu(·) defined in Equations
(13), (14) or (15)) depends on the source of the measurement indicated by the
variable cij.

3.3.3 M-Step

The M-Step computes a new robot pose x
(t+1)
k such that

Q(x
(t+1)
k , x

(t)
k ) ≥ Q(xk, x

(t)
k ) (18)

Given the models introduced in Section 3.3 and Equation (9), the criterium
to minimize is,

Q(xk, x
(t)
k ) =

Nz∑

i=1

[

ĉi0 log
(

−2π
√

|Pi0|
)

+ĉi0(f(xk, qi) − zk,i)
T P−1

i0 (f(xk, qi) − zk,i) + ĉiNO+1 log pu(zk,i) (19)

+
NO∑

j=1

[

ĉij log
(

−2π
√

|Pij|
)

+ ĉij(f(xk, ok,j) − zk,i)
T P−1

ij (f(xk, ok,j) − zk,i)
]
]

Grouping all the terms that do not depend on xk we get

Q(xk, x
(t)
k ) = cte +

Nz∑

i=1

[

ĉi0(f(xk, qi) − zk,i)
T P−1

i0 (f(xk, qi) − zk,i)) (20)
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+
NO∑

j=1

ĉij(f(xk, ok,j) − zk,i)
T P−1

ij (f(xk, ok,j) − zk,i)

]

which has no closed form solution due to the nonlinear function f(·, ·). Ap-

pendix B describes how to compute the solution x
(t+1)
k by linearizing f(·, ·).

Notice that, since the moving objects are included in the classification (E-
Step), they also influence the computation of xk. Their influence is reflected
in the Pij term. When the location of the moving objects is uncertain (due to
the prediction of this position, for instance), the value of Pij is high and does
not affect the solution.

3.3.4 Updating the map and the moving objects

In this section, we describe how to update the probabilistic grid map and the
set of Kalman filters with the last measurements Zk after convergence of the
EM algorithm.

In addition to the maximum likelihood pose of the robot x̂k, the EM also
provides an estimate of the values of the correspondence variables ck. We
use this estimate to distinguish between static, dynamic and unknown mea-
surements. Except in those situations where there exist ambiguities, once the
robot position is corrected all the weight is assigned to a single source. A sim-
ple threshold on the probabilities of the correspondences allows us to classify
the measurements in three different sets Zstatic

k , Zdynamic
k or Zunknown

k ,

zk,i ∈







Zstatic
k , if ĉi0 > α

Zdynamic
k , if

∑NO

j=1 ĉij > α

Zunknown
k , otherwise

(21)

where the value of the threshold α > 0.5 ensures that a measurement only
belongs to one of the sets Zstatic, Zdynamic or Zunknown.

The update of the probabilist map is done as in [15], but the process is adapted
to deal with the different types of measurements (static,dynamic or unkonwn).
On the one hand, all the measurements of a scan contribute to update the
free space traversed by their corresponding laser beams (see Figure 4). On the
other hand, only those measurements classified as static provide information
about the static parts. So as to initialize new static areas, we keep a second
grid map with the unknown measurements Zunknown

k in the frontiers of the
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Fig. 5. Overview of the local sensor-based motion system that combines modeling
and planning aspects.

explored workspace. If a cell is detected consecutively a given number of time
steps, it is included as static in the probabilistic grid map.

In the case of the filters that track the moving objects, we use a segmentation
algorithm based on distances to cluster the dynamic measurements Zdynamic

k .
Then, we use a Joint Probabilistic Data Association [2] scheme to update the
set of Kalman filters 3 . So as to deal with new objects, we initialize a filter for
those clusters of points that are not assigned to any filter. Furthermore, filters
without support are removed after a fixed number of steps.

In summary, we have described in this section an EM algorithm to incremen-
tally compute the maximum likelihood trajectory of the vehicle. Based on this
trajectory, the algorithm also computes a map of static obstacles and a map
of dynamic obstacles.
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4 Integration of the Modeling within the Motion Layer

Local sensor-based motion systems combine modeling and planning aspects.
On the one hand, we have proposed in the previous section a technique to
model the static and dynamic features of the scenario. On the other hand,
the planning aspect in these systems usually combines tactical planning with
obstacle avoidance 4 . In this section we outline the tools used in our system
[37] and we describe the interactions of the modeling with the rest of the
modules in a general framework. We address next the tactical planning and
the obstacle avoidance modules.

• Tactical planning: computation of the main cruise to drive the vehicle
(used to avoid the cyclical motions and trap situations). This module uses
the D∗Lite planner [24] to compute a path to the goal and to extract the
main cruise. The principle of this planner is to locally modify the previ-
ous path (available from the previous step) using the changes in the sce-
nario. The module has two different parts: (i) the computation of the ob-
stacle changes in configuration space (notice that the grid represents the
workspace), (ii) the usage of the D∗Lite planner over the changes to re-
compute a path (if necessary). The planner avoids the local minima and is
computationally very efficient for real time implementations.

• Obstacle Avoidance: computation of the collision-free motion. We chose
the Nearness Diagram Navigation [29]. This technique employs a ”divide
and conquer” strategy based on situations to simplify the difficulty of the
navigation. At each time, a situation is selected and the corresponding ac-
tion computes the motion for the vehicle. This method has been shown to
perform well in scenarios that remain troublesome for many existing meth-
ods. Furthermore, a technique to take into account the shape, kinematics
and dynamic constraints is used to address the local issues of the vehicle
[28].

We next describe the interaction between the modules of the system (Figure 5)
focusing on the modeling module. Recall that this last module computes both
a map of the static structure of the scenario and a map of dynamic obstacles
with their locations and velocities.

3 We could use the final weights provided by the EM algorithm to solve the data
association problem between the moving objects and the dynamic measurements.
However, this strategy is prone to lose track of the moving objects in the presence
of ambiguities [35].
4 These systems are usually referred as systems of tactical planning
[42,50,9,30,46,41]
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• Modeling - Tactical planning: The map of the static structure 5 is the
input data to the planner. This is because the role of the tactical plan-
ner is to determine at each cycle the main cruise to direct the vehicle. A
cruise depends on the permanent structure of the scenario (e.g. walls and
doors) and not on the dynamic objects moving around (e.g. people). Notice
that using only the static structure overcomes situations that other systems
would interpret as trap situations or blocked passages due to the temporal
presence of moving objects.

• Modeling - Obstacle Avoidance: Both maps are the inputs of the ob-
stacle avoidance technique. While the map of the static structure is directly
used as computed by the modeling module, the map of dynamic obstacles
is processed to compute an alternative map based on the predicted collision
point [17]. This new map of obstacles is the other input of the obstacle
avoidance. We use a lineal model for the velocities of the robot and the
obstacle. For each obstacle i the collision point pi

c = (pi
cx, p

i
cy) is computed

by

pi
c = pi

o + vi
ot

i
c (22)

where pi
o is the obstacle location in the robot reference system 6 and vi

o is
the velocity vector of the obstacle. The collision time tic representes the time
when the robot and obstacle i intersect along the motion direction of the
robot,

tic =
pi

ox
− (Rr + Ri

o)

vrx
− vi

ox

(23)

where Rr and Ri
o are the radius of the robot and the obstacle respectively.

Figure 6 illustrates the computation of the predicted collision. Notice that
the obstacle avoidance receives a map of predicted collision locations pi

c. Let
us remark that the predicted location of the obstacle depends on the current
obstacle location but also on both the vehicle and obstacle relative velocities.
Furthermore, if the obstacle moves further away from the robot (tic < 0), it is
not taken into account. This approach to avoid the moving obstacle implies:
(i) if there is a potential collision, the obstacle avoidance method starts the
avoidance motion before than if the obstacle was considered static; and (ii)
if there is no potential collision, the obstacle is not taken into account.

• Tactical planning - Obstacle Avoidance: In the systems of tactical
planning, the obstacle avoidance module generates the collision-free motion
to align the vehicle toward the cruise computed by the planner. More specif-
ically, the cruise is computed as a subgoal using the direction of the initial

5 The modeling module also includes those dynamic objects with zero velocity for
a predefined period of time in the map of static structure passed to the planner.
6 The X-axis of the robot reference system is aligned with the instantaneous robot
velocity vr.
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Fig. 6. The object location used by the obstacle avoidance is pc, which is the pre-
dicted collision point according to the current vehicle and object velocities.

part (predefined distance) of the path.

Globally the system works as follows (Figure 5): given a laser scan and the
odometry of the vehicle, the model builder incorporates this information into
the existing model. Next, the static and dynamic information of obstacles in
the model is selectively used by the planner module to compute the cruise
to reach the goal (tactical information). Finally, the obstacle avoidance mod-
ule uses the planner tactical information together with the information of the
obstacles (static and dynamic) to generate the target oriented collision-free
motion. The vehicle controller executes the motion and the process restarts
with a new sensor measurement. It is important to stress that the three mod-
ules work synchronously within the perception - action cycle.

5 Experimental results

This section describes some of the tests that we have carried out to validate
the modeling technique (Section 3) and its integration within the motion layer
(Section 4). The robot is a commercial wheelchair equipped with two on-board
computers and a SICK laser. The vehicle is rectangular (1.2×0.7meters) with
two tractor wheels that work in differential-driven mode. We set the maximum
operational velocities to (vmax, wmax) = (0.3 m

sec
, 0.7 rd

sec
) due to the application

context (human transportation). All the modules work synchronously on the
on board PentiumIII850Mhz at the frequency of the laser sensor (5Hz).

We have intensively tested the system with our mobile robot in and out of our
laboratory with engineers and with the intended final users of the wheelchair.
In this paper, we describe two experiments that we understand will give in-
sight into the performance and benefits of the proposed approach. Firstly, we
describe a real run where a child explored our department building. Here, we
will focus on the properties of the modeling module. Secondly, we outline a
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(a) (b)

Fig. 7. Two snapshots of Experiment 1. (a) moving in a office like scenario and (b)
traveling along a corridor.

controlled experiment in our laboratory to illustrate the performance of the
local sensor motion system.

5.1 Experiment 1: User guided experiment

We describe next a test where a cognitive disabled child drove the vehicle
during rush hour at the University of Zaragoza. By using voice commands, he
placed goal locations that the motion system autonomously attained. Notice
that in this case, the user is responsible for the global aspects of the motion
task while the motion system is locally generating the motion.

In the experiment, the child drove the vehicle out of the laboratory (Figure 7a),
explored the department (long corridor, Figure 7b) and came back to the initial
location without collisions. The time of the experiment was around 20 minutes
(including a break of five minutes to calm and relax the children) and the
traveled distance was 110 meters. From the motion generation point of view,
the performance was very good since the vehicle achieved all the goal locations
without collisions. Notice that navigation under these circumstances is not
easy since the scenario was unknown and not prepared to move a wheelchair
(in many places there was little room to maneuver). In addition, people turned
the scenario into a dynamic and unpredictable place and sometimes modified
the structure of the environment creating difficult motion situations.

Let us focus on the performance of the modeling module. We implemented the
map of static features with a 20m× 20m grid map with a 5cm resolution cell
centered in the robot location. This spatial domain is large enough to include
the goal locations required for the motion. We selected a 5cm map resolution
since experimentally we observed that it is enough for obstacle avoidance. The
size of the map, 400× 400, is close to the limit for the planner to comply with
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Fig. 8. This Figure shows the raw laser data integrated using the vehicle odometry
and the trajectory of the vehicle.

the (worse case) real-time requirements.

Figure 8 shows the raw data of the experiment. From this data, at each point
in time, the modeling module computed a map of dynamic objects, including
their velocities, and a map of static obstacles. Figure 9 shows the blueprint of
the scenario, the trajectory of the vehicle and the models (static and dynamic)
computed at two given times in two different places. Notice how despite the
odometry errors the local maps of the static structure were correct for the
purposes of motion generation. Furthermore, notice how the dynamic objects
do not appear in the static map and vice versa. In other words, the static
and dynamic structures are separated. There were more than 100 moving
objects (people) detected by the system during this experiment. The majority
of them corresponded to people moving, however, some of them were false
moving objects. These rare situations occurred when the laser beams were
almost parallel to the reflected surface and produced specular reflections, or
when the beams missed an object because its height was similar to the height
at which the laser scan is placed (around 70cm). In the latter case, due to
the motion of the wheelchair, the laser oscillates and sometimes misses the
obstacle. As a result, these objects were located in the free space area, classified
as dynamic and tracked accordingly.

For real-time operation, it is worth mentioning the low computational require-
ments of the proposed technique. Figures 10a, b show the number of iterations
and the computation time at each step. Despite the clock resolution of the
computer (10msec), the figures reflect that the cost per iteration is constant.
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Fig. 9. The right part of the figure shows the trajectory of the experiment within
the blueprint of the building. The left part shows the map of moving objects and
the map of static obstacles at two different points in time. In the dynamic maps,
the rectangles represent the estimated location of the moving objects being tracked
containing the observations associated to each of them. The straight lines represent
the estimated velocity of the moving object. In the static grid maps, white represents
free space, black the obstacles and gray is unknown space.
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Fig. 10. (a) Number of iterations until convergence for each step of Experiment 2
and (b) the corresponding computation time.

This depends on the number of points of the scan, the grid resolution (number
of static points) and the number of moving objects. The mean values for the
whole process are 14.1 iterations and 21msec. The time spent in the update
of the map and in the prediction and update of the filters is negligible and is
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Fig. 11. (a) Map of the static structure, the robot trajectory and the blueprint of the
building (notice that the architect original plan was modified during construction).
(b) Trajectories of the dynamic obstacles and the blue print. (c) Map obtained
without taking into account the moving objects. Note how the dynamic objects
affect the displacement estimation along the corridor. As a result, the estimated
final vehicle location is far from the original one and the map is corrupted.

below the clock resolution. The proposed method provides a fast solution to
the local modeling problem, which is important to integrate it with the other
modules of the architecture for real-time operation.

Although it is beyond the application and context of the paper, we understand
that it is interesting to discuss the performance of the technique facing larger
scenarios. To test this situation, we processed offline the previous dataset
(Figure 8) but using a grid map of 80m × 80m to represent the whole area
covered by the experiment. In this mapping context, this experiment is not
easy since the laboratory (first room) is very unstructured due to the presence
of chairs, tables and other people; and the corridor is very large and does
not contain much information in the direction of the corridor (which makes it
difficult to correct the robot displacement in the presence of moving people).

The performance of the mapping technique was very good since it was still
able to separate the 100 dynamic obstacles from the static structure (map of
static parts) and thus they did not affect the estimated vehicle pose. Figures
11a and b show the final map of the static structure and the trajectories of the
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dynamic objects tracked with the reference of the blueprint. Notice that the
map of static objects fits perfectly with the blueprint, which is an indicator of
the quality of the map. In the bottom part of the blueprint, the trajectories
go through a wall. This is because the final building was modified after the
architect did the plan. Furthermore, the map of the dynamic structure shows
100 trajectories that correspond to the people that moved around. Notice how
all the trajectories are in free space which is also a good indicator for the
dynamic map quality.

To check the influence of the dynamic objects, we used our method with-
out considering the moving objects (i.e. considering all the measurements as
static). The results strongly affected the resulting map not only in the motion
along the corridor, but also in the other directions. For instance, the corridor
of Figure 11c is slightly curved due to orientation errors accumulated when
exploring it and the final location error is big. This result is consistent with
the difficulty that many researchers have reported related with map building
in the presence of dynamic obstacles [21] and stresses the advantage of the
proposed technique.

5.2 Experiment 2: Fully autonomous experiment

We next describe a more academic experiment to derive conclusions for the lo-
cal sensor-based motion system but focusing on navigation performance. The
objective of the experiment was to get the wheelchair out of the laboratory
(Figure 12a). All the scenario was initially unknown and only the target loca-
tion was given in advance to the system. Initially, the vehicle proceeded toward
the Passage 1 avoiding collisions with the people that move around. Then, we
blocked the passage creating a global trap situation that was detected by the
system. The vehicle moved backwards through Passage 2 and then traversed
the Door exiting the room and reaching the goal location without collisions.
The time of the experiment was 200sec and the distance traveled around 18m.

As in the previous example, the performance of the modeling module was good
enough for the other modules of the architecture. Figure 12b shows the raw
laser data using the odometry readings and Figure 12c shows the final map
produced by the modeling module when the vehicle reached the goal location.
The trajectories of the moving objects tracked during the experiment are
shown in Figure 12d. Most of them correspond to people walking in the free
space of the office. There were also some false positives due to misclassification
that occurred mainly in the same situations as in Experiment 1. Regarding
navigation, the motion system reliably drove the vehicle to the final location
without collisions. Recall that the maps generated by the modeling module
are the basis for planning and obstacle avoidance. In general, a rough model
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Fig. 12. (a) Snapshot of Experiment 2. The objective was to drive the vehicle out
of the office through the Door. (b) Real laser data and trajectory of Experiment 2
using the raw odometry readings. (c) The map built during the experiment and the
vehicle trajectory. The map shows the occupancy probability of each cell. White
corresponds to a probability of zero (free cell) and black to a probability of one
(occupied cell). (d) The trajectories of the detected moving objects.

or only odometry readings are not enough and likely would lead to navigation
mission failures. The quality of the model and the localization is specially
relevant to avoid obstacles no longer perceived with the sensor due to visibility
constraints; to deal with narrow passages where accumulated errors can block
the passage even if there is enough space to maneuver; or to approach the
vehicle to the desired final position with enough precision. All these situations
were correctly managed due to the quality of the models generated with the
proposed modeling technique.
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(a) (b)

Fig. 13. (a) A moving obstacle placed in the area of passage and (b) robot avoiding
a trap situation. The figures show the tracked moving objects (rectangles), the
dynamic observations associated to them and the estimated velocities. The two
arrows on the vehicle show the cruise computed by the planner module and the
direction of motion computed by the obstacle avoidance one.

We next describe several situations where the selective use of the static and
dynamic information improved the motion generation.

The planner computed at every point in time the tactical information needed
to guide the vehicle out of the trap situations (the cruise) using only the static
information. The most representative situations happened in the Passage 1.
While the vehicle was heading along this passage, people were crossing it.
However, since the humans were tracked and labeled dynamic they were not
used by the planner and thus the cruise pointed toward this passage (Figure
13a) and the vehicle aligned with this direction. Notice that systems that do
not model dynamic obstacles would consider the human static and the vehicle
trapped within a U-shape obstacle 7 . Next, a human placed an obstacle in the
passage when the vehicle was about to reach it. The vehicle was trapped in
a large U-shape obstacle. After a given period, the modeling module included
this obstacle in the static map passed to the planner. Immediately, the planner
computed a cruise that pointed toward the Passage 2. The vehicle was driven
toward this passage avoiding the trap situation (Figure 13b).

The obstacle avoidance module computed the motion taking into account
the geometric, kinematic and dynamic constraints of the vehicle [28,31]. The
method used the static information included in the map and also the predicted
collision locations of the objects computed using the obstacle velocities. Figure

7 This situation is similar to the situation depicted in Figure 1b
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(a) (b)

Fig. 14. (a) Moving obstacle going toward the robot. The figure shows the tracked
moving objects (rectangles), the dynamic observations associated to them and the
estimated velocities. The two arrows on the vehicle show the cruise computed by
the planner module and the direction of motion computed by the obstacle avoidance
one. (b) Detail of the robot maneuver to cross the Door.

14a depicts an object moving toward the robot, and how the predicted collision
creates an avoidance maneuver. Note that, although the Nearness Diagram
does not consider dynamic objects, the predicted collision location allows it
to anticipate the maneuver. Furthermore, obstacles that move further away
from the robot are not considered. In Figure 13b the two dynamic obstacles
were not included in the avoidance step (whereas systems that do not model
the dynamic objects would consider them).

The performance of obstacle avoidance module was determinant in some cir-
cumstances, especially when the vehicle was driven among very narrow zones.
For example, when it crossed the door (Figure 14b), there were less than 0.1m
at both sides of the robot. The movement computed by the obstacle avoidance
module was free of oscillations and, sometimes, was directed toward zones with
great density of obstacles or far away from the final position. All the robot
constraints were considered by the obstacle avoidance method generating fea-
sible motions in the different situations. That is, the method achieved robust
navigation in difficult and realistic scenarios.

In summary, the modeling module was able to model the static and dynamic
parts of the environment. The selective use of this information allows the
planning and obstacle avoidance modules to avoid the undesirable situations
that arise from false trap situations and improve the obstacle avoidance task.
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Furthermore, the integration within the architecture allows to fully exploit the
advantages of hybrid sensor-based navigation systems that perform in difficult
scenarios avoiding typical problems such as trap situations.

6 Discussion and Conclusions

In this paper we have addressed two issues of great relevance in local sensor-
based motion: how to model the static and dynamic parts of the scenario and
how to integrate this information with a local sensor-based motion planning
system.

Regarding the modeling aspect, most of previous works [45,51,52,21] assume a
known classification within the optimization process. This means that the clas-
sification is done prior to the estimation of the vehicle location. They focus on
the reliable tracking of the moving objects or on the construction of accurate
maps. The algorithm proposed in [22] iteratively improves the classification
via an EM algorithm. This is a batch technique that focuses on the detection
of spurious measurements to improve the quality of the map. The approach
presented in [33,34] applies learning techniques but does not improve the ve-
hicle location and does not use probabilistic techniques to track the moving
objects. Our contribution in the modeling aspect is to incorporate the infor-
mation about the moving objects within a maximum likelihood formulation
of the scan matching process. In this way, the nature of the observation is
included in the estimation process. The result is an improved classification of
the observations that increases the robustness of the algorithm and improves
the robot pose estimation, the map and the moving objects location.

However, the drawback of this type of techniques is that they do not consider
the uncertainties and the corresponding correlations of the robot poses, the
map and the moving objects. Moreover, the set of poses is fixed and cannot be
modified in subsequent steps. This represents a problem when closing loops
if the accumulated error is big. In the case of sensor based navigation, the
spatial domain of the problem is small and, thus, allows us to obtain enough
accurate models for real-time operation.

In any case, all the mapping methods assume a hard classification between
static and dynamic objects. This is clearly a simplification of the real world
since there are objects that can act as static or dynamic; for instance, doors,
chairs, tables, cars, etc. Although there exist some preliminary work on the
estimation of the state of some of these objects [47,6], we believe a prior on
the behavior of the objects will greatly simplify the problem. This can be done
using another type of sensors as cameras or 3D range sensors.
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The second issue is the integration of the modeling module in a local sensor-
based motion system taking advantage of the dynamic and static information.
The system selectively uses this information in the planning and obstacle
avoidance modules. As a result, many problems of existing techniques (that
only address static information) are avoided without sacrificing the advantages
of the full hybrid sensor-based motion schemes. Notice that the planning - ob-
stacle avoidance strategy relies on the information provided by the modeling
module. Since our model assumes a constant lineal velocity model, the pre-
dicted collision could not be correct when this assumption does not hold.
However, this effect is mitigated since the system works at a high rate rapidly
reacting to the moving obstacle velocity changes.

One thing to remark is that the local planning strategy is an approximation
of the full motion-planning problem with dynamic obstacles (recall that this
problem is NP-hard in nature). In this paper we have addressed it with a hy-
brid system made up of a tactical planning module and an obstacle avoidance
technique (a simplification). Although there exist reactive techniques that are
designed to explicitly deal with dynamic obstacles [16,18,40], we have selected
one that does not account for this information (this is the reason why we
use the collision prediction concept). The selection of the reactive techniques
is a trade off between performance facing very dynamic scenarios or places
where it is very difficult to maneuver. This is because it is well known that
the techniques that address the motion planning under dynamic obstacles are
conservative in the motion search space (losing maneuvrability in constrained
spaces). In our case, due to the wheelchair application, we used a method
designed to maneuver in environments with little room to maneuver (such as
doors or narrow corridors) and we improved the behavior in dynamic situa-
tions with the collision prediction concept. However, for other applications,
nothing prohibits the use of other method in the proposed framework.

The experimental results confirm that the modeling method is able to deal
with dynamic environments and provide enough accurate models for sensor-
based navigation. The integration with a sensor-based planner system allows to
drive the vehicle in unknown, dynamic scenarios with little space to maneuver.
The system avoids the typical trap situations found under realistic operation
and, in particular, those created by moving obstacles.
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A Likelihood models

This appendix describes the computation of the mean and covariance of the
Gaussian likelihood models ps(.) and pd(.) of Section 3.3.1. So as to obtain
an analytical expression, we assume Gaussian uncertainties in the robot pose
and in the location of the static and dynamic objects and Gaussian noise in
the measurement process,

x ∼ N(xtrue, P ) (A.1)

q ∼ N(qtrue, Q) (A.2)

z ∼ N(ztrue, R) (A.3)

Note that here we use q as a generic correspondence point for the measurement
z. Although the computations are the same for static and dynamic correspon-
dences, the covariance matrix for each type of association is different. We use
a fixed covariance matrix for grid cells and the uncertainty of the Kalman
filter prediction for moving objects.

The function f(x, q) is the transformation of the point q = (qx qy)
T through

the relative location x = (tx, ty, θ)
T ,

f(x, q) =






cos θqx − sin θqy + tx

sin θqx + cos θqy + ty




 (A.4)
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Linearizing the function f(x, q) using a first order Taylor series approximation,
we define the likelihood term as

p(z | x, q) =
∫ ∫

p(z | x, q)
︸ ︷︷ ︸

N(f(x,q),R)

p(x)
︸ ︷︷ ︸

N(x,P )

p(q)
︸︷︷︸

N(q,Q)

dxdq = N(z; f(x, q), C) (A.5)

where the covariance matrix C is

C = R + JxPJT
x + JqQJT

q (A.6)

The matrices Jx and Jq are the Jacobians of f(x, q) with respect to x and q
evaluated at the current estimates,

Jx ≡ ∂f(x,q)
∂x

∣
∣
∣
∣
∣
x,q

=






1 0 −qx sin θ − qy cos θ

0 1 qx cos θ − qy sin θ






Jq ≡ ∂f(x,q)
∂q

∣
∣
∣
∣
∣
x,q

=






cos θ − sin θ

sin θ cos θ






In addition to this, using the function f(·, ·) we can define the Mahalanobis
distance between z and q to select the appropriate static obstacle from the
grid map

D2
M(z, q) = [f(x, q) − z]T C−1[f(x, q) − z] (A.7)

B M-Step minimization

This appendix addresses the minimization of the function

Q(xk, x
(t)
k ) =

Nz∑

i=1

[

ĉi0(f(xk, qi) − zk,i)
T P−1

i0 (f(xk, qi) − zk,i)) (B.1)

+
NO∑

j=1

ĉij(f(xk, ok,j) − zk,i)
T P−1

ij (f(xk, ok,j) − zk,i)

]
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Due to the nonlinear function f(·, ·), one should use an iterative method to

minimize Q(xk, x
(t)
k ). However, since the correspondences change at each it-

eration of the EM algorithm, we rather use a single iteration to improve the
current estimate. This is known as generalized EM [27] and the algorithm still
converges to the local minimum.

Based on the linearization of f(·, ·) presented in appendix A, the estimate of
the parameter vector xLS is,

xLS = [HT C−1H]−1HT C−1E (B.2)

where the matrices E and H are formed by the contributions of each mea-
surement zk,i to the function Q(xk, x

(t)
k )

H =










H1

...

HNz










E =










E1

...

ENz










C =










C1 · · · 0
...

. . .
...

0 · · · CNz










with

Hi =













Jx(x
(t), qi)

Jx(x
(t), ok,1)
...

Jx(x
(t), ok,NO

)













; E =













−(f(x
(t)
k , qi) − zk,i) + Jx(x

(t), qi)x
(t)

−(f(x
(t)
k , ok,1) − zk,i) + Jx(x

(t), ok,1)x
(t)

...

−(f(x
(t)
k , ok,NO

) − zk,i) + Jx(x
(t), ok,NO

)x(t)













Ci =










1
ĉi0

Pi0 · · · 0
...

. . .
...

0 · · · 1
ĉiNO

PiNO










(B.3)

with Nz is the number of measurements and NO is the number of moving
objects.
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