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Abstract— A normative database constitutes a representative
sample of a neurologically and clinically healthy population.
The practical utility of a normative EEG database is to
evaluate the clinical status of a subject whose EEG patterns
statistically diverge from average population patterns. These
normative data are daily used in clinical practice and in the
evaluation of therapeutical interventions. The main obstacle
of all normative databases developed to date is inter-individual
variability. Such difficulty has been addressed by stratifying the
population by age and then using regression in the EEG groups
to bound variability, which is always an approximation. This
paper describes the first data-driven EEG normative database
that explicitly deals with EEG variability by stratifying the
population based on their EEG patterns. The database has been
constructed for 84 subjects in eyes-closed condition and has
been validated by cross validation, leading to a global specificity
of 100%.

I. INTRODUCTION

Diagnosis and treatment of neural pathologies have been
influenced by modern clinical science developments. In re-
cent decades, EEG has gained popularity due to its capacity
of improving clinical diagnostic through the use of normative
databases. A normative database is established through the
collection of EEGs from a healthy population. The database
is obtained under the same recording conditions, which con-
stitutes a representative sample of a neurologically and clini-
cally healthy population. The practical utility of a normative
EEG database is the evaluation of the neurological status of a
patient, with the purpose of establishing a clinical diagnosis.
Such diagnosis is obtained through the comparison of the
subject with a population of healthy individuals, in order to
identify atypical features and the magnitudes of deviation. In
practice, EEG is used for the diagnosis of pathologies such
as epilepsy, ADHD, stroke, etc; as well as for the evaluation
of the course and outcome of a therapy (by measuring
whether EEG evolution occurs towards the normative EEG).
Normative databases are becoming so widely accepted that
quality standards have been established by the American
EEG Association [1].

The first normative database was developed in the 1950s
at UCLA [2], followed by the development of other bases
[3], [4], [5]. Currently, there are several available normative
EEG databases that may have relevance for clinical diagnosis
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and therapy evaluation. However, the usefulness extent of
these databases is greatly determined by the degree of
open disclosure of its contents [6], [7], [8] (open disclosure
of the number of subjects per age group, gender, sample
demographics, geographic location of the samples, quality
control measures, acquisition and technical procedures, etc.).

The main obstacle in the development of normative
databases is the inter-individual variability of the EEG, as in
principle the database represents invariant features of healthy
population. For this reason a population is usually stratified
by age, in order to bound the effect of such variability (inter-
subject) [3], [10], [11]. Once the base is stratified, either
there is no special processing for the group [4], [6] or a
least-squares regression is used to fit a function of the EEG
data samples over the entire age range of the subjects [12].
In both cases, representative EEG patterns are obtained for
each group age. The general drawback of these designs is
that although EEG has usually low variability in adults, it
is still influenced by factors such as rate of maturation or
scalp-to-skull conductivity. These factors have great impact
specially in young populations due to EEG variability, and
thus the maturational lag in cortical development hinders the
identification of a representative group age.

This paper describes the first data-driven normative EEG
database that explicitly addresses EEG variability. To this
end, the population is stratified based on their EEG pat-
terns, which represents an alternative to existing normative
databases. The data-driven design consists firstly of a consis-
tent and stochastic optimization process, achieving gaussian-
ity in the EEG power spectrum of each subject, and secondly
of an unsupervised clustering method that stratifies the EEG
based on the similarity of the EEG power distributions of
the subjects. The base has been constructed for 84 subjects
in eyes-closed condition and has been validated by cross
validation, leading to a global specificity of 100%.

II. METHODS
A. Data Recording

The EEG data was provided by Nova Tech EEG Inc.,
Mesa, AZ. The population sample was composed of 84
healthy adults, aged between 18 and 30 years. Exclusion
criteria included psychiatric history of drug/alcohol abuse
in any relative and participant, head injury (at any age,
even very young), headache episodes, physical disability, and
epilepsy. EEG were recorded during 3-5 minutes while the
subjects sat with eyes closed on a comfortable chair in a
quiet and dimly-lit room. EEG data were acquired at the 19
standard leads prescribed by the 10-20 international system
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(FP1, FP2, F7, F3, FZ, F4, F8, T3, C3, CZ, C4, T4, T5,
P3, PZ, P4, T6, O1, O2) using both earlobes as reference,
and enabling a 60 Hz notch filter to suppress power line
contamination. The impedance of all electrodes was kept
below 5K Ohms. Data were acquired using a 12-bit A/D
NeuroSearch-24 acquisition system (Lexicor Medical tech-
nology, Inc., Boulder, CO) and sampled at 128 Hz. In order to
minimize inter-subject variability, all biological, instrumental
and environmental artifacts were removed from data, paying
particular attention to biological artifacts generated by eyes,
hearth, and muscles of the neck, face and jaw.

Power spectral density was estimated through Fast Fourier
Transform (FFT) for each 1 second epoch, in each recording
channel, using a Tukey window, yielding a 0.06 Hz frequency
resolution in the 2-30 Hz using zero-padding. Band powers
were defined as delta (2-3.5 Hz), theta (3.5-7.0 Hz), alpha
(7.0-13.0 Hz) and beta (13.0-30.0 Hz). Absolute band power
was calculated from the area under the curve of the power
spectrum, using a trapezoidal interpolation between the two
limiting frequencies for the four bands.

B. Normative Database Development

The design of the EEG normative database consists of
three steps: (a) obtainment of reliable data to provide con-
sistency in the EEG acquisition process; (b) achievement of
gaussianity in the EEG power spectrum of the subjects; and
(c) stratification of the subjects based on power spectrum
distributions. In addition, the development of an EEG nor-
mative database includes the necessary mathematical tools to
verify whether the EEG of new subjects is within normality
and to measure the degree of deviation.

1) Step 1: Reliability: The intra-individual variability of
the EEG was verified through Test-Retest and Split & Half,
using in both cases the Spearman and Pearson correlation.
The results obtained did not achieve a minimum reliability
of 0.8 (minimum in accordance with normative databases
[6]), possibly due to a reduced length of data imposed by
a restriction in the acquisition protocol. For this reason, a
new technique to improve EEG reliability was developed,
where new epochs were created by mergence. This new
method divides the original EEG in half epochs and then
joins the half-epochs randomly, obtaining n-1 new epochs
(where n is the number of epochs in the original EEG),
leading to a new set of n+(n-1). The process is repeated
until a minimum reliability of 0.8 is obtained through Split
& Half in all power bands. Note that this method iteratively
improves EEG reliability, while the EEG spectrum is only
modified by a high frequency artifact artificially introduced
due to the discontinuity in the merging point of the epochs.
There is no influence on the frequency range used in the EEG
analysis (2-30Hz). The mean value of reliability obtained
across all subjects was 0.894. Figure 1 displays the reliability
per subject as well as the original and new number of epochs.

2) Step 2. Gaussian Filter: The second step uses filters to
convert marginal power distributions in all bands and chan-
nels into Gaussian distributions [19]. This occurs because
absolute band powers are non-Gaussian and their probability

Fig. 1. Upper figure: Number of epochs before and after extension of
process for every subject. Lower figure: Mean reliability for every subject
across the marginal absolute power distributions.

density function is characterized by a positive skew. The
filtering process is constituted by two stages: (a) a non-
linear parametric transformation of all power distributions
in all channels to obtain distributions closer to the Gaussian
distribution; and (b) application of a consistent and stochastic
optimization technique to simultaneously filter marginal dis-
tributions of all the power bands and channels until Gaussian
distributions are followed.

The first stage of filtering is transformation. In EEG-
normative literature, it is usual to apply transformations
such as log(x), log(x + 1),

√
(x), 3

√
(x), or 1/

√
(x) [13],

[14]. However, statistical literature describes a range of more
systematic methods for transforming distributions towards
Gaussian distributions, such as the Box-Cox transformation
[15]. Box-Cox is a parametric transformation, based on a
wider family of transformations, with a simple procedure to
build the best transformation based on data (it is a data-driven
transformation). As the Box-Cox is an uni-dimensional trans-
formation, there is a necessity to find the best transformation
to jointly transform all marginal distributions of power bands
in all channels and subjects. A mean parameter of each
marginal transformation is obtained across the subjects of the
database. Note that this transformation is fully dependent on
the set of subjects of the base. The following table shows
the number of marginal distributions achieving gaussianity,
averaged across the subjects from Channels×Bands= 19 ×
4 = 76 marginal distributions (the Anderson Darling test was
used to verify normality [16]).

No Transf 1/
√
x

√
x log(x) Box-Cox

% Gaussian distrib. 0 1.02 6.92 28.10 48.50

Table I: Comparison of transformations

The second stage is to use a stochastic optimization
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technique to simultaneously filter the marginal distributions
per subject until all follow Gaussian distributions. A genetic
algorithm was designed to find the subset of epochs (from
the original set of EEG epochs per subject) that optimize an
objective function, which is proportional to the significance
of a gaussianity test applied to all marginal distributions of
power bands and channels (after the Box-Cox transforma-
tion). The value of this objective function is maximal when
all distributions in band powers and channels are Gaussian
for a given interval of confidence (the Anderson Darling
test was used to verify normality [16] with p-value=0.05).
The genetic algorithm was implemented in such a way that
the solution space could be efficiently explored. The search
space has Channel×Band=19 × 4 = 76 dimensions and the
optimization landscape is highly non-linear (leading to a
difficult computational problem).

Consistency of the stochastic optimization technique was
tested though repetitive filterings. The resulting distribu-
tions from different repetitions were compared through the
Kolmogorov-Smirnov (K-S) test, to check whether the dis-
tributions were the drawn from the same distribution. Ad-
ditionally, these repetitive computations were used to check
the effect of the filter size (% of epochs filtered from the
original data set). After an intense computational exercise, 63
subjects of the 84 adults achieved optimization convergence.
Consistency of the solution was 100% as for all subjects the
K-S tests always accepted the null hypothesis (distributions
resulting from repetitive optimizations always originate from
the same continuous distribution).

3) Step 3. Unsupervised Clusterization: The third step
is to stratify the subjects based on their power spectrum
distributions. This problem can be stated as an unsupervised
clusterization problem driven by similarities in the power
distribution of the subjects. There is no explicit knowledge
of the number of clusters, of which information will be used
to build the clusters, or to which cluster a subject will belong.
Note that this is a data-driven strategy that will find the
stratification of the database based on data itself, not on
subjective knowledge such as the age of the subjects.

A hierarchical agglomerative clustering was chosen from
among other techniques such as K-means or Gaussian
Mixture Models [17]. Hierarchical agglomerative clustering
was chosen because the feature space presents large di-
mensionality (76 dimensions) and the application of other
techniques resulted in non reliable solutions. Note that a
dimension reduction with standard techniques such as PCA
was avoided due to the impossibility of finding a criterion
to valid information loss when other subjects were tested
against the database (following the same data process).
Given the power distributions of the subjects, a similarity
measurement had to be provided in order to apply the un-
supervised technique. The Bhattacharyya distance [18] was
used because it measures the distance between distributions
and has a closed-form solution for Gaussian distributions
(Bhattacharyya measures the overlapping proportion in the
histograms of two distributions). The agglomerative cluster-
ing can be constructed by using any similarity measurement

based on the power distributions. Two measurements were
proposed accounting for global and local aspects of distri-
butions. The first measurement DBT (sp, st) is a weighted
similarity for all distributions, and the second measurement
DBθ/β(sp, st) weights only the theta-beta ratio distribution
in central electrodes (typical phenotype used in the diagnosis
of attention deficit disorder [20]):

DBT (sp, st) =

√√√√nChan∑
i=1

∑
j∈{δ,θ,α,β}

DBi,j(sp, st)2 (1)

DBθ/β(sp, st) =

√√√√nChanCentral∑
i=1

DBi,θ/β(sp, st)2 (2)

where DBij is the Bhattacharrya distance between dis-
tributions for the absolute band power in channel i and
frequency band j of subjects sp and st.

The agglomerative clustering with these similarity mea-
surements works iteratively, where the two most similar
clusters of subjects in terms of the previous distance are
merged in every iteration. In this process, the distance
between clusters is calculated from the similarity of their
farthest members. The result of the clustering process is
shown in a dendrogram (the x-axis is the set of subjects,
the y-axis is the similarity measurement of clusters, and
the tree structure shows the clustering). The final step is to
establish a similarity threshold in order to set the result of
the cluster in the hierarchy. To this end, the knee-rule was
used over the objective function DBC(k), where DBC(k)
is the maximum distance between clusters with the partition
of k clusters (adapted to the similarity measurement used, see
above Equations). This function is a monotonically decreas-
ing function of k and the knee is the point with a significant
change of slope DBCthr. Figure 2 shows the result of the
agglomerative clustering (stratification of database) for the
two proposed measurements.

4) Step 4. Associated tools: The final objective of the
normative database is to compare a new individual against
normative data to find dis/similarities in global or specific
features of the EEG. Let be Si = {si1, . . . , sip} one of the m
clusters computed with p subjects (with i = 1 . . .m). Let be
DBCthr the threshold computed. A new subject snew is in
of the normality if:

∀iDBT (snew, Si) < DBCthr (3)

If subject snew is within the normality, the most similar
set of subjects naturally is given by the distance to the closer
cluster. However, if the subject is out of the normality, this
distance presents the minimum dissimilarity that could also
be used to measure progress within a therapeutic process.
Note that a similar expression is given for the other metric
DBθ/β .

C. Validation

Cross-validation is used to assess how the results of the
clustering process generalize to an independent data set. Two
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Fig. 2. Stratification of the EEG normative database with agglomerative
clustering for (Upper part) the global similarity measurement and (Lower
part) the similarity measurement of θ/β distribution ratio

different measurements are calculated: global specificity and
internal specificity, both with a leave-one-out cross validation
strategy using the EEG database subjects.

1) Global specificity: Global specificity is determined
through the comparison of individual subjects against the
normative database built without the specific subject, in order
to verify whether the EEG is within the normality defined by
the database. Global specificity is given by Specificity =

TN
TN+FP , which determines the proportion of healthy subjects
who are correctly labeled as normal by the test. Global
specificity is computed through cross validation with leave-
one-out (i.e., testing each subject against the normative
database built with the rest of subjects). The TN obtained
was 63 and TN + FP are the 63 subjects that constitute
the normative database. Therefore, a 100% global specificity
was obtained for the two defined metrics.

2) Internal specificity: Internal specificity is computed
through cross-validation, to check whether the TN obtained
are correctly classified in the original cluster. Table 2 and
Table 3 show the confusion matrix where the local specificity
is given for the four clusters in both cases (global similarity
metrics and θ/β distributions).

Original Test
Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 86.36 27.78 10.00 0
Cluster 2 4.55 61.11 0 0
Cluster 3 9.09 0 90.00 0
Cluster 4 0 11.11 0 100

Table 2: Local specificity for every original cluster for all 76 EEG features.

Original Test
Cluster 1 Cluster 2 Cluster 3

Cluster 1 68.19 0 0
Cluster 2 31.81 93.55 10.00
Cluster 3 0 6.45 90.00

Table 3: Local specificity for every original cluster in ratio Theta/Beta.

III. CONCLUSIONS

This work designed and developed the first data-driven
normative database, which provided a stratification of sub-
jects based explicitly on EEG patterns. These EEG patterns
can be in the form of global measurements or specific phe-
notypes with clinical relevance. The process was validated
by cross validation with a 100% in specificity.

REFERENCES

[1] F. Duffy, J.R. Hughes, F. Miranda, P. Bernad, P. Cook. ”Status of
quantitative EEG (QEEG) in clinical practice”, Clinical Electroen-
cephalography, 25(4) 1994 ,vi-vixxii.

[2] W. R. Adey, ”Data acquisition and analysis techniques in a Brain
Research Insitute” Ann NY Acad Sci 31(115), 844-866

[3] M. Matousek, I. Petersen ”Automatic evaluation of background ac-
tivity by means of age-dependent EEG quotients” EEG & Clin.
Neurophysiol., 35, 603-612, 1973.

[4] E.R. John, L.S. Prichep, P. Easton ”Normative data banks and neuro-
metrics: Basic concepts, methods and results of norm construction.”
Handbook of electroencephalography and clinical neurophysiology:
III. Computer analysis of the EEG and other neurophysiological
signals pp.449-495, 1987. Amsterdam: Elsevier.

[5] M.A.T. Figueiredo, A. K. Jain (2002), ”Unsupervised Learning of
Finite Mixture Models”,IEEE Transactions on Pattern Analysis and
Machine Intelligence 24, 381-396.

[6] M .Matousek, I. Petersen ”Frequency analysis of the EEG background
activity by means of age-dependent EEG quotientes” Automation of
clinical electroencephalography(P.Kellaway and I. Petersen, eds),1973

[7] R.W. Thatcher ”EEG normative databases and EEG biofeedback”
Journal of Neurotherapy,1998, 2(4), 8-39.

[8] R.W. Thatcher, R.A. Walker, C. Biver, D. North, R. Curtin ”Quanti-
tative EEG Normative databases: Validation and Clinical Correlation”
Journal Neurophysiology, 112, 1729-1745.

[9] E.R. John ”Neurometrics: Quantitative Electrophysiological Analyses”
Functional Neuroscience, 1977, New Jersey: L. Erlbaum Assoc.

[10] R.W. Thatcher, R.A. Walker, C. Biver, D. North, R. Curtin ”Quanti-
tative EEG Normative databases: Validation and Clinical Correlation”
J. Neurotherapy, 2003, 7, 87122.

[11] R.W. Thatcher, D. North, C. Biver ”EEG inverse solutions and para-
metric vs. non-parametric statistics of Low resolution Electromagnetic
tomography (Loreta)” Clin. EEG and Neuroscience, 2005, 36(1), 19.

[12] E. R. John, H. Ahn, L.S. Prichep, M. Trepetin, D. Brown, H. Kaye
”Developmental equations for the electroencephalogram” Science,
1980, 210, 12551258.

[13] T. Gasser, P. Bacher, J. Macks ”Transformations towards the normal
distribution of broad band spectral parameters of the EEG” Electroen-
cephalogr Clin Neurophysiol 1982, 53, 119-24.

[14] WP. Dunlap, RS. Chen, T. Greer ”Skew reduces test-restest reliability”
Journal Appl Physchol 1994, 79, 310-13.

[15] GEP. Box, DR. Cox ”An analysis of transformations” J R Stat Soc B
1964, 26, 211-52.

[16] Jr. Thode ”Testing for Normality” 2002, Marcel Dekker, New York.
[17] J.A. Hartigan ”Clustering Algorithms”, (1975), Wiley.
[18] A. Bhattacharyya ”On a measure of divergence between two statistical

populations defined by probability distributions” Bull. Calcutta Math.
Soc., 35 (1943) pp. 99109.

[19] M. Congedo, J.F. Lubar ”Parametric and Non-Parametric Normative
Database Comparisons”, Electroencephalography: A Simulation Study
on Accuracy, Journal of Neurotherapy,(2003) 7(3/4), 1-29.

[20] Lubar, J. F. ”Discourse on the development of EEG diagnostics and
biofeedback treatment for attention deficit/hyperactivity disorders”,
Biofeedback and Self-Regulation,1991, 16, 201-225.

7309


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

