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Abstract— This paper presents a sensor-based navigation
system to safely drive vehicles in realistic scenarios. Three
modules with the following functionalities compose the sys-
tem: model builder, tactical planning and obstacle avoidance.
These modules are integrated within a planner - reactor
architecture that supervises and coordinates them in order
to carry out the motion task. The emphasis of the paper
is in the planning aspect and in its integration with the
obstacle avoidance and modeling module. The advantage of
this navigation system is to achieve a robust and trustworthy
navigation in difficult scenarios, which remain troublesome
for many of the existing systems. In order to validate the
system, we present experiments with a wheelchair vehicle
transporting a human among locations in an office type
scenario.

I. INTRODUCTION

The general task of an autonomous motion system is
to generate movement free of collisions between succes-
sive locations. Their design usually involves the model
construction, the deliberative planning and the obstacle
avoidance. The model builder constructs a representation
that is the base for the deliberation and local memory
the avoidance behavior, the planner module generates
global plans and the obstacle avoidance computes the local
motion. The sensor-based systems made up as synthesis
of these functionalities mainly differ in the integration
between the planner and the reactor (i.e. how the obstacle
avoidance uses the information available of the planner),
and in the tools used to implement each module. We
present next related work following these two premises.

One way to specify the interaction between deliberation
and reaction is to consider planning as a component that
fixes the composition between different motion behaviors
during execution [2]. Another possibility is to use the
planning to advise the reactive control [1], or as a system
that adapts parameters of the reactive component based
on the evolution of the surroundings [15]. In both cases,
planning plays a tactical role while the reactor has the
execution degree of freedom. In sensor-based motion a
common strategy is to compute a path and use its course
to direct the reactive module [7], [18], [3] (we follow
here this strategy). Other techniques compute a path that
is deformed in execution based on the evolution of the
environment (in the workspace [8] or in the configuration
space [21]). Alternatively [27] presents a strategy to create

trees of paths obtained by executing the reactive algorithm
some steps ahead of the execution. Another possibility is
to compute a channel of free space that contains sets of
ways, leaving the choice up to the execution [9].

Closely bound with these issues are the choice and
implementation techniques for each module. With regard to
the construction of a model, in indoor environments, the
occupancy grids are usually used with ultrasounds [10],
[5], [23] and with laser [7], [18], [3]. With regard to the
planners, these systems use efficient numerical techniques
on grids that are executed in real time [4], [25]. Another
key issue is the obstacle avoidance method, where some
systems use the potential field methods [13], those based
on intermediate sets of commands [6], [24], [12], or those
based on high-level information [17], [20].

In this paper we present an autonomous navigation sys-
tem composed by these three subsystems and a architecture
of integration [19]. The emphasis of the paper is in the
planning aspect and in its integration with the obstacle
avoidance system. On one hand, we use a planner that
replanns only in the areas that have changed from the pre-
vious sensory perception, and that affect the computation of
the path [22]. This results in a very efficient strategy with
regard to previous works that intensively explore the space
at each cycle irrespective of the environmental changes (in
these methods the size of the model and difficulty of the
scenario are always bounded due to the compromise with
the real-time requirement).

Secondly, the planner was integrated with the model
and the obstacle avoidance method [17] in a planner -
reactor architecture [15] to build a complete autonomous
navigation system. This synergy results in a very efficient
way to address planning and reaction from both, robustness
and computational point of view. Although the design of
these systems is not new, what remains still inaccessible for
many of the above-mentioned techniques is to carry out a
robust, efficient and trustworthy navigation when the envi-
ronments are very complicated. The system displayed here
avoids many of the limitations of related works, robustly
navigating in these problematic scenarios. To validate the
system we used a commercial wheelchair equipped with
two on-board computers and with a planar laser. We report
experiments in a realistic office type scenario.



ACTION
− Motion

OBSTACLE
AVOIDANCE

PERCEPTION
− Laser scan
− Odometry

PLANNING

MODELLING

ControllerSensors

ROBOT

Fig. 1. Overview of the sensor-based navigation system

II. OVERVIEW OF THE SYSTEM

We give in this Section a global vision of the sensor-
based system, which is formed by an architecture that
integrates three modules with the following functionalities:
model construction, motion planning and obstacle avoid-
ance:

• Model Builder Module: construction of a model of
the environment (to increase the spatial domain of
the planning and used as local memory for obstacle
avoidance). We use a binary occupancy grid that
is updated whenever a new sensory measurement is
available. Furthermore, we employ a scan matching
technique to improve the vehicle odometry before
integrating any new measurement in the grid.

• Planner Module: extraction of the connectivity of the
free space (used to avoid the cyclical motions and trap
situations). The idea behind the planner is to focus
the search locally in the areas where the changes in
the scenario structure have occurred and affect the
computation of the path. The planner avoids the local
minima and is computationally very efficient for real
time implementations.

• Obstacle Avoidance Module: computation of the
collision-free motion. We chose the Nearness Diagram
Navigation (ND method in short), which is based on
selecting at every moment a navigational situation and
to apply a motion law adapted for each one. This
method has demonstrated to be very efficient and
robust in environments with little space to maneuver.

Globally the system works as follows (Figure 1): given
a laser scan and the odometry of the vehicle, the model
builder incorporates this information into the existing
model. Next, the information of the changes in obstacle
and free space in the model is used by the planner
module to compute the course to follow to reach the
goal. Finally, the avoidance module uses the information
of the obstacles contained in the grid and information of
this tactical planner to generate the motion (to drive the

vehicle free of collisions towards the goal). The vehicle
controller executes the motion and the process restarts with
a new sensorial measurement. It is important to stress
that the three modules work synchronously within the
perception - action cycle. Next, we address the design of
the modules and the integration architecture with emphasis
in the planning module.

III. MODULE DESIGN AND INTEGRATION

We describe in this Section the model builder module
(Subsection III-A), the planner module (Subsection III-B),
the obstacle avoidance method (Subsection III-C) and the
architecture of integration (Subsection III-D).

A. Model Builder Module

The function of this module is to integrate the sensorial
measurements to construct a model of the environment (in
our case a local map). We chose a binary occupancy grid
because is an efficient structure to use from which it turns
out simple to represent the obstacle and the free space.
The cells are occupied and free since the laser used has
a high precision in indoor environments. The grid has a
fixed size that represents a limited part of the workspace
(large enough to represent the portion of space necessary
to solve the navigation, and to have the obstacles required
to avoid collisions are always around the robot).

The design of this module includes two parts: (i) To
improve the vehicle odometry, we use a scan matching
technique with the information provided by the laser [14].
This technique searches for correspondences between two
consecutive laser scans in order to estimate the rigid
motion. (ii) To integrate a scan in the model, obstacle
points are marked occupied, an all the cells over the lines
that go from the sensor position to the obstacle points are
marked as free. We implemented this procedure using the
Bresenham algorithm [11].

One advantage of this model is that the odometry is
improved via a scan matching technique. Although, these
techniques do not guarantee global consistency, its preci-
sion is enough to build the local map needed by the other
modules. This will be important latter for vehicles with
poor odometry (as is the case here) since the model will
be used for planning purposes and memory for obstacle
avoidance. There are also other issues to highlight: (i)
the last laser scan integrated in the grid does not have
odometry errors with respect to the present position. Only
the cells not updated with this scan accumulate odometry
errors, which are, however, mitigated by the scan matching
technique. (ii) The grid reflects the change in dynamic
environments rapidly updating all the area covered by
the last scan, and (iii) the spurious measurements are
eliminated from the grid as new measurements are added.
For all these reasons we think that this model is well suited
as representation for the planning and local memory for the
reactive module in unknown and dynamic scenarios.

B. Planning Module

This module uses the D∗Lite planner [22] to obtain
tactical information to avoid the trap situations and the
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Fig. 2. This Figure displays how the grid model is updated with the last perception and how the changes are computed in configuration space.
First, we compute Submapk using the new laser scan. Then, we compute the configuration space of both, the previous map (Cspacek−1) and the new
submap (CSpaceSubmapk). (We assume that the robot is a blob of eight cells.) Finally, we merge the maps to obtain the new map Mapk (input of the
obstacle avoidance), and we compute the changes in the configuration space Cspace changes k (input of the planner).

cyclic motions. The principle of this planner is to locally
modify the previous path (available from the previous step)
using the changes in the scenario. The module has two
different parts: (i) the computation of the obstacle changes
in configuration space (notice that the grid represents the
workspace), (ii) the usage of the D∗ Lite planner over the
changes to recompute a path (if necessary).

The first part of this module computes changes in the
configuration space (cspace) from free space to occupied
and vice versa given the current perception. We assume that
the vehicle is circular and thus the cspace is represented by
IR2. The obstacle representation is obtained by enlarging
each obstacle with the radius R of the circle inscribed to
the robot.

Let Mapk−1 be the grid at the previous step k − 1
and Cspacek−1 the cspace computed from this grid map.
Let SubMapk be the grid computed only using the last
laser measurement, and CspaceSubMapk the correspond-
ing cspace. We compute the current map of changes in
configuration space CspaceChangesk as:

CspaceSubmapi,j
k Cspacei,j

k−1 CspaceChangesi,j
k

Occupied Free Change to Obstacle
Free Occupied Change to Free

The result is the model of changes in configuration space
CspaceChangesk (Figure 2). This is the input of the D∗ Lite
planner.

The second part of this module computes a path in
configuration space from the current vehicle location to-
wards the goal. The D∗ Lite planner models the navigation
problem with a graph. A vertex represents a location of
the vehicle, and has associated an edge that points to the
adjacent vertex to reach the goal. From any vertex, the
shortest path to the goal can be computed by following the
edges. Other additional edges codify the cost of going from
one vertex to the adjacent. Changes in the environment
modify these costs. Then, the planner locally explores and
rearranges the edges affected by the changes and that are
relevant to compute the shortest path.

In our problem, we model the graph as a grid where the
vertices are the cells, and the edges point towards one of
the adjacent cells (eighth connected). From each cell, the
cost to reach an adjacent free cell is one and infinity for
an obstacle one.

Initially the graph is computed starting from the goal
(similar to an A∗ strategy). Then, one can compute the
shortest path from any cell by following the edges. In
execution time there are changes in the grid and thus in
the configuration space (this is the information computed
in the previous step). The cost edges are modified using
these changes, and propagated in the graph. Finally, the
path is computed from the current vertex with an steepest
descendent strategy.

The Figure 3 shows how the planner computes the path
at time k . Figure 3a,b show an overview of the grid and a
zoom around the robot. Using the last perception we first
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Fig. 3. These Figures show the usage of the planner in a real experiment. (a) The robot and current model. (b) Zoom of (a) around the robot. (c)
Changes in configuration space due to the last perception. (d) Cells explored to recompute the shortest path [displayed in (a)].

compute the changes in the configuration space (Figure 3c).
This is the input to the planner. The changes are propagated
over the relevant cells to compute the shortest path from the
current vehicle location (the cells explored are displayed in
Figure 3d). Finally the path is computed by following the
edges (Figure 3a). The advantage is that this planner does
not recompute from scratch the path in each iteration. It
locally propagates the changes. Notice how this strategy is
by far more efficient than exploring the complete grid to
compute the path (up to two orders of magnitude [26]).

From the path we obtain two types of information: first,
if it is possible to reach the goal from the present position
(if the path exists the planner always find it since it is free
of local minima). Secondly the tactical motion direction
(main course of the first part of the path). Notice that
this direction will not be used to direct the vehicle (since

this degree of freedom will be handled by the following
module), but as the main course of the motion.

C. Obstacle Avoidance Module

The ND+ method [20] is an improvement of the ND
method [17]. The design is based on defining a set of
situations to represent the navigational problem, and how
to act in each of them (actions). In real time, at each control
cycle a situation is selected and the corresponding action
is executed computing the motion.

The advantage of this method is that it employs a divide
and conquer strategy based on situations to simplify the
difficulty of navigation. Thus this technique is able to deal
with more complex navigation cases than other methods
(usually these cases arise in environments where there is
little space to maneuver like for example a narrow door).



In particular, the ND+ method avoids most of the problems
that other techniques present in these circumstances, like
the local trap situations, the oscillating movements, or the
impossibility to move towards certain zones with high ob-
stacle density or far away from the goal direction (see [17]
for a discussion on this topic). As it will be illustrated in
the experimental results, these properties were determinant
to navigate in the majority of realistic environments. The
ND+ method improves the previous ND method with new
navigational situations and a new design of the motion laws
(to have motion continuity in the most common transitions
between situations). Another advantage of the ND+ method
is that is very efficient and it can be used when required
without imposing a significant time penalty [20].

D. Integration Architecture

The architecture integrates the modules considering the
limitations and restrictions imposed by the mechanical
(sensors and actuators) and logical parts (computers) of
the robot [19]. The architecture has a synchronous planner
- reactor configuration, where both parts use the model
constructed in execution time. The functionality of the
modules is:

• The model construction, used for the planner to com-
pute the changes in configuration space and for the
obstacle avoidance method as local memory.

• The planner computes the tactical motion direction (to
guide the obstacle avoidance method).

• The obstacle avoidance method computes the motion
commands to avoid collisions (with the obstacles
represented in the model) while following the motion
direction provided by the planner (that codifies the
main cruise to reach the target).

This hybrid architecture allows to concentrate the best
of worlds both (deliberative and reactive), since the infor-
mation of the planning allows to guide the motion towards
zones in which trap situations do not take place, and the
reactive component directs the execution with fast reactions
to the evolution of the environment (considering in addition
non visible zones from the present position available in the
model). All the modules have been integrated in such a
way that the control loop is always closed at 5Hz (sensor
frequency) with a motion command available (there are no
dead states).

IV. EXPERIMENTAL RESULTS

For experimentation, we used a commercial wheelchair
that we have equipped with a SICK laser and with two
on-board computers (two PentiumIII850Mhz, one of
them is used for motion control purposes and in the other
one the computations associated to the architecture were
carried out). The vehicle is rectangular (1.2× 0.7meters)
with two driving wheels that work in differential-driven
mode. We set the maximum operational velocities to
(vmax, wmax) = (0.3 m

sec , 0.5 rd
sec ) due to the application

context (human transportation). Our model is a grid that
represents 20m × 20m (400 × 400 cells and 0.05m each
cell). The portion of the environment represented in the

model is sufficiently large to include the target (where we
have to drive the robot), and the resolution is enough for
navigation purposes.

The experiments outlined here are particularly difficult
due to the vehicle used, the type of task and to the nature of
the surroundings. The wheelchair is a non-holonomic robot
with the driving wheels in the back part, thus it cannot
move in any direction and sweeps an ample area when it
turns. In addition, since the vehicle transports humans, a
smooth trajectory is desirable, avoiding shaking behaviors
(i.e. the vehicle has geometric, kinematic and dynamic
constraints). The laser sensor is placed in the front part of
the robot (0.72m) and has a 180◦ field of view, thus some
obstacles to avoid are not visible from the present position.
Furthermore, the ground was just polished and the vehicle
slides constantly with an adverse effect on the odometry.
On the other hand the surroundings are unknown, since
there are elements in the office like chairs, tables whose
position cannot be established a priori (although the walls
could be known, unfortunately they are not visible by the
sensor since the furniture hides them). This scenario is not
prepared to move a wheelchair and in many places there
is little room to move. In addition, people working in the
office turn the scenario in a dynamic and unpredictable
place, and as well, sometimes the structure is modified
creating global trap situations.

In the experiment the wheelchair had to drive the human
until a position outside the office. First, the vehicle moved
towards the closest visible door (snapshot 1 of Figure 4a).
During the motion, a person closed the right leaf of the
door so that the wheelchair did not fit (the vehicle was
trapped in a large U-shape obstacle). Rapidly, the vehicle
modified its way returning backwards (snapshot 2) in order
to find the exit. Next the robot traveled avoiding collisions
with the furniture and a person who moved bothering the
normal progression of the vehicle (snapshot 3). In the
center of the office, the robot detected a half open door
but sufficiently wide to fit in. Then, the vehicle proceed
to the door and maneuvered until crossing it, leaving the
office and reaching the target position (snapshot 4). Next
we discuss some technical aspects of the experiment.

The data obtained from the laser and the odometry
during the experiment are shown in Figure 4c. The main
conclusion is that the odometry is quite bad and hardly
could be used to deliberate or to compute collision free
motion. Nevertheless, the modeling module manages this
information and constructs a reasonable model (Figure 4b).
This is because the scan matching technique improves the
odometry so that the information is properly integrated in
the grid. Furthermore, since the odometry is locally ame-
liorated, the vehicle approaches nearer to the destination.
Another advantage is that the model represents rapidly the
change (the surroundings are not known and dynamic).
This is because the complete area swept by the last scan
is updated in the grid (the occupied and free space are
updated), so that the new obstacle information is included
and those obstacles that currently are not present are elimi-
nated. The planning and obstacle avoidance modules share



Human

Door open

Wheelchair

Door open1
Door closed

2

Narrow Passage3
Door traversed

4

GoalFirst door

Second door

(a) (b)

Goal

20 meters

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
TRANSLATIONAL VELOCITY

Time (sec)

m
/s

ec

0 50 100 150

−0.4

−0.2

0

0.2

0.4

0.6
ROTATIONAL VELOCITY

Time (sec)

ra
d/

se
c

0 100 200 300 400 500 600 700
0

0.05

0.1

0 100 200 300 400 500 600 700
0

0.05

0.1

0 100 200 300 400 500 600 700
0

0.05

0.1
T

im
e 

(s
ec

)

Control Tic

Planner

Modeler

Obstacle Avoidance

(c) (d) (e)

Fig. 4. These Figures show one experiment where the wheelchair drove a human out of an office. (a) Some snapshots of the experiment, (b) the model
built during the experiment and the vehicle trajectory, (c) real laser data and trajectory using the odometry, (d) motion commands and (e) computation
time of each module.

the benefits of this model. The changes in the scenario
are rapidly computed and used by the planner to compute
courses to follow (to avoid traps), and the information
of the non visible obstacles from the present position is
always available for collision avoidance purposes (this case
is understood when the door was crossed, snapshot 4 of
Figure 4a), since once the sensor has passed the door the
frame is not detected).

The planner computed at any moment the tactical infor-
mation needed to guide the vehicle out of the trap situa-
tions. The most representative situation happened when the
door was open and suddenly was closed next (snapshots 1
and 2 of Figures 4a). The course of the planner rapidly
changed pointing backwards (that directed the motion
outside of the end zone). The navigation system avoids
the trap situations and the cyclic behaviors by using the
information of the planner in each iteration.

The obstacle avoidance module computed the collision
free motion during the complete experiment taking into
account the geometric, kinematic and dynamic constraints
of the vehicle [16]. The performance of this module was

determinant in some circumstances, specially when the
vehicle was driven among very narrow zones [like for ex-
ample when it crossed the door (snapshot 4 of Figure 4a)].
In addition, during the run, the ND+ method computed
motion between very near obstacles, and this movement
was free of oscillations and irregular behaviors (see the
velocity profiles in the Figure 4d and the vehicle path in
Figure 4b), and at the same time was directed towards
zones with great density of obstacles or far away form the
final position (any direction of movement can be obtained).
That is, the method achieves robust navigation in difficult
and realistic scenarios avoiding the technical limitations of
many other existing techniques.

The final issue is the computation time of each module
depicted in Figure 4e. The average execution time is
0.025sec for the model module, 0.02sec for the planner
and lower than 0.005sec for the reactive method. It is
important to remark the efficiency of the planner that
works in a 400 × 400 grid (since it only explores the
space based on the environmental changes, and does not
replan at each iteration from scratch). With this rates all



the modules worked synchronously within the cycle of the
sensor 0.2sec. Furthermore the CPU is free the majority of
the time to be used by some upper levels that could require
it.

To conclude, this experiment illustrates how the system
proposed here generates robust and trustworthy navigation
in unknown, dynamic and difficult scenarios. That is, to
move vehicles in realistic environments where the things
are not where one likes, people move around, there is little
site to maneuver and the well-known trap situations are
usual.

V. CONCLUSION

We have presented in this paper a sensor-based naviga-
tion system that is made up of three modules: a model
constructor, a planning method and an obstacle avoidance
method. Although some of these techniques derive from
already existing works, the main contribution here is the
planner used and its integration with all the modules in
the system. Furthermore, it is important to stress that the
design of sensor-based systems is not new. What remains
still inaccessible for the many navigation systems is to
carry out a robust and trustworthy navigation when the
environments are very complicated. This is the advantage
of the work displayed here.
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