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Resumen

A sensor-based motion control system was designed to autonomously drive vehi-
cles free of collisions in unknown, troublesome and dynamic scenarios. The system
was developed based on a hybrid architecture with three layers (modeling, plan-
ning and reaction). The interaction of the modules was based on a synchronous
planner-reactor configuration where the planner computes tactical information to
direct the reactivity. Our system differs from previous ones in terms of the choice of
the techniques implemented in the modules and in the integration architecture. It
can achieve robust and reliable navigation in difficult scenarios that are troublesome
for many existing methods. Experiments carried out in these scenarios with a real
vehicle confirm the effectiveness of this technique.
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1 Introduction

More and more research and industrial interests in robotics are focused on
improving the degree of system autonomy. Robots are being developed that
operate under a wide variety of conditions, with an emphasis on long work
periods without human intervention. These include specific tasks that are te-
dious or involve dangerous or hostile surroundings. Autonomous navigation
systems are used in applications like service robots, surveillance, or explora-
tion, where the vehicle moves and carries out the main task at the same time.
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One of the key aspects of these robots is mobility, since it is the basis on
which to incorporate more subsystems with different functionalities. However,
the performance of the motion system strongly affects task performance. Spe-
cial problems arise in applications that may lead to fatal consequences (e.g.,
robots that transport dangerous materials).

Mobility is closely related with the nature of the scenario. In many appli-
cations, the environment cannot be specified with an a priori map and can
be dynamic. Under these circumstances, sensors collect information about
the environment and adapt robot motions to any new contingency or event.
Sensor-based motion systems appear to be the natural choice, however most
of them cannot carry out robust and trustworthy navigation in very complica-
ted environments. These usually involve spaces with little room to maneuver,
highly dynamic environments or that lead to trap situations. An example is
an office (Figure la), where the robot moves among the chairs, tables and
shelves (all with unknown positions) and humans (who make the scenario hig-
hly dynamic). Maneuvering is also extremely difficult in certain circumstances
when there is little room to maneuver (Figure 1b). Here we address the motion
control of a vehicle under these work conditions.

We designed and tested a sensor-based system with three modules that work
together to carry out the motion task. Our design is constructed over some
requirements that we identified to drive vehicles in troublesome scenarios. The
system differs from previous works in the choice and implementation of the
modules and in the architecture of integration. Key contributions include the
functional and computational aspects of module design and integration, and
the experimental validation with an emphasis on highly dynamic environments
that are unknown and indoors. This paper includes a strong experimental
component, and all the results are from tests using a real vehicle (see Appendix
for further details of the robot).

The sensor-based motion control subsystem was developed to move the vehi-
cle to the desired positions without collisions. This functionality is only a
subset of the complete mobility problem. Other aspects involve perception,
planning, modeling and control. They will not be addressed in this manus-
cript, but are essential to construct a complete autonomous motion system.
Related works include motion planning, Latombe (1991); location and map
building, Castellanos et al. (1999); Leonard and Feder (2000); Dissanayake
et al. (2001); Thrun et al. (2000); and supervision Buhmann et al. (1995);
Koenig and Simmons (1998). However, in this paper we also discuss the inte-
gration of our motion subsystem in a complete motion architecture (high-level
planning, localization, motion control and supervision), and we present, dis-
cuss and compare the real results qualitatively and quantitatively with other
methods.



Figura 1. (a) A typical indoor environment with tables, chairs and closets whose
positions cannot be specified a priori in a map. There are also people working in the
office, which makes the surroundings highly dynamic. (b) Navigation in this type of
scenario must overcome situations with difficult maneuverability (for example when

the robot passes through a door with five centimetres maneuvering room on either
side).

The work is organized as follows: first we discuss related work (Section 2), and
the basic requirements to design a sensor-based motion control system (Sec-
tion 3). Next, we provide an overview of the system (Section 4), the modules
and their integration (Section 5). Finally, we present the experimental results
(Section 6) and the integration in a complete motion system. We compare
out subsystem with other methods in Section 7 and present the conclusions
in Section 8.

2 Related Work

The topic of motion in evolving environments includes issues such as know-
ledge representation (model construction), global deliberation and reactivity.
Navigational planning without considering execution is restricted to a small
domain of the problem. This is because it becomes difficult to consider all
contingencies and it is unrealistic to formulate plans that do not reflect a
changing environment. On the other hand, reactive systems limit their sco-
pe of application to perception-action, gaining flexibility and robustness of
motions. The overall problem cannot be solved by these systems individually
since they need more extensive models of knowledge and some way to incor-
porate memory. The interest is focused on synthesizing a control mode that
incorporates both methodologies and not on extending both worlds separa-
tely, Arkin (1989). Hybrid systems attempt to combine both paradigms by



including the best artificial intelligence to represent and use the knowledge,
with the best reactivity, robustness, adaptation and flexibility. Basically these
schemes should combine a planner (deliberation) and a reactor (execution).
The main differences among them are: (i) the interaction between the planner
and the reactor (i.e. how the reactive method uses the information available
of the planner), and (i7) the techniques used to implement each module.

One way to specify the interaction between deliberation and reaction is to con-
sider planning as a component that fixes the composition between different
behaviors during execution, Arkin (1987). For example, these behaviors can
be implemented with potential fields, Khatib (1986), so that modifying their
weight changes the overall behavior of the system. Another possibility is to use
the planning to advise the reactive control, Agree and Chapman (1990), or as
a system that adapts parameters of the reactive component based on the evo-
lution of the surroundings, Lyons and Hendriks (1992). In both cases, planning
plays a tactical role while the reactor has the execution degree of freedom. The
advantage of this planner-reactor configuration is that it combines the delibe-
rative component [the plan is always available in execution and improves with
the time, Dean and Wellman (1991)] and the reactive component (executor of
the motion). A perspective on hybrid architectures is given in Arkin (1999).
Focusing on the motion context, one common strategy is to compute a path
and use its course to direct the reactive module, Ratering and Gini (1993);
Brock and Khatib (1999); Minguez et al. (2001); Arras et al. (2002). These
techniques require large computational resources, but use complete planners
(they always find a path if it exists). Other techniques compute a path that
is deformed in execution based on the evolution of the environment [in the
workspace, Brock and Khatib (2000), or in the configuration space, Quinlan
and Khatib (1993)]. Nevertheless, these methods need to replan when the path
is invalidated or when it moves far away from the initial configuration due to
unexpected obstacles. Alternatively, Ulrich and Borenstein (1998) present a
strategy to create trees of paths obtained by executing the reactive algorithm
some steps ahead of the execution. This system obtains good results in plat-
forms with low computational resources, but does not assure a convergence to
the target. Another possibility is to compute a channel of free space that con-
tains sets of ways, leaving the choice up to the execution, Choi and Latombe
(1991).

These issues are closely linked to the choice and implementation of techni-
ques for each module. All the previous strategies use the planner to obtain a
way to guide the reactive control. The planner is usually an efficient numeri-
cal technique executed in real time, Barraquand and Latombe (1989); Stenz
(1995). Another key module is the reactive method itself. Some techniques are
based on potential methods, Khatib (1986); Krogh and Thorpe (1986); Tilove
(1990) but they have limitations, Koren and Borenstein (1991). Other techni-
ques compute a set of intermediate motion commands to choose the next one.



The commands are directions of motion, Borenstein and Koren (1991b); Ulrich
and Borenstein (1998); sets of speeds, Simmons (1996); Fox et al. (1997); or
sets of trajectories, Feiten et al. (1994); Hebert et al. (1997). However, these
reactive methods are of limited use when the scenario makes it difficult to
maneuver the vehicle (usually with high obstacle density). Minguez and Mon-
tano (2004) identified some consequences like local trap situations, irregular
and oscillating motions, or the impossibility of driving the vehicle towards
areas with a high obstacle density or far away from the goal direction. These
behaviors acquire greater relevance in the development of robust applications
to navigate without depending on the difficulty of the environment. The na-
vigation systems that rely on reactive methods also inherit these drawbacks,
limiting their use in realistic applications. Finally, in this type of architectu-
re, models are normally constructed to serve as the basis for the planner and
provide short time memory for the reactive behavior. In indoor environments,
the occupancy grids are usually used with Ultrasound, Elfes (1987); Borens-
tein and Koren (1991a); Ratering and Gini (1993) and laser Brock and Khatib
(1999); Minguez et al. (2001); Arras et al. (2002).

In this paper we describe an hybrid system with a synchronous and hetero-
geneous planner - reactor configuration, where both modules use the model
constructed in execution to carry out the motion task. Our main contribution
is the choice and design of the modules and their integration. As a result,
the new system can move vehicles in very difficult environments, where other
systems may find difficulties.

3 Requirements of the Sensor-based Motion Control System

The basic version of these systems moves the vehicle among positions without
collision. The operation is governed by a perception - action process repeated
at a high frequency. Sensors gather information from the environment (obs-
tacles) and the robot, which is processed to compute the motion. The vehicle
executes the motion and the process restarts. The result is an on-line sequence
of motions that drive the vehicle to the destination without collisions. In this
Section we specify some general requirements for these systems:

(1) Integration of information: the successive sensorial measures must
be stored or integrated to construct a representation of the environment.
This is necessary to avoid obstacles that are not perceived at the moment
(visibility constraints of the sensor), and to increase the reach of the in-
formation used (increasing the spatial dominion). In addition, changes in
dynamic scenarios must be rapidly reflected in the model. Otherwise, the
robot will avoid areas perceived as free space or will not avoid perceived
obstacles (since in both cases the information could not be still reflected



in the model).

(2) Avoidance of trap situations and cyclical behaviors: the system

has to be equipped with a strategy to avoid these situations. Many dif-
ferent configurations of obstacles can trap the robot (the most typical
being U-shape obstacles or end-zones) or create cyclical motion (e.g.,
symmetrical distributions of obstacles). The robot will never reach the
final location under these circumstances.

(3) Generation of robust motion: the final motion must be computed

by a robust reactive method. This algorithm should be able to avoid
collisions independently of the inherent difficulty of the environment. As
a rule, the most problematic scenarios have a large obstacle density where
maneuvering is difficult and critical.

(4) Integration of functionalities: All functionalities must be integrated

within an architecture for specification, coordination and failure detec-
tion and recovery. The integration must close the perception - action
cycle at a high frequency, since it fixes the reactivity of the system to
unforeseeable changes (detected by the sensors). Furthermore, this favors
the portability between different platforms and sensors (the interactions
between modules are not designed from scratch when the modules are
replaced).

Here we attempt to make our system fulfil these requirements.

4 Overview of the System

We provide a general view of our hybrid system which has three modules and
one architecture for supervision. The functionalities of the modules are model
construction, planning and reactive navigation:

Modeling module: it constructs a model of the environment (integrating
the sensorial information). We used a binary occupancy grid whose cells are
updated whenever a new sensorial measurement is available. The grid has a
limited size (representing a fixed portion of the space), and whose location
is continuously recomputed to include robot location.

Planning module: it extracts the connectivity of free space (used to avoid
the trap situations and cyclical motions). We used the Navigation Function
1 [NF1 in short, Barraquand and Latombe (1989)] which is based on the
frontwave expansion by free space. The planner is free of potential minima,
can work on a grid (existing representation), and can be efficiently executed
in real time (at least once in each perception cycle).

Reactive navigation module: it computes the collision free motion. The
method used is the Nearness Diagram Navigation [ND method in short,
Minguez and Montano (2004)], which is based on selecting a navigational
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Figura 2. This Figure shows the perception - action cycle of the sensor-based motion
control system. Perceptions are measures of the obstacles and the odometry of the
robot, and the action computes the collision free motion commands. The system
has three modules that cooperate to carry out this task: the model construction,
the tactical planner and the reactive navigation method.

situation at every moment and applying the associated motion law. This
method is very efficient and robust in environments with little space to
maneuver.

e Architecture of integration: it integrates the modules following a synch-
ronous planner - reactor configuration, Lyons and Hendriks (1992), where
both parts use the model constructed in execution time. The synchrony of
the modules avoids problems of time-inconsistencies.

The system works as follows (Figure 2): given a laser scan and the odometry of
the vehicle, the model builder incorporates this information into the existing
model. Next, the information about obstacles and free space in the grid is used
by the planning module to compute the course to the destination. Finally,
the reactive module uses the information about obstacles in the grid and
information of the tactical planner to generate motion (to drive the vehicle
towards the destination without collisions). The motion is executed by the
vehicle controller and the process restarts. It is important to stress that the
three modules work synchronously within the cycle of perception - action.
This reinforces the importance of the choice and computational aspects of the
techniques used in each module. Next, we describe the design of the modules
and the integration architecture.



5 Design and Integration of the Functionalities

Here we present the design of the modules in the system. We discuss the mo-
deling module (Subsection 5.1), the planning module (Subsection 5.2), the
navigation method (Subsection 5.3), and the architecture of integration (Sub-
section 5.4).

5.1 Model Builder Module

This module integrates the successive sensorial measures to create a local
model of the environment. We chose a binary occupancy grid whose cells
are occupied, free or unknown'. We did not use traversability or uncertainty
factors since the laser has a high precision in indoor environments. The grid
has a fixed size that represents a limited part of the workspace (large enough
to represent the portion of space necessary to solve the navigation) and whose
position is recomputed to maintain the robot in its central zone (the obstacles
that surround the robot are always available even if they are not visible from
the current location).

The design of this module includes: (i) the integration of the scans in the
model, and (i7) the update of the grid position to maintain the robot centered.
To integrate a laser scan in the model, we consider that a scan is a cloud of
points where: (a) in each point there is an obstacle (cell updated occupied),
and (b) the line that joins each obstacle point and the sensor is free space
(cells updated free), see Figure 3a. We implemented this procedure using the
Bresenham algorithm, Foley et al. (1990) which is optimal in the number of
cells visited to project a line in a grid. This algorithm considerably reduces
the integration time of a sensorial measurement.

Secondly, to keep the robot in the central zone of the grid we define a area ca-
lled control zone. When the robot leaves this zone the new position of the grid
is recomputed to center the robot within this zone. The robot is always in the
central zone of the grid, whose position does not change until the robot leaves.
The recomputation of the grid position is always made in multiples of the cell
dimension and rotation is not allowed (this strategy reduces the dissemina-
tion of false information of the obstacles in the cells, which is an important
source of error). In addition, this strategy can be efficiently implemented with
memory shifts to reduce the computation time.

Figure 4 shows an experiment when two people move in front of the robot.

! To all purposes the unknown cells are assumed to be free (binary grid), however
we use them to clarify the Figures.
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Figura 3. These Figures show how the laser measures are integrated in the grid and
how the grid position is recomputed for the robot to remain in the central zone. (a)
In a laser scan, the cells are occupied for obstacle points, and the cells in the lines
that join the obstacle points and the sensor are updated as free. (b) At time ¢ =i
the robot is within the control zone of grid. Next, at ¢ = ¢ 4+ 1, the robot has left
the control zone and the grid location is recomputed (in multiples of cell sizes and
without rotation) so the new position the robot is within this zone.

A typical strategy consists in integrating the scans as a short-time memory.
If we use this integration (Figures 4a, b, c), the result does not reflect the
change rapidly since the people leave a temporary shadow (obstacles that do
not exist, Figure 4d). For the same experiment we used this module with a grid
of 200 x 200 cells and 0.05m each cell. The resulting grid (Figure 4e) rapidly
reflects the change in dynamic environments because the whole area covered
by the last scan is updated (the obstacles and the free space). Furthermore,
the obstacles not visible from the current location remain in the grid and can
be used for the avoidance task. Other important issues include: (i) the last
laser scan integrated in the grid does not have odometry errors with respect
to the present position (only the cells not updated with this scan accumulate
these errors), and (i7) the spurious measures are eliminated from the grid as
new measures are added. These advantages justify the usage of binary grids
for navigation purposes with regard to probabilistic approaches (that would
require to accumulate evidence of both free and occupied space to be reflected
in the model).

With respect to the functional and computational aspects of this module, the
grid represents a portion of the environment of 10 x 10 meters around the
robot (large enough to include the goal location), and with a cell size of 0.05m
(0.01m larger than the sensor nominal error). With these settings the module
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Figura 4. These Figures show the calculation of the grid when two people walk in
front of the robot. Figures (a), (b), (¢) show the robot location and the scan at
t =0,1,2 seconds (3 of 10 measures). (d) The result of the 10 scans integrated as
a short-time memory, where some obstacles appear where they do not exist (this
representation is not a rapid reflection of the evolution of the environment), and
(e) the grid obtained by this module using the same scans. The dynamism of the
environment is rapidly represented because the scans are integrated when available,
updating the obstacle and the free space in the model.

takes about 0.08sec, thus it can work within the laser cycle (0.20sec).

In summary, this module integrates the sensor data so that the spatial domain
of the information is increased as the robot progresses. Furthermore, the model
rapidly represents changes in evolving scenarios by updating the whole space
covered by the last perception. For these reasons, this module complies with
the information integration requirement in Section 3. Next, we address the
planning module.

10
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Figura 5. This Figure shows the operation of the planner. First, the obstacles are
enlarged with robot radius (a). Next, the NF1 is computed by propagating a wave
from the final position, where each cell is labeled with the accumulated cost of the
wave (b). On this function a path is computed with a gradient search strategy, NF1
path in the Figure (a). Finally the path is stretched (to be optimized) in order to
obtain the instantaneous direction of motion from the first part of the path.

5.2 Planning Module

This module uses a motion planner to obtain tactical information to avoid
trap situations and cyclical motions (not to control the vehicle). The planner
constructs a navigation function (NF1) over the grid of the previous module,
and then computes a path to the destination using a steepest descendent
strategy. We selected this planner because the navigation function does not
have potential minima (if a path exists, it is found), and it is a numerical
function that works efficiently on a grid (i.e., the existing representation).

The planner uses a two step process to compute a path from the robot location
to the destination (Figure 5). First, the navigation function is computed. Each
obstacle is enlarged with the robot radius, and then the NF1 is constructed
by propagating a wave from the destination over the free cells (each cell is
labeled with the distance measured in number of cells until the goal is reached).
Secondly, a path is calculated using a gradient search strategy on the potential.
However, this path is optimal in the metric defined over the grid. Thus, in an
iterative process the path is stretched to make it optimal in configuration
space. This avoids the border effects of the NF1 and paths that point out or
graze the obstacles (Figure 5a).

Two types of information are obtained from the path. First, the possibility of
reaching the goal from the present position (the planner finds the path if it
exists). Second, the instantaneous motion direction (main course of the first
part of the path, see Figures 5a and 6). This direction will be used to advise

11
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Figura 6. This Figure shows an experiment where the planning module computes
a path to the destination over the grid. The instantaneous direction of motion is
extracted from the main direction of the path. This direction aims towards the exit
of the U-shape obstacle, which is used as a course to avoid the trap situation.

about the motion, but not as a path to execute (since the motion generation
will be handled by the reactive module). That is, the instantaneous direction
is the tactical information computed by the planner to avoid trap situations.
This is graphically illustrated in Figure 6, where the robot was in front of a
U-shape obstacle where it could be trapped. Nevertheless, when we compute
the path and extract the instantaneous direction, it aims towards the exit.
Using this direction as course avoids the trap situation.

The computational aspect of this module is bounded with the size of grid.
With a size of 200 x 200 cells, the module takes about 0.08sec (worst case) and
thus can be used within the sensorial cycle after the modeling module. With
regard to the integration, the computation time of the navigation function is
proportional to the square of the number of cells. Thus, increasing the size
of the grid would increase the computation time (penalizing the inclusion in
the sensorial cycle). On the other hand, reducing the size of the grid or its
resolution diminishes the spatial domain or the precision. That is, the size of
the model (portion of the space and precision) creates a commitment with the
computation time of the planner, and they both have to be balanced in the
real implementation.

It should be noted that the instantaneous motion direction contains tactical
information to avoid cyclical motions and trap situations (requirement
settle in Section 3). In the following Sections we analyze how the system uses
this information to solve these situations. Next, we describe the module that
computes the motion.

12
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Figura 7. This Figure shows the ND method design, which is made up of a set of
navigation situations and their corresponding actions (motion laws). During exe-
cution, the sensory information is used to choose a navigational situation (using
a binary decision tree) and the corresponding action is executed to compute the
motion. LS situations correspond to the case where there are obstacles within the
security zone (LS1 at one side, and LS2 at both). HS situations are when there are
not obstacles within the security zone. If the goal is in the motion area, HSGV, or
out of this area but wide, HSWV, or narrow, HSNV.

5.3  Reactive Navigation Module

The reactive navigation module computes the collision free motion to drive
the vehicle towards the final location. The ND method employs a "divide
and conquer”strategy to simplify the navigation by identifying situations and
applying the corresponding motion laws. It can solve complex navigation cases
for robust motion in troublesome scenarios.

The ND method uses a methodology to design behaviors called the situated
- activity paradigm [see Arkin (1999)]. First a set of situations is defined to
represent the navigational problem and mode of conduct (actions). Here, the
situations represent all the cases between robot positions, obstacles and the
goal (navigational situations). In addition, for each of these cases a motion
law (action) is associated. During the execution phase, we use information
about the obstacles, the robot and the destination to identify one of these
situations. Then the corresponding action is applied that computes the motion.
The motion is executed by the robot and the process restarts (Figure 7). Next
we outline the situations and actions.

13
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Figura 8. This Figure shows the computation of the motion solution with the ND
in one situation. To identify the situation the process is to check some criteria.
For example in the Figure there are not obstacles closer that the security distance
D;. Next, the target is not within the motion area. Third the motion area is wide.
With this three criteria we identify the current situation, HSWYV. In this situation,
the associated action computes the command vi = (0s, Vso1), Where vgy is the
maximum velocity and 6, is computed as a deviation « from the limit direction
04;sc of the motion area.

We used a binary decision tree to define the situations (Figure 7). The inputs
are the obstacles, the robot and goal locations. The output is a situation
that is chosen by selecting one branch after applying criteria that depend on
the inputs and on their relations. The relations are obtained from a security
zone around the robot boundaries and from an entity that we call the free
zone. Using the security zone we check whether there are risky obstacles,
and with the free zone we select a suitable area of motion (Figure 8). The
set of situations cover all the possible cases among robot and goal locations
and obstacle distributions, and only one is identified in each case (the set of
situations is complete and exclusive).

Each situation has an associated action that computes a motion command
(v, w) to adapt the behavior to the navigational situation. To compute the di-
rection of motion we use geometric information about the obstacle distribution
and the free zone. The module of the velocity depends on the security context,
which is maximum when there are no obstacles within the security distance
(safe situation). On the other hand, the velocity of this module is reduced li-
nearly with the distance to the closest obstacle. We establish a rotation speed
w to align the robot with the instantaneous direction of motion.

In summary, this reactive method identifies a navigational situation and ap-

14



Figura 9. This experiment shows how the ND method can drive the vehicle in
difficult environments. (a) A snapshot of the experiment that illustrates the robot
and the obstacles. (b) All the laser points and the trajectory executed by the robot.

plies a motion law to obtain the motion commands. The commands are sent
to the vehicle and the process restarts. The advantage of this method is that it
can drive vehicles in very dense, cluttered and complex scenarios. As Minguez
and Montano (2004) point out, this method: (i) avoids local trap situations
due to the perceived environment structure (i.e. U-shape obstacles and two
very close obstacles); (i) computes stable and oscillation free motion; (i)
selects directions of motion towards the obstacles; (iv) exhibits a high goal in-
sensitivity (i.e. to chose directions of motion far away from the goal direction);
and (v) selects regions of motion with a robust navigable criterion.

Figure 9 shows an experiment carried out with this reactive module. The
vehicle reached the final position (which is the only information provided a
priori) at the end of the passage (Figure 9a) without collisions. Notice how
in some areas it was very difficult to move (Figure 9b) and motion directions
towards the obstacles were required at every moment to solve this navigation.
Furthermore, the trap situations or oscillating motions due to motion among
very near obstacles were avoided (see the robot trajectory in Figure 9b).

Finally, the module complies with the requirement of generation of robust
motion (Section 3). This is because this method is able to drive vehicles
in troublesome environments (dense, complex and cluttered), and the method
works at a high rate (approximately at 0.04sec) for quick reactions in dynamic
surroundings.

15



5.4 The Architecture of Integration

The architecture integrates the modules by considering the limitations and
restrictions imposed by the physical (sensors and actuators) and logical parts
(computers) of the robot. The architecture has a synchronous planner - reactor
configuration, where both parts use the model constructed in execution time
(Figure 10). The functionalities of the modules are the model construction, the
computation of the tactical motion direction (to guide the reactive method),
and the motion command generation.

In some situations the modules produce failures that are managed by the
architecture:

e Exception in the planning module: sometimes the planner does not find a
solution, either because it does not exist (for example when the goal falls on
an obstacle) or because a time out is launched when the module takes too
long. A path may not exist in unknown environments when goals are placed
for exploration and one falls on an obstacle, in dynamic surroundings when
a dynamic obstacle moves or stops on the goal, in static environments when
the goal is displaced due to robot drift, or when the goal or the robot are
surrounded by obstacles ? .

e Exception in the reactive module: the robot is completely surrounded by
obstacles when there are no areas of motion (internal piece of information
in the ND method), and it cannot progress.

In both cases, we set flags to carry out strategies that can close the control
loop (to avoid dead states). In the first case, the reactive module uses the goal
location directly instead of the information from the planner. In the second
case the robot stops and turns on itself (this behavior updates the model in
all the directions looking for a new path).

The modules are executed following the modeler - planner - reactor sequen-
ce (Figure 11), dictated by the flow of data between modules. This flow is
unidirectional, from the modeling module towards the planner and reactive
module (with a bandwidth of 160£2£) and from the planner towards the
reactive module (with a bandwidth of 8%) The modules assure that their
time constraints are in synchrony with the sensor rate 0.20sec. This is im-
portant to avoid inconsistencies in time that would arise using asynchronous
strategies (the model is used for local planning and obstacle avoidance and
must be consistent in time with both modules). We assigned time outs of 0.08,
0.08 and 0.04sec to each module to keep the motion control loop closed (the

2 Although these situations could be avoided by replacing the goal position, this is
not the role of the navigation system. The consequences of this decision could affect
the normal development of the robotic task in general.

16



GOAL

Ow)
Gma J;;gctapght l Actuators

Failure

(v,w
flag REACTOR »H
Grid 2
Sensors g
e
Grid

Figura 10. This Figure shows the architecture of integration. The modules work
together synchronously and share some data. Furthermore, depending on some cir-
cumstances the modules fail, and exceptions are launched to manage the situation
in order to close the motion control loop.
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Figura 11. The Figure depicts the time diagram of the execution of the modules,
which work synchronously within the sensor cycle. That is once a new laser mea-
surement is available, the three modules are executed sequentially before the new
measure event.

maximum execution time is 0.20sec).

To conclude, the modular structure of the system allows to replace the dif-
ferent modules easily since the computational aspects and interfaces among
the functionalities are clearly specified (requirement of modular integration
specified in the Section 3). We have considered how each module complies with
the proposed requirements. Next we show how they also comply when inte-
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grated.

6 Testing the Sensor-Based System

In this Section we discuss some representative experiments carried out with
the sensor-based navigation system on the real vehicle (see the Appendix for
further details). All environments were completely unknown, unstructured and
dynamic with an a priori unforeseeable behaviour. The experiments demons-
trate the system working in: (i) very dense, complex and cluttered scenarios;
(17) avoiding trap situations, and (7i7) in a highly dynamic environment. In
addition, in the last subsection we explain how this sensor-based system is
integrated in a complete motion system (with high level planning, global loca-
tion and motion execution). Many tests ranging from short-term to long-term
missions validate this integration.

6.1 FEzxperiment 1: Motion in very dense, complex and cluttered scenarios

This experiment highlights the framework in a difficult scenario, where the
robot navigated along a very narrow passage with randomly distributed boxes
(Figure 12). The difficult part was inside the corridor where there was little
space to maneuver [in some parts less than 10cm on either side of the robot
(Figure 12d)]. The average speed was 0.204m/sec, and the robot reached the
final location in 127sec.

Key aspects of this experiment were the individual performance and the coo-
peration between the modeling and reactive modules. The laser scans in the
modeling module were rapidly integrated in the grid. Thus, the reactive met-
hod avoided the new obstacles as soon as they were perceived. This reactivity
is essential to move in dense environments (since delays in motion computa-
tion would lead to collisions). Second, last sensorial measures remained in the
grid and were used by the reactive module for the avoidance task. This was
important since sometimes the sensor did not perceive the closest obstacles
due to visibility constraints. However, since they were perceived some time
before, they remained in the grid and were avoided (Figures 12d-g, e-h, and
f-1).

This experiment was particularly difficult from the point of view of motion
generation due to the narrow space, because many of the existing techniques
have intrinsic limitations that would penalize to compute motion under these
circumstances [see Minguez and Montano (2004) for a discussion on this to-
pic]. However, the ND method drove the vehicle free of collisions even among
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Figura 12. Experiment 1: The robot must cross a narrow corridor with boxes to
reach the goal. (a) Trajectory executed and (b) motion commands. (c,d,e,f) Some
snapshots of the experiment (g,h,i) and the corresponding grid and robot, where
(d) matches with (g), (e) with (h), and (f) with (i).

very close obstacles. This motion was smooth, free of oscillations (see the
path executed in Figure 12a and the velocity profiles in Figure 12b) and free
of any traps due to the obstacle density. Important requirements complied
with here are the generation of robust motion and integration of the
information.
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Figura 13. Experiment 2: In this experiment, the robot avoided three successive trap
situations dynamically created by a human. (a) Trajectory executed y (b) motion
commands. (c,d,e,f) Some snapshots of the motion and (g,h,i) the corresponding
grid and robot, where (c¢) matches with (g), (d) with (h), and (e) with (i).

6.2 FExperiment 2: Motion avoiding trap situations and cyclic behaviors

In this experiment the navigation system solved several trap situations that
occurred because the structure of the surroundings was modified. Figure 13c-g
shows the robot moving along a passage to reach the goal. When the vehicle
was about to leave the passage, a human cleared a box in the initial part of
the passage (white box in the Figure 13c) opening a passage on the right-hand
side. Next, the human closed the end of the passage (Figure 13d) producing
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Figura 14. Experiment 3: The robot moved in a highly dynamic and constantly
evolving environment, where trap situations arise repeatedly. Some snapshots of
the motion (a...h).

a trap situation in a U-shape obstacle. Rapidly, the next laser scan perceived
the change and was integrated in the grid. The planning module computed the
course towards the exit (Figure 13h). The reactive method followed this tacti-
cal information, and the robot turned backwards and moved towards to exit.
Nevertheless, while progressing, it perceived the new passage on the right-hand
side and headed in this direction. Then, the passage was closed again, leading
to another trap situation (Figure 13e-i). Following the previous process, the
robot left this passage and returned backwards (Figure 13f), until leaving the
passage and reaching the final position. The experiment took 200sec and the
average speed was 0.233m/sec.

Cooperation among the three modules avoids cyclical motion and trap situa-
tions. First, we not encountered obstacle configurations that produce trap
situations (when a path exists within grid). This is because the direction of
motion computed by the planner contains the tactical information necessary
to avoid these situations (notice that the motion is computed by the reactive
module). Secondly, the symmetric environments do not produce cyclical mo-
tions since this tactical direction discriminates between the possible motion
zones. To conclude, the system moved the vehicle in an environment where the
conclusions are similar to Experiment 1 regarding the generation of robust
motion and the integration of information. Cyclical motions and the
trap situations were also avoided.
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6.3 FExperiment 3: Motion in a highly dynamic scenario

In this experiment the system drove the vehicle in a populated and conti-
nuously changing scenario. Here the inherent difficulty of the previous en-
vironments persists (obstacle density and trap situations), while adding the
difficulty to model and maneuver among the dynamic obstacles. Figure 14a
shows the initial state, where the robot had to cross a large room to reach
the destination. During the first part of the experiment, humans moved in
front of the robot (Figures 14a, b, ¢) to hinder the motion. Here the model
constructor module was important to successfully integrate the information.
As a consequence, the system identified the areas of motion and performed the
avoidance task. Later, the scenario evolved creating a U-shape obstacle that
produced a trap situation (Figure 14d, e). Rapidly, the planner computed the
tactical information that was used by the reactive module to drive the robot
out (Figure 14f, g). Once outside, the system continued to react to the humans
that disturbed progress towards the goal. Finally, the robot reached the goal
location (Figure 14h). The average speed was 0.196m/sec and the run time
was 170sec.

This example illustrates the importance of the model constructor module in
dynamic surroundings, since it provides a base for the other two modules. If
the model did not work correctly (mainly in the first part of the experiment),
a cloud of insurmountable obstacles would appear in front of the robot, similar
to Figure 4d. In addition, the reactive module reacted rapidly to the evolution
of the surroundings and, guided by the planning module, avoided all the traps.
This example illustrates how the system can drive the robot towards locations
under realistic conditions.

6.4 Integration in an Autonomous Motion System

In this section we describe the integration of the system proposed in this
work in a real autonomous robotic system. The integration described next,
the test in the real robot (same vehicle used in this paper) and the pertinent
conclusions are the result of the work of Bennoit Morisset at LAAS-CNRS
(France) and it is described in detail in Morisset (2002) [see also Morisset and
Gallab (2002)]. The aim of his study was the construction of a autonomous
motion system that integrates: planning, localization and motion control. The
complete system has been extensively tested to extract conclusions about per-
formance, and in particular about the motion control subsystem presented in
this paper. We understand that this is an objective evaluation of this research.

We describe next the sensory-motor functionalities and their particular ins-
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tances:

(1) Global motion planning: computation of a geometrical path free of colli-
sions between two locations taking into account the shape and kinematic
constraints of the vehicle, given a priori model of the scenario. The plan-
ner used is based on Voronoi diagrams and is fully described in Simeon
and Wright (1993).

(2) Localization: construction of a model of the scenario and computation
of the vehicle location within the model. There are two instances of this
functionality, a SLAM one and another based on localization using visual
landmarks.

(a)

SLAM: in an initial step, this module uses a simultaneous localiza-
tion and map building method to incrementally construct a segment-
based model of the scenario, Moutarlier and Chatila (1989); Leonard
and Durrant-Whyte (1991). During the execution step, the system
uses the laser information to construct segments, that are matched
with the model in order to obtain the current vehicle location. This
module works between 15 and 100msec and has a precision of lcm
in translation and 1° in rotation. When integrated, it is used at a
frequency of 2.5Hz (one each two laser measurements).

LPV: in an initial step, this module uses a monocular vision system to
detect rectangular posters (landmarks) that are learnt in a supervised
way. In execution, the landmarks are detected with the vision system.
Then, the relative location of the vehicle is computed, and knowing
the location of the landmarks the vehicle absolute position is deduced,
Ayala et al. (2000); Hayet et al. (2000).

(3) Motion control: computation of the collision-free motion towards a given
target location.

(a)

(b)
()

In short,

EB: the Elastic Bands is a method that initially assumes the existence
of a geometric path to the target location (computed by a planner).
The path is assimilated with a band, subjected to two types of forces:
an inner contraction force and an external force. The inner force
simulates the tension of a strip and maintains the stress. The external
force is exerted by the obstacles and moves the band far from them.
During the execution, the new obstacles produce forces that remove
the band far from them, guarantying their avoidance, Quinlan and
Khatib (1993). The implementation used here is described in Khatib
et al. (1997); Khatib (1996).

mpND: the mapping-planning ND is the motion system proposed in
this paper.

mND: the mapping ND is the motion system proposed in this paper
but without the planning component.

the supervision system works as follows. Firstly, the motion planning

method computes a path using the a priori model, which is converted next

23



Pathwith SLAM & ™

™% Path with odometry

Figura 15. Metric model obtained of the test arena (75m x50m). Trajectory obtained
using the localization with segments (SLAM) and only using odometry.

in a sequence of subgoals. During the execution, the motion control system
computes the commands to avoid the unexpected obstacles gathered by the
sensors while moving the vehicle towards the subgoals. At the same time,
the localization system corrects the vehicle odometry error using the a priori
model.

In order to implement the system, they built the so-called modalities M;. A
modality is a combination of particular instances of the functionalities in order
to adapt the motion to different navigation contexts:

Modalities Functionalities
Planning | Localization | Motion Control
My Voronoi SLAM EB
My Voronoi SLAM mND
M, Voronoi LPV mND
M, — SLAM mpND

The experimentation consisted in a test of each modality in different environ-
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ments in order to extract conclusions about the application domain of each of
them. The environments were:

e [: long-term navigation in a 250m circuit (Figure 15)

e F): navigation in a long corridor (30m).

e [3: navigation in a long corridor (30m) but random distributed obstacles.
This affected the localization (since many segments of the model were oc-
cluded) and increased the difficulty of the navigation in the corridor.

e F,: short-term navigation (around 12 meters) but in very dense and narrow
scenarios. Random distributions of obstacles created many areas with little
space to manoeuvre and U-shaped obstacles.

The results obtained are depicted in the next table:

E; E> E; E4
M; N =20 N =20 N =20 N =5
SR =100% SR =100% SR = 5% SR = 0%
d =2320m n/a n/a n/a
v = 0.26m/sec n/a n/a n/a
M. N =12 N =12 N=0 N =
SR = 80% SR =80% — SR =0%
d = 870m n/a —
v = 0.28m/sec n/a —
M3 N=0 N =20 N =12 N=0
— SR =95% SR =100% —
— n/a v = 0.15m/sec —
— n/a n/a —
My N =10 N =12 N=0 N =10
SR = 0% SR =380% — SR =100%
n/a n/a — v =0.14m/sec
n/a n/a — n/a

The parameters are: N the number of trials, SR the success rate, d the distan-
ce travelled, v the medium velocity and n/a is not available. The quantitative
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results change a lot among scenarios, however they give and idea of modality
performance. Notice that the number of tests is over 140, where 65 corres-
pond to modalities that use the system presented here. We next outline some
conclusions of the experiments, which are described in detail in Morisset “s
thesis.

The test E; corresponded to runs in a large scenario. In this scenario, modali-
ties My y M, carried out the task with a high success rate. The 20% of the fai-
lures with Ms were due to the ND. This method produced oscillations in some
conditions during the navigation in long passages due to oscillations between
situations. The oscillations produced turns that degraded the segment-based
localization, and in some cases made it fail. When this situation arose a failure
flag was launched. Another important remark is that in the experiments with
M none of the environments presented difficulty in the sense of manoeuvrabi-
lity. Thus, the EB successfully drove the vehicle in all the situations. However,
in the environments used for My many closed obstacles and door passages
were added (in some of them distances were about to 0.8m). No collisions
were found due to the obstacle avoidance difficulty. As it is described in the
thesis, if M, were used in this environments it would fail. Thus, the avoidance
capabilities of the mND are better than the EB. In M, the high level planner
is not used. Thus there is no possibility to this modality to accomplish the
task in this large scenario (250m), since although the model used is 20m width
and is robot-centered, it is not sufficient to describe all the experimentation
area (Figure 15).

The experiment Ey consisted in a large corridor (30m). In this case modalities
My y My lose 20% due to the oscillations in the motion system that makes the
localization fail. However, when the same experiment was carried out with M3y
(visual localization), the result is 95%. The only failure was due to the visual
localization system (it did not detected a landmark). However in FEj3 some
additional obstacles were added in the corridor. This converted the corridor in
a very dense scenario where manoeuvrability turned troublesome. M failed
in the majority the cases, however M3 achieved to solve all the cases. This is
because the mND offers better motion control than the EB in confined spaces.

Finally in E; the system was tested in an environment full of close obsta-
cles (0.8m clearance) and where U-shape and dead-ends where dynamically
created everywhere. This type of experimentation would be similar to the one
presented in the previous subsections. Modalities M y My did not achieve to
solve this scenario. However, M, successfully solved all the tests. This is due to
the local capacity of the mpND to address this trap situations. Property that
the other motion systems do not have (in the mND the planning component
is disabled and thus the method is pure reactive).

As personal conclusion of the authors paper, the previous results suggest that

26



the modality more adapted to solve the navigation would be a new modality
where the mpND proposed in this paper would be integrated with high level
planning (Voronoi - SLAM - mpND). This would allow to obtain good results
in large scenarios (as suggested by the performance of modality M, in Fj,
where the mpND is integrated but without local planning, mND). Furthermo-
re, these scenarios could have greater obstacle density, narrow passages and
dead-ends (as suggested by the performance of M, in Ey).

7 Discussion and Comparison with other Methods

A sensor-based motion control system was developed based on a hybrid archi-
tecture with three layers (modeling, planning and reaction). The interaction
among the modules is a synchronous planner-reactor configuration where the
planner computes tactical information to direct the reactivity. Our hybrid
system differs from previous ones in the integration architecture and in the
techniques used in each module. We discuss here alternative designs to the
hybrid systems that do not use the reactor module performing an “any-time
planning”, and the impact of the techniques used to implement each module
regarding other hybrid schemes.

As mentioned in Section 2, hybrid systems attempt to combine planning abi-
lities with the best reactivity, robustness, adaptation and flexibility. Basically
these schemes combine a planner (deliberation) and a reactor (execution). The
common strategy is to compute a path and use its course to direct the reactive
module. Another architectural alternative to hybrid systems are those based
on two modules, one to model and the other to plan (to drive the vehicle).
They perform an “any-time” planning instead of using the reactive module
to compute the motion. In some of them, the modeling and the planning are
synchronous, Roy and Thrun (2002); Stachniss and Burgard (2002), whereas
in others the planning step is an asynchronous process that is only carried
out in the areas that influence the progress to the goal, Stenz and Hebert
(1995); Murphy et al. (1996); Urmson et al. (2003). These systems do not
have the advantages of reactive behavior, such as rapidly adapting to changes
and flexibility under unforeseeable circumstances. All these systems use plan-
ners that usually compute trajectories that skirt the obstacles, which appears
to contrast with the avoidance task [along these lines, Murphy et al. (1996)
presented a planner that spaces out the trajectory of the obstacles]. However,
in our system this situation is managed in a natural way by the reactor. Anot-
her difficulty of most systems is the reliance on a path to the goal, which is not
always available in realistic scenarios (Section 5.4) leading to a failure in the
motion system. Furthermore, these systems are not consistent with the idea
that a vehicle should not be controlled directly with a planner, Gat (1998),
and it would be difficult to obtain the computation time to put them into

27



practice, Fikes and Nilsson (1971).

Recently, both systems (hybrid and “any-time planning”), have been com-
bined by Ranganathan and Koenig (2003) using both paradigms to adapt
the operation to the progression of the robot in the environment. However,
the above conclusions are derived when only the planner is used to drive the
vehicle.

Focusing on hybrid systems, another matter is the influence of the techniques
used to implement the planner, the model and the obstacle avoidance. With
regard to the planner, Ulrich and Borenstein (2000) use a look ahead verifica-
tion before executing the reactive algorithm, Borenstein and Koren (1991b).
The local trap situations are avoided by running the reactive method some
steps before the algorithm is executed. The completeness of this strategy de-
pends on the number of previous steps (maximum distance inspected). This
solution is well suited for robots with limited computational capabilities be-
cause good navigational results are obtained even by reducing the maximum
distance inspected. Our framework uses a complete planner which assures the
tactical information to avoid the trap situations.

Our model is similar to Brock and Khatib (1999); Arras et al. (2002). Howe-
ver, their model represents the configuration space which increases with the
distance traveled. The advantage is that global knowledge is incorporated as
the robot progresses, and the navigation function of the planner does not ha-
ve to be recomputed as long as the scenario remains the same. However, our
model represents a local portion of the workspace, so it does not depend on
the distance traveled. That is, the memory and computational time are fixed,
whereas in the other methods they increase as the robot progresses, since the
model is continuously enlarged. In our model the information around the ro-
bot is always available. In the other methods it depends on the availability of
time and memory. Furthermore, our model represents the workspace that can
be rapidly updated in changing scenarios, which is not the case in methods
that represent the configuration space.

Another key aspect is the reactive module. Brock and Khatib (1999); Arras
et al. (2002); Hebert et al. (1997); Ulrich and Borenstein (2000); Gat (1998)
among others, are systems that use reactive planners that have problems dri-
ving in dense, complex and troublesome scenarios. This is not a problem in
our system since the typical limitations of other methods are avoided, such
as a local trap, oscillations in dense scenarios, and the impossibility to obtain
motion direction towards the obstacles or towards areas with large density of
obstacles, Minguez and Montano (2004). This results in a safe and robust mo-
tion in scenarios that are still troublesome for many existing methods. This
point is also stressed in the experimental results section. There we show a
quantitative/qualitative objective comparison with another obstacle avoidan-

28



ce method, Quinlan and Khatib (1993). The conclusion is that our system
exhibits greater manoeuvrability capabilities specially in dense, complex and
troublesome scenarios.

8 Conclusions

Many industrial applications of vehicles for evolving scenarios could benefit
from the technology of motion generation. These techniques would increase
the degree of autonomy of the robots and reduce human intervention (which
is especially important in dangerous or hostile environments). We present a
sensor-based motion control system as a subset of a complete navigation sys-
tem. The main contributions include the functional and computational aspects
of the modules in the system and their integration, in addition to the strong
experimental validation. As a consequence, this hybrid system is able to move
vehicles robustly in very difficult environments, which are still troublesome for
of the most motion systems.

The key result is the real time cooperation between the modules in the sys-
tem. The information integrator module constructs a representation of the
environment which is the base of the rest of modules. Then the planning
module computes tactical information to direct the vehicle and the reacti-
ve module controls the motion. The three modules are integrated with an
architecture that follows a synchronous configuration planner-reactor. It con-
centrates the best of the deliberative and reactive worlds, since the planning
information helps to guide the motion towards zones without traps, and the
reactive component quickly directs the execution according to the evolution
of the environment (also considering areas that are not visible from the pre-
sent position available in the model). All the modules are integrated so that
the control loop is always closed, providing a motion command (there are no
deadlocks in the system) with real-time performance. Furthermore, the mo-
dular structure of the system allows to replace the different modules easily,
since the functional and computational aspects and their interfaces are clearly
specified.

The functional design of each module and the specification of its interfaces
leads to an adaptable and portable system. Thus, the system has been used
on other robots, Minguez and Montano (2002), including two indoor and one
outdoor scenarios at the LAAS-CNRS, France; one indoor in the Technical
Unwversity of Lisbon, Portugal; and two indoor in the University of Zarago-
za, Spain. In these cases the modeling module was replaced by modules to
process a 3D laser, ultrasounds following Borenstein and Koren (1991a), or a
pair of cameras, Haddad et al. (1998). In some cases the reactive navigation
module was replaced by another ND method adapted to work on platforms
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with a non-circular geometry and kinematic and dynamic constraints, Min-
guez et al. (2004). The substitution of these modules within the architecture
was straightforward.

Another important point is the interaction of the system with other subsys-
tems which are needed to construct a complete navigation system, such as
planning, location and map building. For example, our system was integrated
with a topological navigation system, Zwynsvorde et al. (2001). It constructs
a global model of the environment in execution while relocating the vehicle
and placing goals for exploration (our system drives the vehicle among the
desired locations). The sensor-based system has also been incorporated in the
Robels system, Morisset and Gallab (2002), where it is used as one of the four
sensory-motor functions that execute motion. We report in this paper this in-
tegration and many experimental results that validate the system. In addition,
our system has been successfully integrated as a low level motion generator
within the G*oM architecture Fleury (1996) on a Nomadic XR4000 in the
LAAS-CNRS, France, and is used to move the vehicle on a daily basis, Alami
et al. (2000).
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Appendix

The Nomadic XR4000 is a circular and holonomic vehicle equipped with a 2D
SICK placed 0.24m in the frontal part, with a 180° field of view, a reach of
32m and a time period of 0.20sec. The robot has a Pentium II where all the
computations are carried out.
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