
The Obstacle-Restriction Method (ORM)
for Robot Obstacle Avoidance in

Difficult Environments
Javier Minguez

Instituto de Investigación en Ingeniería de Aragón
Dept. de Informática e Ingeniería de Sistemas. Universidad de Zaragoza, Spain

jminguez@unizar.es

Abstract— This paper addresses the obstacle avoidance
problem in difficult scenarios, that usually are dense, com-
plex and cluttered. The proposal is a method called the
Obstacle-Restriction. At each iteration of the control cycle,
this method addresses the obstacle avoidance in two steps.
First there is procedure to compute instantaneous subgoals
in the obstacle structure (obtained by the sensors). The second
step associates a motion restriction to each obstacle, which
are managed next to compute the most promising motion
direction. The advantage of this technique is that it avoids
common limitations of previous obstacle avoidance methods,
improving their navigation performance in difficult scenarios.
Furthermore, we obtain similar results to the recent methods
that achieve navigation in troublesome scenarios. However,
the new method improves their behavior in open spaces. The
performance of this method is illustrated with experimental
results obtained with a robotic wheelchair vehicle.

I. INTRODUCTION

A large section of Robotics is currently focused on
the development of applications where a vehicle performs
in unknown and dynamic scenarios. The development of
autonomous motion in these environments requires the
usage of sensors to collect information on line, which
is processed next to compute motion. Under these cir-
cumstances the usual selection to generate motion are the
obstacle avoidance methods. These methods compute the
goal-oriented collision-free motion based on the sensory
input. Their advantage is that they adapt quickly the motion
to the environmental changes. Currently, there is a demand
of obstacle avoidance methods able to compute robust
motion in realistic scenarios, which usually are difficult
for obstacle avoidance since they are dense, complex and
cluttered. Our work addresses this issue.

Many techniques have been proposed during the last
years to perform obstacle avoidance. Some of these meth-
ods solve the problem by means of a physical analogy, like
those of potentials [7], the gaseous substance [1], the fluids
methods [8], the circulatory fields [15]. Other techniques
are based on calculating a set of motion commands to select
one of them next (e.g. steering angle field approach [5],
vector field histogram [2], curvature velocity method [14],
dynamic window approach [6]). Finally other techniques
calculate some type of device to compute next the motion
(e.g. elastic bands [13], elastic strips [4]). Although these
techniques have been used with good results in many

situations, in awkward scenarios there still arise problems
as trap situations, instabilities or oscillations for example.

Recently, some researches have developed obstacle
avoidance methods to close the gap of motion in trouble-
some scenarios [10], [12]. These methods employ a "di-
vide and conquer" strategy based on situations to address
difficult navigation cases. In this design, the motion laws
associated to the situations only use partial information
of the obstacle information available. This is enough to
move the vehicle in dense scenarios, since the obstacle
information used in these cases is the risky for the motion.
However, in open spaces many information is not used, and
the resulting trajectories are longer and less natural than
expected. The idea behind the Obstacle-Restriction method
(ORM in short) is to use all the obstacle information
available in all the parts of the method. We achieve this
goal in the two steps of the design of the method: first we
use a local procedure that computes subgoals based on the
obstacle distribution, and second we associate a motion
restriction to each obstacle, which are managed later to
compute the safest motion.

The advantage of this method is to avoid technical
problems of classic methods like the local trap situations
due to the obstacle structure (e.g. U-shape obstacles) or to
the motion among very close obstacles, the oscillations or
unstable motions. The method is able to compute directions
far away from the goal direction and directions that point
towards the obstacles, and it does not have internal pa-
rameters to tune. Furthermore, with this method we obtain
similar results to the Nearness Diagram family of methods
[10], [12] in very difficult (dense and complex) scenarios,
but we improve their behavior in open spaces.

In the paper, we present first the ORM for obstacle
avoidance (Section II). Next we outline the experimental
results on a wheelchair vehicle (Section III), and we discuss
and draw our conclusions next (Sections V).

II. THE OBSTACLE-RESTRICTION METHOD

We describe the method for a circular and omnidirec-
tional robot, and we assume that the obstacle information
is available in the form of points (usually the sensory
information is given in this form, e.g. laser sensors).

x1

x2

x3

x4

x5

x6

xrobot

Obstacles perceivedGoal

x robot

A B

C−Obstacle

Obstacle perceived

P2R

Tunnel
blocked

Goal

Tunnel
blocked

Tunnel
not blocked

x 6

x 1

x robot

(a) (b) (c)

Fig. 1. This Figure illustrates the subgoal selector step of the ORM. (a) Robot, obstacle information perceived and the six candidate subgoals x1 . . . x6.
(b) The tunnel to the goal is blocked, thus there is no path within the tunnel. The C-Obstacles are the obstacle points enlarged with the robot radius.
(c) The tunnel to x6 is also blocked, but the one to x1 is not. Thus, there is a path that joins the current robot location and x1. In this situation, x1

is selected as the subgoal.

As all the obstacle avoidance methods, the ORM is
based on a perception - action process that works at
a high frequency (sampling period). Sensors collect the
information of the environment, processed by the method
to compute the control command. The vehicle executes the
motion and the process restarts. For the ORM this process
has two differentiated parts: the first one is a local selector
of subgoals used to decide when, based on the structure of
the surroundings, instead of directing the motion towards
the goal it is better to direct it towards another location of
the space (Subsection II-A). Secondly a motion constraint
is associated to each obstacle, which are managed next to
compute the motion command with a goal oriented strategy
(Subsection II-B).

A. The Subgoal Selector

There are situations where it is more suitable to direct the
motion towards a given zone of the space (that ameliorates
the situation to reach the goal latter), rather than directly
towards the goal itself. For example, in Figure 1a it is
better to drive the vehicle towards location x1 (where the
robot fits in the passage and easily reaches the goal turning
right-hand latter on), rather than moving directly to the goal
(where there is an obstacle that blocks the way).

We present in this Subsection a procedure that decides
whether the motion has to be directed towards the goal
or towards an alternative subgoal. The procedure has two
steps. First we search for locations suitable to place a
subgoal, and next we select one of them (computing if it
can be reached from the current location). The subgoals are
located in between obstacles or in the edge of an obstacle:

1) In the middle point between two angular contiguous
obstacle points whose distance is greater than the
robot diameter (e.g. locations x1 and x2 in Figure
1a).

2) In the direction of the edge of an obstacle (obstacle
point without contiguous) at a distance farther than
the robot diameter (e.g. locations x3, x4, x5 and x6).

The result of this process is a list of candidate subgoals
that capture the structure of the scenario.

The second step is to decide whether to use the goal
for motion or to select a subgoal of the list. We do it
by checking with a local algorithm whether the goal or a
subgoal can be reached from the current robot location. To
do this, we have developed a simple algorithm that checks
the existence of a path that connects two locations.

Let xa and xb be two locations of the space, R the
robot radius, and L a list of obstacle points, where xL

p is
an obstacle. The algorithm is:

1) Let be L′ the list of points of L that are in the
rectangle with height the segment xaxb and
width 2R.

2) Let be A and B the two semiplanes divided
by the line that joins xa and xb. If for all
the points of L′, d(xL

j ,xL
k) > 2R (with xL

j ∈
A and xL

k ∈ B) then return: POSITIVE else
return: NEGATIVE.

The algorithm returns:
• POSITIVE: it exists a path joining xa and xb, i.e. the

final location can be reached.
• NEGATIVE: the final location cannot be reached

within a local portion of the space (a rectangle that we
call the tunnel of width the robot diameter 2R, and
height the segment that joins the two locations). This
means that in this local area there is no path (although
it could exist a global one).

The tunnel is blocked when there are two C-Obstacles
that belong to different semiplanes (A and B) and intersect
(the distance among the points is lower than 2R). Thus
there is no path within the tunnel. This is because an
obstacle blocks the way (goal in Figure 1b) or because
the robot does not fit in the passage (x6 in Figure 1c).
However, the interesting result is when the tunnel is not
blocked, because then it exists a local path in the tunnel
and thus a global path that joins both locations (e.g. x1).

In order to select a subgoal we first use the algorithm
with the goal. If the result is NEGATIVE, we chose the
closest subgoal to the goal that has a path that reaches
it. For example, in Figure 1 we try first with the xgoal

with NEGATIVE result. Then we try with x1 and the result
is POSITIVE. Thus we select x1 as location to direct the
vehicle (instead of xgoal). Notice that this was the result
desired outlined in the beginning of this Subsection.

We depict next how with this simple algorithm we avoid
two common situations that causes local minima in many
of the obstacle avoidance methods:

1) The U-shape obstacle (Figure 2a). In this case the
algorithm returns NEGATIVE when is used with the
goal location. However, the solution is POSITIVE
for both subgoals x1 or x2, and thus one of them
would be selected to direct the vehicle. Notice that
moving towards these subgoals avoids entering in the
U-shape obstacle and thus the trap situation.

2) Motion between very close obstacles (Figure 2b).
Here there are two potential passages to traverse
in order to reach the goal. However the algorithm
returns NEGATIVE for subgoal x1 because the tunnel
is blocked (the robot does not fit in the Passage 1).
On the other hand the algorithm selects subgoal x2

(because the robot fits in Passage 2). Notice that
moving towards x2 avoids the trap situation or a
collision due to a wrong selection of the passage.

The complexity of the algorithm is O(N2), with N
the number of obstacle points. However, in practice the
algorithm is very efficient since there are always a few
number of points in the tunnel, and thus it is very suitable
for real-time implementations. Furthermore, notice that the
usage of the algorithm is combined with a procedure that
locates the subgoals in the places to capture the structure
of the scenario.

B. Motion Computation

In the previous step we have seen how to compute an
instantaneous subgoal (if required) based on the structure
of the obstacle information and the goal location. We
call target the goal or subgoal selected in the previous
step. We present next a procedure to compute the motion
towards the target direction while avoiding collisions with
the obstacles. In a first step we calculate a set of constraints
of motion for each obstacle, and next we manage all of
them in order to compute the final direction to move.

Let the frame of reference be the robot frame. Let R
be the radius of the robot, Ds a security distance around
the robot bounds and θtarget the direction of the target
location.

Step 1: The motion constraints
For each obstacle we compute a set of directions SnD ∈

[−π, π] that are not desirable for motion (motion con-
straint). This set is computed as the union of two subsets S1

and S2. S1 represents the side of the obstacle not suitable
to do the avoidance, and S2 an exclusion area around the
obstacle. Let be θobst and dobst the direction and distance
to the obstacle:

x robot

x 1 x 2

U−shape obstacle

Goal
Obstacle perceived

C−obstacle

(a)

x1

x2

xrobot

x

Passage 1

Passage 2Goal

(b)

Fig. 2. Two problematic cases for obstacle avoidance: (a) U-shape
obstacle and (b) an open passage where the robot does not fit. In both
cases the algorithm selects a subgoal to reach the goal that avoids the
trap situation.

S1 =
{

(θobst, π), if θtarget < θobst

(−π, θobst), i.o.c.
(1)

From the robot, each obstacle has two sides. This set
contains all the directions on the opposite side of the target.
For instance in Figure 3a the target is in the left-hand side
of the obstacle, and then S1 contains all the directions on
the right-hand side, and vice versa in Figure 3d.

The second subset of directions S2 = [γL, γR], where:

γL = max[θobst − (α + β),−π] (2)

γR = min[θobst + (α + β), π] (3)

where α and β are given by,

α = |atan(
R + Ds

dobs
)| (4)

β =
{

(π − α).(1 − dobst−R
Ds

) if dobst ≤ Ds + R

0 i.o.c
(5)

This set of directions S2 creates an exclusion area around
the obstacle. The directions θobst±α are the directions that
remove the obstacle of the security zone at the height of the
obstacle (Figure 3b). Furthermore, we add a term β when
the obstacle is in the security zone. Angle β ranges from 0
to π−α depending of how close the obstacle is to the robot
bounds. For instance in Figure 3e the obstacle is closer than

S1

R+Ds

Obstacle
Target

2S
R+Ds

R+Ds
α

R+Ds

S1

S2
x

Left boundφ
L

Target

(a) (b) (c)

1S

x

R+Ds

Obstacle

Target

S2

dobs

β

R+Ds

R+Ds

α

R+Ds

S1

S2

x

Right bound

φRTarget

(d) (e) (f)

S

SD

Right bound

Left bound

θ
Solution

θ
Target

R
max

L
max

φ

φ

nD

DS
Right bound

Left bound

θ
Target

L
max

R
max

φ

φ

SnD
θ

Solution

SD

Right bound

Left bound
L
max

R
max

φ

φ

=

SnD

(g) (h) (i)

Fig. 3. (a,b,c) Set of motion constraints for an obstacle out of the security distance and with the goal located in the left-hand side. (d,e,f) Set of
motion constraints for an obstacle in the security distance and with the goal located in the right-hand side. (g,h,i) Computation of the direction solution
in the three possible cases.

the security distance and thus there are additional directions
in S2 due to the proximity of the obstacle. Notice that
β = 0 when the obstacle is at a distance of Ds+R in order
to have continuity in the limit of the security distance.

The motion constrain for the obstacle is the union of
both sets SnD = S1 ∪ S2 (Figures 3c,f).

A feature that will be used is the concept of left and
right bounds of SnD. When θtarget > θobst (the set S1 is
on the right-hand side of the obstacle) we call the φL =
max(SnD) the left bound (Figure 3c), and in the opposite
case φR = min(SnD) is the right bound (Figure 3f).

Step 2: Selecting one direction of motion
Up to now we have discussed how an obstacle point has

associated a set of motion directions that are not suitable.

By joining all the sets of all the obstacles we get the full
set of motion constraints. That is, if for each obstacle i we
compute Si

nD = Si
1∪Si

2, the final set is SnD = ∪iSi
nD. The

set of desired directions of motion is the complementary
SD = {[−π, π] \ SnD}. Let be φmax

L = max(φi
L) and

φmax
R = min(φi

R). There are three cases to select the
motion direction, θsol:

1) If the set SD �= ∅ and θtarget ∈ SD then θsol =
θtarget (Figure 3g).

2) If the set SD �= ∅ and θtarget /∈ SD then:

θsol =
{

φmax
R if |θtarget − φmax

R | < |θtarget − φmax
L |

φmax
L i.o.c

(6)
The closest left bound φmax

L or right bound φmax
R to

the target direction is selected (e.g. in Figure 3h we
select the right bound for motion).

3) If final set SD = ∅ then θsol = φmax
R +φmax

L

2 . We
compute the medium value between the left and right
bounds (Figure 3i).

As a result we obtain the most promising direction of
motion θsol.

In summary, we have described a method that, given
the current perception (obstacle information) and a goal
location, computes the most promising motion direction
to avoid collisions while converging the robot location
towards the target.

III. EXPERIMENTAL RESULTS

For experimentation, we used a commercial wheelchair
that we have equipped with two on-board computers,
and with a SICK laser. The vehicle is rectangular
(1.2 × 0.7meters) with two tractor wheels that work
in differential-driven mode. We set the maximum op-
erational velocities to (vmax, wmax) = (0.3 m

sec , 0.7 rd
sec)

due to the application context (human transportation).
The ORM runs at a medium of 1000Hz on the on-
board PentiumIII850Mhz. However, we reduced this
frequency to 5Hz (frequency of the laser) sleeping the
process in order to have a perception-action scheme.

Notice that we have presented the obstacle avoidance
method assuming that the robot can move in any direction
and is circular. In order to adapt this technique to the
rectangular and non-holonomic robot, we followed the
solution proposed in [9]: in a first step, the direction
solution computed by the obstacle avoidance method is
converted into commands that comply with the kinematics
and dynamics using a kinodynamic model of the robot.
Next, these commands are modified if collisions appear
due to the robot shape (rectangular here). As a result, the
commands computed tend to align the vehicle with the in-
stantaneous direction of motion whilst avoiding collisions.

We outline next two experiments in unknown, unstruc-
tured and dynamic office-type environment, where the goal
location was the only information provided in advance.

In the first experiment, the robot moved avoiding two
large U-shape structures (formed by furniture) to reach
the goal location (see a snapshot in Figure 4a and the
complete trajectory and the laser points in Figure 4d). The
first difficulty avoided was a narrow passage where the
robot did not fit in (Passage 1 in Figures 4a,b that seems
to be closed because it is blurred due to the robot drift).
On-line, it was detected that that the vehicle did not fit in
and moved to the right-hand avoiding the large U-shape
structure formed by the furniture and this narrow passage.
To overcome this situation, motion directions far away from
the goal direction (some of them differ in more than 90◦)
were computed. Next, the vehicle moved to the bottom
part to cross the narrow corridor, whilst avoided moving
within the U-shape structure to the right-hand side. The
next difficulty was found in the central corridor, since it
was very narrow (Passage 2 in Figures 4a,b). Again on-
line, the vehicle detected that it was possible to cross this

narrow place and proceeded to do it. Notice that while the
vehicle was moving within the corridor there was very little
room to maneuver (< 10cm on both sides). However, there
were not oscillations or unstable behaviors. Finally the
robot reached the goal location without collisions. During
the experiment, directions of motion towards obstacles
were selected in almost all the experiment, since the laser
has a large field of view (8m), about the office size.
The computational load of the algorithm in each cycle
was almost constant (� 0.001sec), the experiment was
accomplished in 102sec and the velocity profiles are shown
in Figure 4c.

In the next experiment we tested the method in the
office but with humans moving around (what converted
the scenario in a dynamic place), Figures 4d,e. First, the
vehicle maneuvered to the right-hand to avoid the human
that moved towards the table on the left-hand and took a
sit. Then, it was checked that the vehicle fitted in the very
narrow passage (the same size of the previous experiment)
and thus proceed to cross it. At the exit of the passage,
other humans hindered the vehicle motion. However, colli-
sions were avoided with smooth motions (see the velocities
profiles, Figure 4f). Finally, the vehicle reached the goal
location. The experiment was accomplished in 92sec and
velocity profiles are shown in Figure 4f.

IV. DISCUSSION

We discuss next the advantages of this method with
respect to existing techniques on the basis of the difficulties
shown in the experimental results.

The local trap situations due to U-shape obstacles or
due to the motion among close obstacles are overcome
with this method. The ORM does not direct the vehicle
within U-shape obstacles since the first step of the method
places subgoals out of these obstacles (Figure 2a). Thus,
these situations are avoided in a natural way. For example,
in the first experiment the vehicle avoided the large U-
shape structure. Secondly, the method drives the vehicle
among very close obstacles because: (i) the possibility of
whether the vehicle fits is checked with the subgoal selector
(Figure 2b). For example in the first experiment, Passage
1 was not selected for motion (since the vehicle did not
fit in) and the vehicle proceeded through Passage 2. And
(ii) the motion centers the vehicle among obstacles. This
is because the motion is obtained as the bisector of the
extreme constrains of motion (which are generated by the
most risky obstacles). Notice that Passage 2 is very narrow
(Figures 4a,b). Furthermore, when moving among very
close obstacles we observed motion free of oscillations
or instabilities (see the smooth paths generated in Figure
4b,e and the velocity profiles of the experiments Figures
4c,f), which in addition rely on a comfortable motion with
the wheelchair.

The ORM selects motion directions far away from the
goal direction when required. This is because the subgoals
can be placed in any location in the space. In other words,
any deviation from the goal direction can be obtained with
this method. This property was determinant in the two

Init Passage 2

Passage 1

Target
U−shape
obstacle

Passage 1

Init
Snapshot

Target

Passage 2

(a) (b) (c)

Humans Init
Robot

Target

Humans
moving

Snapshot

Init

Target

(d) (e) (f)

Fig. 4. This Figure depicts two experiments with the ORM. (a,d) Snapshots of the experiment. (b,e) Trajectory of the vehicle and laser points
perceived. (c,f) Velocity profiles of the experiment and computational load of the method.

experiments. For example, in the beginning of both, the
only way to reach the target was to move right-hand, that
implies directions far from the goal direction. In addition,
in the ORM formulation, the selection of directions of
motion towards the obstacles is possible (which is usually
the case in SD = ∅). This issue was critical when moving
in narrow corridors, because sometimes only this type of
directions allows to move safely.

The ORM has no internal parameters. Only the secu-
rity distance has to be set with a coherent value (we chose
Ds = 0.75m, the shorter side of the vehicle). Another point
is the computational load because it sets the reactivity of
the system. The execution time of the ORM is in medium
0.001sec (Figure 4c,f) on a PentiumIII850Mhz. In
other words, once a new sensor reading is available, in
0.001sec there is a motion command ready to be executed
(thus the reaction is immediate). Another advantage is
that the processor is free the majority of the time (the
obstacle avoidance method consumes less than 2.5% of
the CPU), which could be employed by other modules
that require higher computational loads (e.g. path planning,
simultaneous location and map building, supervisors, etc).

We have seen how this method overcomes many of the
limitations and problems of previous obstacle avoidance
methods, which leads to the outstanding results obtained
in difficult scenarios. However, we still have to compare the
ORM with the ND methods [10], [12], since they also have

demonstrated to successfully navigate in these scenarios.
Notice that it is difficult to compare in rigorous terms (there
is no metric to measure the quality of these methods). Thus,
we direct the comparison in qualitative terms.

The ND method is based on a “divide and conquer”
strategy based on situations. At each time, one navigation
situation is selected and the associated action (law of
motion) computes the motion. In the method design, the
motion laws only use partial information of the obstacle
information available. This is enough to move in dense
scenarios, however in open spaces much information is
not used. As a result, the trajectories are longer and less
natural than expected. For example, Figure 5a depicts the
direction solution of the ND+ method in a given scenario.
The action in this situation computes the solution only
taking into account the closest point of the frontal obstacle
and the borders of the passage. However, in this case the
ORM computes a better solution. This is because, the
ORM also considers the obstacle on the right-hand, and
thus it corrects the solution towards the passage. Figures
5b,c depict the partial trajectory of an experiment carried
out with both methods driving the wheelchair. Notice
how there are some shaking behaviors (oscillations) with
the ND+ that are not obtained with the ORM. This is
also because all the obstacle information is considered
in the ORM method. Then, since this information does
not change significantly between sampling periods, the

Security
distance

Closest Obstacle
point

ORM

ND+

Goal

Robot

Obstacle

Obstacle

(a)

ORM

Smooth
Shaking

ND+
(b) (c)

Fig. 5. (a) ORM and the ND+ method solutions in a given situation.
(b) and (c) Real trajectories of the wheelchair using both methods.

resulting changes in direction are smooth. Our impression
is that with the ORM we achieve better results in open
spaces than the ND+ method and similar results in places
with little room to maneuver.

V. CONCLUSIONS

This paper presents the Obstacle-Restriction method for
robot obstacle avoidance in difficult scenarios. The method
proposed has two steps. The first one is a procedure
to compute instantaneous subgoals based on the obstacle
structure. The second step associates a motion restriction
to each obstacle, which are managed next to compute the
most promising motion direction.

The advantage of this technique is that it avoids common
limitations of previous obstacle avoidance methods, im-
proving their navigation performance in difficult scenarios.
Furthermore, we obtain similar results to the ND family
of methods in troublesome scenarios. However, the new
method improves the behavior in open spaces.

We want to conclude remarking that the usage of this
method does not avoid the problems inherent to the local

nature of obstacle avoidance methods: the global trap
situations persist. This issue is far beyond the scope of
this work, however, this method could be used together
with techniques that aim to increase the locality of obstacle
avoidance methods, such as those described in [17], [3],
[11], [16]. Then, these undesirable situations would be
mitigated.

VI. ACKNOWLEDGMENTS

We want to thank Javier Osuna, José Luis Villarroel
and Luis Montano for participating in this project with
technical discussions and contributing with many ideas.
This research was supported by Spanish project MCYT
DPI2003-07986.

REFERENCES

[1] K. Azarm and G. Schmidt. Integrated mobile robot motion planning
and execution in changing indoor environments. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
298–305, Munchen, Germany, 1994.

[2] J. Borenstein and Y. Koren. The Vector Field Histogram–Fast
Obstacle Avoidance for Mobile Robots. IEEE Transactions on
Robotics and Automation, 7:278–288, 1991.

[3] O. Brock and O. Khatib. High-Speed Navigation Using the Global
Dynamic Window Approach. In IEEE Int. Conf. on Robotics and
Automation, pages 341–346, Detroit, MI, 1999.

[4] O. Brock and O. Khatib. Real-Time Replanning in High-
Dimensional Configuration Spaces using Sets of Homotopic Paths.
In IEEE Int. Conf. on Robotics and Automation, pages 550–555,
San Francisco, USA, 2000.

[5] W. Feiten, R. Bauer, and G. Lawitzky. Robust Obstacle Avoidance
in Unknown and Cramped Environments. In IEEE Int. Conf. on
Robotics and Automation, pages 2412–2417, San Diego, USA, 1994.

[6] D. Fox, W. Burgard, and S. Thrun. The Dynamic Window Approach
to Collision Avoidance. IEEE Robotics and Automation Magazine,
4(1), 1997.

[7] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots. Int. Journal of Robotics Research, 5:90–98, 1986.

[8] A. Masoud, S. Masoud, and M. Bayoumi. Robot navigation
using a pressure generated mechanical stress field, the biharmonical
potential approach. In IEEE International Conference on Robotics
and Automation, pages 124–129, San Diego, USA, 1994.

[9] J. Minguez and L. Montano. Robot Navigation in Very Complex
Dense and Cluttered Indoor/Outdoor Environments. In 15th IFAC
World Congress, Barcelona, Spain, 2002.

[10] J. Minguez and L. Montano. Nearness Diagram (ND) Navigation:
Collision Avoidance in Troublesome Scenarios. IEEE Transactions
on Robotics and Automation, 20(1):45–59, 2004.

[11] J. Minguez, L. Montano, N. Simeon, and R. Alami. Global
Nearness Diagram Navigation (GND). In IEEE International Conf.
on Robotics and Automation, pages 33–39, Seoul, Korea, 2001.

[12] J. Minguez, J. Osuna, and L. Montano. A Divide and Conquer
Strategy to Achieve Reactive Collision Avoidance in Troublesome
Scenarios. In IEEE International Conference on Robotics and
Automation, Minessota, USA, 2004.

[13] S. Quinlan and O. Khatib. Elastic Bands: Connecting Path Planning
and Control. In IEEE Int. Conf. on Robotics and Automation,
volume 2, pages 802–807, Atlanta, USA, 1993.

[14] R. Simmons. The Curvature-Velocity Method for Local Obstacle
Avoidance. In IEEE Int. Conf. on Robotics and Automation, pages
3375–3382, Minneapolis, USA, 1996.

[15] L. Singh, H. Stephanou, and J. Wen. Real-time robot motion
control with circulatory fields. In IEEE International Conference
on Robotics and Automation, pages 2737–2742, Mineapolis, USA,
1996.

[16] C. Stachniss and W. Burgard. An Integrated Approach to Goal-
directed Obstacle Avoidance under Dynamic Constraints for Dy-
namic Environments. In IEEE-RSJ Int. Conf. on Intelligent Robots
and Systems, pages 508–513, Switzerland, 2002.

[17] I. Ulrich and J. Borenstein. VFH*: Local Obstacle Avoidance
with Look-Ahead Verification. In IEEE Int. Conf. on Robotics and
Automation, pages 2505–2511, San Francisco, USA, 2000.

