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Metric-Based Iterative Closest Point
Scan Matching for Sensor Displacement Estimation

Javier Minguez Luis Montesano Florent Lamiraux

Abstract— This paper addresses the scan matching problem
for mobile robot displacement estimation. The contribution is
a new metric distance and all the tools necessary to be used
within the Iterative Closest Pointframework. The metric distance
is defined in the configuration space of the sensor and takes into
account both translation and rotation error of the sensor. The
new scan matching technique ameliorates previous methods in
terms of robustness, precision, convergence and computational
load. Furthermore, it has been extensively tested to validate and
compare this technique with existing methods.

Index Terms— Scan matching, Sensor Displacement Estima-
tion, Mobile Robots.

I. I NTRODUCTION

A Key issue in autonomous mobile robots is to keep track
of the vehicle position. One strategy is to estimate

the robot displacement using successive range measurements.
This problem is usually denoted as scan matching. Many
applications in robotics such as mapping, localization or
tracking use these techniques to estimate the relative robot
displacement [1], [2], [3], [4], [5]. In this paper, we propose
a new geometric 2D scan matching approach that has been
extensively evaluated and compared with the most widely used
techniques.

The objective of the scan matching techniques is to compute
the relative motion of a vehicle between two consecutive
configurations by maximizing the overlap between the range
measurements obtained at each configuration. More precisely,
given a reference scanZref , the new scanZnew and a
rough estimationq0 of the relative displacement of the sen-
sor between the scans, the objective is to estimate the real
displacementq = (x, y, θ) between them.

One of the main differences between the existing algorithms
is the usage or not of high-level entities such as lines or planes.
On the one hand, in structured environments, one can assume
the existence of polygonal structure in the environment [6], [7],
[8]. These methods are fast and work quite well for indoor
environments. However, they limit the scope of application
to the extraction of geometric features that are not always
available in unstructured environments.

On the other hand, a great deal of work has been done
to perform in any type of scenario dealing with raw data.
Roughly, these techniques are based on an iterative process
that estimates the sensor displacement that better explains
the overlap between the scan measurements. For example,
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[9] constructs a piecewise continuous differentiable density
that models on a grid the probability to measure a point, and
then, apply the Newton’s algorithm. By converting the scans to
statistical representations, [10] iteratively computes the cross-
correlation that results in the displacement. In [11] the motion
parameters are estimated using a constrained velocity equation
for the scanned points. However, the most popular methods
usually follow the Iterative Closest Point (ICP) algorithm [12]
(see [13] for variants of the original method). The ICP algo-
rithm addresses this problem with an iterative process in two
steps. At each iterationk, there is a search of correspondences
between the points of both scans (Zref andZnew). Then, the
estimation of relative displacementq0 is improved through a
minimization process until convergence. More precisely, letpi

with i = 1 . . . n andrj with j = 1 . . . m be the points ofZref

andZnew respectively, andqk = q0. Repeat:

1) For eachpi in Zref compute the closest point inZnew

(transformed to the system of referenceZref using the
estimation qk) whose distance is lower than a given
thresholddmin:

ci = arg min
rj

{d(pi, qk(rj)) andd(pi, qk(rj)) < dmin}
(1)

The result is a set ofl correspondences
C = {(pi, ci) | i = 1 . . . l}.

2) Compute the displacement estimationqmin that mini-
mizes the mean square error between pairs ofC:

Edist(q) =
l∑

i=1

d(pi, q(ci))2 (2)

Let be qsol = qmin ⊕ qk. If there is convergence
the estimation isqsol, otherwise we iterate again with
qk+1 = qsol.

A common feature of most ICP versions is the usage of
the Euclidean distance to establish the correspondences and to
apply the least squares [14], [15], [16]. However, as pointed
out by [17], the limitation of this distance is that it does not
take into account the sensor rotation. Following the example
outlined by [17], in Figure 1 we show how with Euclidean
distance, points far from the sensor could be far from its
correspondent due to rotations of the sensor, and how the
associations could not clearly explain the motion (again due
to rotations). We understand that this is a central problem
of the ICP algorithms: to find a way to measure (to find
the closestcorrespondent and to apply the minimization) in
such a way that it captures the sensor translation and rotation
at the same time. In order to overcome this limitation [17]
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Fig. 1. (Top) The distance between the same points become larger in
terms of Euclidean distance with a rotation displacement, which makes
difficult the association. (Bottom) An ellipsoid rotated. (a) The associations
using Euclidean distance do not clearly explain the rotational motion, which
would affect convergence. (c) With the new distance this rotational motion is
captured.

proposed to compute two sets of correspondents, one by the
Euclidean distance and the other one by a range rule (to
capture the sensor rotation). This strategy ameliorates the
ICP behaviour facing sensor rotations. However, it employs
two parallel minimizations of two different criteria to get
the coordinates of a single variable (translation with one
minimization and rotation with the other). Thus, some minima
could arise due the composition of the coordinates, mainly
affecting the robustness and precision of the method.

Our contribution resides in the definition of a new distance
measure in the sensor configuration space that takes into
account both translation and rotation at the same time. By
only modifying the way to measure in the ICP framework,
translation and rotation are compensated simultaneously in
all the steps of the method. As a consequence, the results
ameliorate previous methods in terms of robustness, precision,
convergence and computational load. An added value of this
research is the strong experimental component carried out to
validate and compare this technique with existing methods.

The paper is distributed as follows: in Section II-B we
describe the metric distance and we express the least square
criterion based on this distance measure. In Section III, we
discuss the experimental results and we compare our method
with existing methods. Finally, we discuss and draw our
conclusions in Section IV.

II. D ISTANCE MEASURE AND M INIMIZATION

In this section, we introduce first our distance measure in
the plane and next we describe the minimization.

A. Distance point to point

A rigid body transformation in the plane is defined by a
vector q = (x, y, θ) representing the position and orientation

(−π < θ < π) of the scanner sensor in the plane. We define
the norm ofq as :

‖q‖ =
√

x2 + y2 + L2θ2 (3)

whereL is a positive real number homogeneous to a length.
Given two pointsp1 = (p1x, p1y) and p2 = (p2x, p2y) in
R2, we define a distance betweenp1 andp2 as the minimum
norm among the rigid body transformations that move a point
to another:

dp(p1, p2) = min{‖q‖ such thatq(p1) = p2} (4)

where

q(p1) =
(

x + cos θ p1x − sin θ p1y

y + sin θ p1x + cos θ p1y

)
(5)

It can be easily checked thatdp is a real distance satisfying
for any p1 andp2:

1) dp(p1, p2) = dp(p2, p1)
2) dp(p1, p2) = 0 implies p1 = p2

3) dp(p1, p3) ≤ dp(p1, p2) + dp(p2, p3)
Unfortunately, there is no closed form expression of the above
distance w.r.t. the coordinates of the points. However, we
can compute a valid approximation when the minimum norm
transformation is small, by linearizing (5) aboutθ = 0. The
set of rigid-body-transformations satisfyingq(p1) = p2 can be
approximated by the set of solutions(x, y, θ) of the following
system:

x + p1x − θ p1y = p2x

y + θ p1x + p1y = p2y

The set of solutions is infinite and can be expressed by:

x = p2x − p1x + θ p1y

y = p2y − p1y − θ p1x

whereθ is a parameter for the set of solutions. Let us recall that
according to (4), we need to find the solution that minimizes
the norm ofq = (x, y, θ). For a givenθ, this norm is given by
the following equation, after substituting the above expressions
of x andy into (3):

‖q‖2 = (δx + θ p1y)2 + (δy − θ p1x)2 + L2θ2

where δx = p2x − p1x and δy = p2y − p1y. Expanding the
above expression, we obtain a polynomial of degree 2 inθ:

‖q‖2 = aθ2 + bθ + c

with a = p2
1y+p2

1x+L2, b = 2(δxp1y−δyp1x) andc = δ2
x+δ2

y.
Notice thata > 0 implies that this expression has a unique
minimum for θ = −b/(2a) and the value of this minimum is
given by

‖q̂‖2 =
−b2 + 4ac

4a

=
−(δxp1y − δyp1x)2 + (p2

1y + p2
1x + L2)(δ2

x + δ2
y)

p2
1y + p2

1x + L2

= δ2
x + δ2

y −
(δxp1y − δyp1x)2

p2
1y + p2

1x + L2
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Fig. 2. Iso-distance curves ofdap
p for two pointsv1 andv2.

Finally, the approximated distance betweenp1 andp2 is:

dap
p (p1, p2) =

√
δ2
x + δ2

y −
(δxp1y − δyp1x)2

p2
1y + p2

1x + L2
(6)

So as to better understand the properties of this distance
measure, let us compute the iso-distance curves. Again, we
do not have the exact expression of the iso-distance curves
but, if we use approximation (6), we can prove that the
iso-distance curves relative todap

p :

{p2 ∈ R2 such thatdap
p (p1, p2) = c}

are ellipses centred onp1 with principal axes(p1x, p1y) and

(−p1y, p1x) and lengthsc and c
√

1 + ‖p1‖2
L2 (see Figure 2).

Furthermore, their dimensions depend on||p1|| and the value
of L. In fact, L balances the trade-off between translation
and rotation. Notice that whenL → ∞, the new distance
tends to the Euclidean distance (the iso-distance surfaces of
the Euclidean distance are spheres).

The iso-distance curves hold the Euclidean distance in the
(p1x, p1y) axis. However, in the rest of the space, the distance
is smaller than the Euclidean distance, since the latter is the
norm of the translation betweenp1 and p2 and therefore is
bigger than the minimum norm. Furthermore, the iso-distance
curves become larger but only in the(−p1y, p1x) axis as the
point p1 is further from the sensor location, which captures
the sensor rotation (see Figure 1). This distance is used in
expression (1) in order to establish the correspondences. Figure
1b depicts the associations in the ellipsoid example and some
iso-distance curves over-imposed.

B. Least Square Minimization

The next step is to compute theq that minimizes expression
(2) but in terms of the new distance. Expression (2) with
distance (6) leads to:

Edist(q) =
n∑

i=1

(
δ2
ix + δ2

iy −
(δixpiy − δiypix)2

p2
iy + p2

ix + L2

)
(7)

where

δix = cix − ciyθ + x− pix

δiy = cixθ + ciy + y − piy

(7) is quadratic w.r.t.q:

Edist(q) = qT Aq + 2bT q + c

wherec is a constant number,A is a symmetric matrix

A =




a11 a12 a13

a12 a22 a23

a13 a23 a33




a11 =
Pn

i=1 1− p2
iy

ki

a12 =
Pn

i=1

pixpiy

ki

a13 =
Pn

i=1−ciy +
piy

ki
(cixpix + ciypiy)

a22 =
Pn

i=1 1− p2
ix
ki

a23 =
Pn

i=1 cix − pix
ki

(cixpix + ciypiy)

a33 =
Pn

i=1 c2
ix + c2

iy − 1
ki

(cixpix + ciypiy)2

and

b =



Pn

i=1 cix − pix − piy

ki
(cixpiy − ciypix)Pn

i=1 ciy − piy + pix
ki

(cixpiy − ciypix)Pn
i=1[

1
ki

(cixpix + ciypiy)− 1](cixpiy − ciypix)




whereki = p2
ix + p2

iy + L2. The value ofq that minimizes
Edist(q) is thus

qmin = −A−1b

In summary, we have described in this Section all the
mathematical tools in order to introduce the new metric in
the ICP formalism. We outline next the experimental results.

III. E XPERIMENTAL RESULTS

We tested the method with real data obtained with a Sick
laser scanner mounted on a robotic wheelchair. This sensor
has a field of view of180◦, a maximum range of8.1m and
with a frequency of5Hz it gathers361 points. We carried out
the computations on a Pentium IV1.8Ghz.

In order to compare the new method (metric-based ICP,
MbICP in short) with existing scan matching techniques, we
used the standard ICP and the widely known IDC algorithm
[17]. The IDC algorithm uses two types of correspondences
(Euclidean distance and a range rule) and two minimizations
to estimate the translation and rotation of the sensor. In the
IDC implementation, we have been using [3], [5], we reject
outliers using visibility criteria [17] and range criterions [14].
We use a trimmed version of the ICP to manage the corre-
spondences [18] that improves the least squares minimization,
and a smooth criterion of convergence [14]. Furthermore, as
suggested by [17], we interpolate between successive range
points (local structure) to compute the correspondences. We
also implemented these features in the ICP and the MbICP
algorithm (we give the expression of the distance point to
segment in the Appendix to interpolate with the new metric).
In order to show a fair comparison, we used the same values
for common parameters (we used our IDC previous parameters
for the ICP and MbICP). We only tuned the metric lengthL
in the MbICP (in section IV we discuss how to do it). As
criteria of convergence (Section I), we set a maximum number
of iterations to500, an error ratio below10−4 and sensor
displacementqmink

< (10−4m, 10−4m, 10−4rd).
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The experiments discussed next are based on a set of data
collected with a robotic wheelchair in our laboratory (a travel
of 100m with 780 different scans). The idea was to have, in the
same data set, scenarios with very different nature that cover
the most representative indoor environments such as rooms full
of furniture, open corridors, or windows and walls with glass
(the nature varies from open/dense, structured/unstructured,
etc). All these issues were present in our data set (Figure 3).
We describe next two types of experiments. In the first one we
study the properties of the algorithms such as robustness, pre-
cision, convergence rate and computational load. The second
one consists in the reconstruction of the environment using the
visual odometry provided by the result of the scan matching
of consecutive scans.

The objective of the first experiment was to study the robust-
ness, precision, convergence rate and computational load of
each algorithm. In order to do it, we matched each scan against
itself using random initial locations. Thus, we know the exact
ground truth(0, 0, 0) and we can compare the performance
of the three algorithms. We carried out six collections of
experiments with the initial location error ranging from0.05m
in x andy, and2◦ in θ (Experiment1) up to 0.2m in x and
y, and45◦ in θ (Experiment6), see Table I. We repeated the
procedure100 times for each scan which makes78000 runs
for experiment, and a total of624000 runs (6 experiments) for
each method.

We discuss first the results in terms of robustness. A run
was considered a failure when the solution was larger than
0.05m in translation and0.05rad (2.86◦) in rotation (notice
that the ground truth is(0, 0, 0)). These values are just a
threshold used to identify failures of the method. Those
solutions with an error lower than the threshold are analysed in
the precision study of the method. Regarding robustness, for

these techniques, the more representative characteristics are
theTrue Positives(the method converged to the right solution)
and theFalse Positives(the method converged but to a wrong
solution). TheTrue Negativescorrespond to cases where the
algorithm did not converge (after the maximum number of
iterations) and the solution was wrong. In theFalse Negatives
the algorithm did not converge and the solution was correct.
Notice that negative are always preferable than having false
positives. Table I summarizes the results.

TABLE I

MBICP VS IDC AND ICP (ROBUSTNESS)

Method MbICP IDC ICP
Robustness (%) (%) (%)

True Positives 100.0 100.0 100
Experiment1 False Positives 0.0 0.0 0.0

(0.05m, 0.05m, 2◦) True Negatives 0.0 0.0 0.0
False Negatives 0.0 0.0 0.0

True Positives 100.0 99.997 100
Experiment2 False Positives 0.0 0.0 0.0

(0.1m, 0.1m, 4◦) True Negatives 0.0 0.0 0.0
False Negatives 0.0 0.025 0.0

True Positives 100.0 99.61 100.0
Experiment3 False Positives 0.0 0.015 0.0

(0.15m, 0.15m, 8.6◦) True Negatives 0.0 0.019 0.0
False Negatives 0.0 0.003 0.0

True Positives 100 99.375 99.981
Experiment4 False Positives 0.0 0.365 0.107

(0.2m, 0.2m, 17.2◦) True Negatives 0.0 0.079 0.001
False Negatives 0.0 0.179 0.0

True Positives 99.719 96.73 97.147
Experiment5 False Positives 0.279 1.876 2.632

(0.2m, 0.2m, 34.3◦) True Negatives 0.001 1.176 0.220
False Negatives 0.0 0.214 0.0

True Positives 99.248 92.01 94.198
Experiment6 False Positives 0.728 4.09 5.473

(0.2m, 0.2m, 45◦) True Negatives 0.023 3.23 0.315
False Negatives 0.0 0.65 0.012

For all methods, the true positives decrease and the false
positives increase as the errors increase (Experiments1 to
6). This means that the robustness of the methods decrease
as the errors increase. We observe that the MbICP has the
best performance, since the percentage of true positives is
higher and the false positives lower than the other methods.
Furthermore, MbICP behaves well even in the most demanding
experiment (Experiment6) with a rate higher than99%
and lower than1% of true and false positives respectively.
Regarding the IDC and ICP, we observe that although IDC
has a lower rate of true positives than ICP, it has less false
positives indicating better robustness.

In order to address precision, we separated the percentage
of trials that achieved a given range of accuracy. A solution
with less than10−3 of error in all the coordinates (m,m,rad)
achieved maximum precision, while an error larger than0.05m
or 0.05rad indicates an error. Table II summarizes the results.

We observe that the precision of the MbICP is better than
the other methods. If one discards the failures of the IDC and
ICP (error > 0.05m or > 0.05rad) and relax the precision
ranges, the precision of the MbICP and ICP is similar and
slightly better than the IDC. Furthermore, for all methods,
the precision remains constant while the errors increase (from
Experiment1 to 6). Notice that the precision is very related
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TABLE II

MBICP VS IDC AND ICP (PRECISION)

Method MbICP IDC ICP
Precision (m,rad) (%) (%) (%)

< 0.001 81.27 83.315 57.78
(0.001, 0.005) 18.72 16.682 42.219

Experiment1 (0.005, 0.01) 0.0 0.0 0.0
(0.05m, 0.05m, 2◦) (0.01, 0.05) 0.0 0.002 0.0

> 0.05 0.0 0.0 0.0

< 0.001 80.97 83.118 57.51
(0.001, 0.005) 19.02 16.844 42.48

Experiment2 (0.005, 0.01) 0.0 0.0 0.0
(0.1m, 0.1m, 4◦) (0.01, 0.05) 0.0 0.032 0.0

> 0.05 0.0 0.0 0.0

< 0.001 80.84 82.952 56.62
(0.001, 0.005) 19.15 16.965 43.37

Experiment3 (0.005, 0.01) 0.0 0.0 0.0
(0.15m, 0.15m, 8.6◦) (0.01, 0.05) 0.0 0.047 0.0

> 0.05 0.0 0.034 0.002

< 0.001 81.28 81.96 56.30
(0.001, 0.005) 18.71 16.795 43.58

Experiment4 (0.005, 0.01) 0.0 0.0 0.0
(0.2m, 0.2m, 17.2◦) (0.01, 0.05) 0.0 0.799 0.0

> 0.05 0.0 0.444 0.10

< 0.001 80.92 79.537 54.00
(0.001, 0.005) 18.79 16.357 43.13

Experiment5 (0.005, 0.01) 0.0 0.041 0.00
(0.2m, 0.2m, 34.3◦) (0.01, 0.05) 0.0 0.811 0.00

> 0.05 0.28 3.052 2.85

< 0.001 80.38 74.94 52.184
(0.001, 0.005) 18.864 16.53 42.01

Experiment6 (0.005, 0.01) 0.0 0.37 0.0
(0.2m, 0.2m, 45◦) (0.01, 0.05) 0.0 0.81 0.01

> 0.05 0.751 7.32 5.78

to the convergence criteria. One could think that the results
should vary with stricter criteria. We carried out also these
tests and all the methods improved precision. However, the
tests revealed a problem of the IDC regarding precision and
independent of the convergence criteria (we discuss this topic
in section IV).

The convergence rate is the number of iterations until
convergence (we only used the true positives for this study).
Figure 4a shows the mean and the standard deviation of the
number of iterations for each method and experiment. Notice
how the MbICP and IDC are very similar but both faster than
the ICP. This result agrees with [17] (IDC), which pointed
out the fact that taking into account rotation improves the
convergence rate of the ICP.

Figure 4b shows the execution times of each method. The
MbICP is in average the fastest algorithm followed by the
ICP and IDC. Although the MbICP and IDC have similar
convergence rates, the execution time of the MbICP is much
lower, due to the fact that the IDC algorithm establishes
two different sets of correspondences and performs two min-
imizations at each step (increasing computation time). For all
methods, the computational load increases with the error (from
Experiment1 to 6). However, the time is not proportional to
the number of iterations. This is because the IDC needs a
maximum angular region to search correspondences for each
point [17]. The MbICP and ICP do not need this parameter,
but we used it to accelerate the algorithm and therefore having
a fair comparison with the IDC times. This parameter (region
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Fig. 4. (a) Mean and0.2 times the standard deviation of the convergence
rate and (b) mean and0.2 times the standard deviation of the execution time.

of correspondences) has to be increased as the errors increase.
For all methods, it affects the complexity, which isO(N×M)
whereN is the number of points of the angular region andM
the points of the reference scan. Thus, the time also depends
on the size of the angular region that has to be increased to
deal with larger errors. In addition to this, for the IDC the
effect is more significant since the complexity has a factor of
2, due to the computation of two sets of correspondences and
two minimizations.

In summary, the MbICP method has the best performance
among the three methods in robustness, precision, convergence
rate and computation time. This is more relevant as the errors
in the location estimation increase.

The second test corresponds to the real usage of the method
using the robot odometry. As the ground truth is not available,
the validation is done by plotting all the scans using the
locations estimated by the methods. The experiment is difficult
because the floor was very polished and the vehicle slipped
constantly with a poor effect on the odometry (Figure 3),
which in fact is the initial location error for the methods. The
mean displacement between scans was0.081m in translation
and0.04rad in rotation and the maximum values were0.16m
and0.16rad respectively. With regard to the previous tests, the
matching here is always done between different scans, and
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Fig. 6. The figure shows the error in location of the scan, and the corrections
computed by each set of correspondences, closest point (CP) and matching
range rule (RR), at each iteration of the IDC algorithm. The initial error was
(0.13,−0.09, 0.1).

there are other issues involved like spurious and non-visible
structure from one to another scan.

Figure 5 depicts the results obtained with the MbICP and
the IDC. We observe how the visual result of the MbICP is
better than the IDC since it is able to align the corridor and
the office when the vehicle comes back to the initial location.
The translation and rotational accumulated errors are lower
for the MbICP than for the IDC. The mean convergence rate
and the mean execution time was31.2 iterations and0.076
seconds for the MbICP,34.7 and0.083 for the ICP and30.4
and 0.240 for the IDC. These experiments show how under
more realistic conditions the behavior of the MbICP is also
globally better than in the IDC and ICP (robustness, accuracy,
convergence and computation time).

IV. D ISCUSSION ANDCONCLUSIONS

In the context of scan matching, we have presented a metric
distance and all the tools necessary to be used within the
ICP framework. The distance is defined in the configuration
space of the sensor and takes into account both translation
and rotation error of the sensor. This represents an advantage
with regard to the classical ICP algorithm, since the resulting
correspondences better capture the error in the location of the
sensor and improve the convergence of the algorithm (Figure
1). Furthermore, the new distance also allows for establishing
correspondences that are far away in Euclidean distance due to
errors of rotation. In order to capture these correspondences,
the ICP has to increase its validation gate that will increase
the probability of making wrong correspondences. Figure 2
shows the acceptance region for a given maximum distance in
both methods.

With respect to IDC method, our method also presents
some advantages. At each iteration, the IDC computes two
sets of correspondences and two minimizations: one with
the Closest Point Rule(CP) and the other with theMatch-
ing Range Rule(RR). Thus, it computes two estimations
qCP = (xCP , yCP , θCP ) and qRR = (xRR, yRR, θRR). The
final estimation isqIDC = (xCP , yCP , θRR) (CP captures

the translation and RR the rotation). This strategy of two
sets of correspondences and two minimizations to estimate
different coordinates of a single variable affects robustness
and precision as follows (Figure 6 depicts such a situation that
occurred during our validation tests). At iteration4, the IDC
was compensating one scan with a significant error in trans-
lation in orientation. However, in this iteration, the estimation
qCP = (' 0,' 0, 6= 0) and qRR = ( 6= 0, 6= 0,' 0). In other
words, the CP wants to rotate and the RR wants to translate.
However, the IDC estimation isqIDC = (' 0,' 0,' 0) (no
motion error compensation). As a result, the algorithm is not
able to correct this error. This affects robustness if this effect
happens far from the solution, or precision when it happens
close to it. The MbICP computes one set of correspondences
and minimizes the three coordinates at the same time. This
makes the algorithm faster and simpler, but, more important,
it avoids the misbehaviors derived from the use of two different
minimizations.

The new distance has an extra parameterL with regard to
the ICP to be tuned. This parameter represents the weight
between translation and rotation in the metric. Ideally, one
should accommodate this parameter according to the actual
error. However, as the method iterates, the error decreases in
each iteration and the parameter should be changed accord-
ingly. Unfortunately, the estimation of the remaining error
in each iteration is not a trivial problem in these types of
algorithms. From a practical point of view we found during our
experiments thatL = 3 provides the best results for different
initial errors and different data.

Another issue is that the approximate distance is obtained
through a linearization. This limits the applicability of our
method to rotation errors around zero. However, the results
show that the method is able to cope with errors up to45◦.

Another advantage of this formulation is the extension of
the scan matching problem in three dimensional workspaces.
Here there are three translations and three rotations to estimate.
The expression of the new distance in three dimensions is:

dap = ||p2 − p1||2 − ||p1 ⊗ p2||2
||p1||2 + L2

(8)

that allows to compensate all the degrees of freedom simulta-
neously.

In the future, we will focus on testing our new metric with
3D-datasets. We will also investigate techniques for speeding
up the matching process, based on geometric partitioning of
the 3D space.
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APPENDIX

In this appendix we give the expression of the distance point
to segment. We consider a pointp1 and a line segment[s1 s2]
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Fig. 5. (a) Visual map obtained with the MbICP. (b) Visual map of the IDC. (b) Visual map of the ICP.

defined bys1 + λ(s2 − s1), λ ∈ [0, 1]. The distance between
p1 and segment[s1 s2], dps(p1, [s1 s2]) is:

dps(p1, [s1 s2]) ≈





dp(p1, s1) if λ < 0
dp(p1, s2) if λ > 1√
−b2+4ac

4a if 0 ≤ λ ≤ 1

where:

a = u2
2x + u2

2y −
(p1yu2x − p1xu2y)2

p2
1x + p2

1y + L2

b = 2(u2xδ1x + u2yδ1y)

−2
(p1yu2x − p1xu2y)(δ1xp1y − δ1yp1x)

p2
1x + p2

1y + L2

c = δ2
1x + δ2

1y −
(δ1xp1y − δ1yp1x)2

p2
1x + p2

1y + L2

where u2 = (u2x, u2y) = s2 − s1 and δ1 = (δ1x, δ1y) =
s1−p1. The closest point top1 on [s1 s2] in these three cases
is respectivelys1, s2 ands1 − b

2au2.
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