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Metric-Based Iterative Closest Point
Scan Matching for Sensor Displacement Estimation

Javier Minguez Luis Montesano Florent Lamiraux

Abstract—This paper addresses the scan matching problem [9] constructs a piecewise continuous differentiable density
for mobile robot displacement estimation. The contribution is  that models on a grid the probability to measure a point, and
a new metric distance and all the tools necessary to be usedihan apply the Newton's algorithm. By converting the scans to
within the Iterative Closest Poinframework. The metric distance - . . .
is defined in the configuration space of the sensor and takes into stat|st|cgl representano-ns, [10], iteratively computes the crqss-
account both translation and rotation error of the sensor. The correlation that results in the displacement. In [11] the motion
new scan matching technique ameliorates previous methods in parameters are estimated using a constrained velocity equation
terms of robustness, precision, convergence and computational for the scanned points. However, the most popular methods
?oargbgr%rtpheién:géﬁh 'i;Sgsw?t%egx‘?sﬁtiﬁgs:]‘q’glﬁ’]ézssted to validate and ;g ,4]ly follow the Iterative Closest Point (ICP) algorithm [12]

’ (see [13] for variants of the original method). The ICP algo-
_ Index Terms—Scan matching, Sensor Displacement Estima- rithm addresses this problem with an iterative process in two
tion, Mabile Rohots. steps. At each iteratioh, there is a search of correspondences
between the points of both scans,(; and Z,,..,). Then, the
I. INTRODUCTION estimation of relative displacemeg is improved through a

Key issue in autonomous mobile robots is to keep tradRinimization process until convergence. More preciselypjet
A of the vehicle position. One strategy is to estimat®ith i =1...n andr; with j =1...m be the points o,
the robot displacement using successive range measuremeiitd Zn... respectively, andy, = go. Repeat:

This problem is usually denoted as scan matching. Many1) For eachp; in Z,.; compute the closest point i,
applications in robotics such as mapping, localization or  (transformed to the system of referengg.; using the
tracking use these techniques to estimate the relative robot estimationg,) whose distance is lower than a given
displacement [1], [2], [3], [4], [5]. In this paper, we propose thresholdd, ;. :

a new geometric 2D scan matching approach that has been )

extensively evaluated and compared with the most widely used ~ ¢ = 218 Hgn{d(piv qk(r;)) andd(pi, qx(75)) < dmin}
techniques. (1)

The objective of the scan matching techniques is to compute  The result is a set of correspondences
the relative motion of a vehicle between two consecutive C = {(p;,¢;) |i=1...1}.
configurations by maximizing the overlap between the range2) Compute the displacement estimatigp;, that mini-
measurements obtained at each configuration. More precisely, mizes the mean square error between pair€'of
given a reference sca,.r, the new scanZ,., and a .
rough estimationy, of the relatlvg d!spliacement.of the sen- Eaisi(q) = Zd(pi7Q(C‘))2 )
sor between the scans, the objective is to estimate the real
displacement; = (z,y, 8) between them.

One of the main differences between the existing algorithms
is the usage or not of high-level entities such as lines or planes.
On the one hand, in structured environments, one can assume k+1 = Ysol-
the existence of polygonal structure in the environment [6], [7], A common feature of most ICP versions is the usage of
[8]. These methods are fast and work quite well for indodhe Euclidean distance to establish the correspondences and to
environments. However, they limit the scope of applicatioPply the least squares [14], [15], [16]. However, as pointed
to the extraction of geometric features that are not alwa@sit by [17], the limitation of this distance is that it does not
available in unstructured environments. take into account the sensor rotation. Following the example

On the other hand, a great deal of work has been do@étlined by [17], in Figure 1 we show how with Euclidean
to perform in any type of scenario dealing with raw datalistance, points far from the sensor could be far from its
Roughly, these techniques are based on an iterative proce@gespondent due to rotations of the sensor, and how the
that estimates the sensor displacement that better expla#ggociations could not clearly explain the motion (again due

the overlap between the scan measurements. For examfflefotations). We understand that this is a central problem
_ _ ~of the ICP algorithms: to find a way to measure (to find
J. Minguez and L. Montesano are with the Dpto. de Informaticghe closestcorrespondent and to apply the minimization) in
e Ingenieria de Sistemas, Universidad de Zaragoza (Spain). E-mail: h hat i h lati d .
jminguez,montesano@unizar.es . stich a way that it captures the sensor translation and rotation

F. Lamiraux is with the LAAS-CNRS (France). E-mail: florent@laas.fr . at the same time. In order to overcome this limitation [17]

=1

Let be gso1 = Gmin D qr- If there is convergence
the estimation isy,,;, otherwise we iterate again with
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(-7 < 6 < ) of the scanner sensor in the plane. We define
© Pointsof Shex the norm ofq as :

S [Sre] \ lgll = V22 +y? + L26? 3)
where L is a positive real number homogeneous to a length.

Given two pointsp; = (p1z,p1y) and pa = (pag,p2y) IN

R?, we define a distance betwepn andp, as the minimum
norm among the rigid body transformations that move a point
to another:

dp(p1,p2) = min{||q| such thatg(p,) = p2}  (4)

where

B T+ cosf pi, —sinf P1y
q(pl) - ( y—|—31n9 Piz + cos @ Py (5)

It can be easily checked thd, is a real distance satisfying
* for any p; and p.:

(@ (o)) 1) dy(p1,p2) = dp(p2,p1)

Fig. 1. (Top) The distance between the same points become larger in2) dp(p17p2) =0 implie5p1 = D2
terms of Euclidean distance with a rotation displacement, which makes3) d,(p1,p3) < dp(p1,p2) + dp(P2,D3)

difficult the association. (Bottom) An ellipsoid rotated. (a) The associatio . .

using Euclidean distance do not clearly explain the rotational motion, whignfortunately’ there is no .closed form exprgssmn of the above
would affect convergence. (c) With the new distance this rotational motionG§stance w.r.t. the coordinates of the points. However, we
captured. can compute a valid approximation when the minimum norm

transformation is small, by linearizing (5) abofit= 0. The

proposed to compute two sets of correspondents, one by 5 of r?gid-body-transformations. satisfyiggp:) = p2 can be
Euclidean distance and the other one by a range rule Bproxmated by the set of solutiofs, y, ¢) of the following

capture the sensor rotation). This strategy ameliorates prem:
ICP behaviour facing sensor rotations. However, it employs z+ pra — 0 pry = Paw
two parallel minimizations of two different criteria to get
the coordinates of a single variable (translation with one
minimization and rotation with the other). Thus, some minim@he set of solutions is infinite and can be expressed by:
could arise due the composition of the coordinates, mainly
affecting the robustness and precision of the method. T = PP +0py

Our contribution resides in the definition of a new distance Yy = Doy — D1y — 0 pra

measure in the sensor configuration space that takes int}%)e

account both translation and rotation at the same time. I red is a parameter for the set of solutions. Let us recall that
X %cording to (4), we need to find the solution that minimizes

only modifying the way to measure in the ICP frameworlﬁ]e norm ofg — ( 8). For a givend, this norm is given b
translation and rotation are compensated simultaneously in 1= Y,9)- 9 ! 9 y

all the steps of the method. As a consequence, the resmtjll}% foIIowm_g equa'.uon, after substituting the above expressions
. . . ..of z andy into (3):

ameliorate previous methods in terms of robustness, preC|S|8n,

convergence and computatiqnal load. An added valge of this lall® = (6, + 0 ply)Q + (6, — 0 p12)? + L2607

research is the strong experimental component carried out to ]

validate and compare this technique with existing methodsWhered. = pa; — pi, andd, = pay — p1,. Expanding the
The paper is distributed as follows: in Section II-B wélbove expression, we obtain a polynomial of degree & in

describe the metric distance and we express the least square

criterion based on this distance measure. In Section lIll, we

discuss the experimental results and we compare our methdth o = pi,+p3,+L? b = 2(0,p1y—0yp1.) @andc = 6244,

with existing methods. Finally, we discuss and draw oudotice thata > 0 implies that this expression has a unique

conclusions in Section IV. minimum for§ = —b/(2a) and the value of this minimum is

given by

3o

Y+ 0 Do + p1y = P2y

lqll? = ab? + b0 + ¢

Il. DISTANCE MEASURE AND MINIMIZATION

. : . ' . 9 —b% + dac
In this section, we introduce first our distance measure |f§||* = I
the plane and next we describe the minimization. "y ;1 Gypie) + (02, + pR. 4 L2)(82 + 62)
o M1y yMlx ly 1z x Yy
A. Distance point to point pi, +pi, + L2
A rigid body transformation in the plane is defined by a 28 (62p1y — Oyp12)?
= 6140, Lt

vectorgq = (z,y,0) representing the position and orientation Pi, +pi, + L2
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(7) is quadratic w.r.tq:

o L
Euclidean
[ distance=0.3L

Egist(q) = ¢" Aq+ 20" g + ¢
wherec is a constant number! is a symmetric matrix

aix aiz2 ais
A= a2 a2 a
a13 a3 G33

r 7 1 Pn P%y
o5l X ] 011 = pi=1 }ov_p-’Ti
4 R R a12=p?:1 72iw o
i a13 = ;1 —Ciy + ﬁ(czzpzz + CiyDiy)
2
— n Pig
Fig. 2. Iso-distance curves mﬁ” for two pointsv; andwvs. 22 = Pi=1 1- k,ip
ag3 = pi=1 Ciz — ,::” (CizPiz + CiyPiy)
ass = [y o + ¢y — g (CiaDic + CiyPiy)?
Finally, the approximated distance betwegnand p is: q
an
62P1y — OyP1z)? P :
d;p(p17p2) — 6% + 65 — M (6) P?:l Cixz — Pixz — %(Cixpiy - Ciypix)
Diy T Piz T+ L b= P?:l Ciy — Piy + %(cmpiy — CiyPiz)
. . . n 1
So as to better understand the properties of this distance i1l7; (CiaPia + ciypiy) — 1(CiaPiy — Ciypix)

measure, let us compute the iso-distance curves. Again Wﬁz 9 9 9 .
’ . . . " 'wherek; = p- g L*#. The val fg that minimizes
do not have the exact expression of the iso-distance cury; se ((e?is tfangply + e value olg that
but, if we use approximation (6), we can prove that the®*! q A1
iso-distance curves relative t?: Imin = —
) . In summary, we have described in this Section all the
{p2 € R” such thatd;”(p1, p2) = c} mathematical tools in order to introduce the new metric in

are ellipses centred om with principal axes(p..,p1,) and the ICP formalism. We outline next the experimental results.

(—p1y,p1z) @nd lengthsc and cq/1 + % (see Figure 2).

Furthermore, their dimensions depend |gn || and the value Ill. EXPERIMENTAL RESULTS

of L. In fact, L balances the trade-off between translation We tested the method with real data obtained with a Sick

and rotation. Notice that whelh — oo, the new distance laser scanner mounted on a robotic wheelchair. This sensor

tends to the Euclidean distance (the iso-distance surfacesha$ a field of view 0fl80°, a maximum range o8.1m and

the Euclidean distance are spheres). with a frequency obHz it gathers361 points. We carried out
The iso-distance curves hold the Euclidean distance in t& computations on a Pentium INSGhz.

(P12, p1y) @xis. However, in the rest of the space, the distanceln order to compare the new method (metric-based ICP,

is smaller than the Euclidean distance, since the latter is f®ICP in short) with existing scan matching techniques, we

norm of the translation betwegn and p, and therefore is used the standard ICP and the widely known IDC algorithm

bigger than the minimum norm. Furthermore, the iso-distangg7]. The IDC algorithm uses two types of correspondences

curves become larger but only in tfie p1,, p1.) axis as the (Euclidean distance and a range rule) and two minimizations

point p; is further from the sensor location, which captureg estimate the translation and rotation of the sensor. In the

the sensor rotation (see Figure 1). This distance is used|C implementation, we have been using [3], [5], we reject

expression (1) in order to establish the correspondences. Figsii€liers using visibility criteria [17] and range criterions [14].

1b depicts the associations in the ellipsoid example and sogve use a trimmed version of the ICP to manage the corre-

iso-distance curves over-imposed. spondences [18] that improves the least squares minimization,
S and a smooth criterion of convergence [14]. Furthermore, as
B. Least Square Minimization suggested by [17], we interpolate between successive range

The next step is to compute tigghat minimizes expression points (local structure) to compute the correspondences. We
(2) but in terms of the new distance. Expression (2) withlso implemented these features in the ICP and the MbICP
distance (6) leads to: algorithm (we give the expression of the distance point to

(S10Psy — Oiypin)? segment in the Appendix to interpolate with the new metric).
Eaist(q) = Z (531 + 67, — g ) (7) In order to show a fair comparison, we used the same values
i=1 Piy + Pia + L for common parameters (we used our IDC previous parameters
where for the ICP and MbICP). We only tuned the metric lendth
in the MbICP (in section IV we discuss how to do it). As
criteria of convergence (Section 1), we set a maximum number
Oiy = Cial + iy +Y — iy of iterations to500, an error ratio belowl0~* and sensor
displacementy, i, < (107*m, 10=*m, 10~*rd).

n

diz = Ciz— Ciya + T — Pix
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these techniques, the more representative characteristics are
the True Positivegthe method converged to the right solution)
and theFalse Positivegthe method converged but to a wrong
solution). TheTrue Negativesorrespond to cases where the
algorithm did not converge (after the maximum number of
iterations) and the solution was wrong. In thaélse Negatives

the algorithm did not converge and the solution was correct.
Notice that negative are always preferable than having false
positives. Table | summarizes the results.

Odometry

s

TABLE |
MBICP vs IDC AND ICP (ROBUSTNESY

Method MbICP IDC ICP
Robustness (%) (%) (%)
True Positives |  100.0 100.0 100
Experimentl False Positives 0.0 0.0 0.0
(0.05m,0.05m, 2°) True Negatives 0.0 0.0 0.0
False Negative§ 0.0 0.0 0.0
True Positives | 100.0 99.997 100
et Experiment2 False Positives 0.0 0.0 0.0
\ ; (0.1m,0.1m, 4°) True Negatives| 0.0 0.0 0.0
3m False Negatives 0.0 0.025 0.0
True Positives | 100.0 99.61 100.0
Experiment3 False Positives 0.0 0.015 0.0
Fig. 3. Data set collected in a trial ahom (0.15TYL,0.15’HL,8.60) True Negatives 0.0 0.019 0.0
False Negative§ 0.0 0.003 0.0
True Positives 100 99.375 | 99.981
) ) Experiment4 False Positives 0.0 0.365 0.107
The experiments discussed next are based on a set of data.2m,0.2m,17.2°) | True Negatives| 0.0 0.079 | 0.001
collected with a robotic wheelchair in our laboratory (a travel False Negatived 0.0 [ 0179 | 0.0
. . . . True Positives | 99.719 96.73 97.147
of 100m with 780 dlffere.nt scgns). The _|dea was to have, in the Experiments Falss Pestras 0157553
same data set, scenarios with very different nature that coveiy. 2/, 0.2im, 34.3°) [ True Negatives| 0.001 1176 | 0.220
the most representative indoor environments such as rooms full False Negative§ 0.0 0.214 0.0
of furniture, open corridors, or windows and walls with glass —~_ True Positves e A R
. xper|ment alse Positives . . .
(the nature varies from open/densc_e, structured/unstructu ed(0_2m70_2m7 45°) True Negatives| 0.023 353 0315
etc). All these issues were present in our data set (Figure (3). False Negatives 0.0 0.65 0.012

We describe next two types of experiments. In the first one we
study the properties of the algorithms such as robustness, pregor all methods, the true positives decrease and the false
cision, convergence rate and computational load. The secqﬂgitives increase as the errors increase (Experimertts
one consists in the reconstruction of the environment using #e This means that the robustness of the methods decrease
visual odometry provided by the result of the scan matching the errors increase. We observe that the MbICP has the
of consecutive scans. best performance, since the percentage of true positives is
The objective of the first experiment was to study the robusiigher and the false positives lower than the other methods.
ness, precision, convergence rate and computational loadrefthermore, MbICP behaves well even in the most demanding
each algorithm. In order to do it, we matched each scan agaiggperiment (Experiment) with a rate higher tharf9%
itself using random initial locations. Thus, we know the exaeind lower than1% of true and false positives respectively.
ground truth(0,0,0) and we can compare the performancRegarding the IDC and ICP, we observe that although IDC
of the three algorithms. We carried out six collections dias a lower rate of true positives than ICP, it has less false
experiments with the initial location error ranging frand5m  positives indicating better robustness.
in z andy, and2° in # (Experimentl) up to 0.2m in z and In order to address precision, we separated the percentage
y, and45° in 0 (Experiment6), see Table |. We repeated theof trials that achieved a given range of accuracy. A solution
procedurel00 times for each scan which mak&8000 runs with less thanl0~2 of error in all the coordinates (m,m,rad)
for experiment, and a total @24000 runs ¢ experiments) for achieved maximum precision, while an error larger thasm
each method. or 0.05rad indicates an error. Table Il summarizes the results.
We discuss first the results in terms of robustness. A runWe observe that the precision of the MbICP is better than
was considered a failure when the solution was larger th#re other methods. If one discards the failures of the IDC and
0.05m in translation and).05rad (2.86°) in rotation (notice ICP (error > 0.05m or > 0.05rad) and relax the precision
that the ground truth i50,0,0)). These values are just aranges, the precision of the MbICP and ICP is similar and
threshold used to identify failures of the method. Thosdightly better than the IDC. Furthermore, for all methods,
solutions with an error lower than the threshold are analysedthre precision remains constant while the errors increase (from
the precision study of the method. Regarding robustness, Experimentl to 6). Notice that the precision is very related
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TABLE ” - CONVERGENCE RATE
MBICP vs IDC AND ICP (PRECISION) ‘ ‘ - e
ICP
Method MbICP | IDC ICP “
Precision (m,rad) (%) (%) (%) 7
< 0.001 81.27 | 83.315 | 57.78 g%r
{0.00T, 0.005) 1872 | 16.682 | 42.219 g
Experimentl (0.005, 0.01) 0.0 0.0 0.0 8 3o
(0.05m, 0.05m, 2°) (0.01,0.05) 0.0 0.002 0.0 e
>0.05 0.0 0.0 0.0 £ ool
< 0.001 80.97 | 83.118 | 57.51 H
{0.00T, 0.005) 19.02 | 16.844 | 42.43 2 0l
Experiment2 (0.005,0.01) 0.0 0.0 0.0 ©
(0.1m, 0.1m, 4°) (0.01,0.05) 0.0 0.032 0.0 ol
>0.05 0.0 0.0 0.0
< 0.001 80.84 | 82.952 | 56.62 ‘ ‘ ‘ ‘ ‘ ‘
{0.00T, 0.005) 19.15 | 16.965 | 43.37 o 1 2 s z 5 s 7
Experiment3 (0.005, 0.01) 0.0 0.0 0.0 Srperment
(0.15m,0.15m, 8.6°) (0.01,0.05) 0.0 0.047 0.0 (a)
> 005 00 0-034 0.002 COMPUTATION TIME
< 0.001 81.28 | 81.96 | 56.30 ‘ ‘ e
{0.001, 0.005) 1871 | 16.795 | 43.58 icP
Experiment4 (0.005,0.01) 0.0 0.0 0.0 oer
(0.2m,0.2m, 17.2°) (0.01,0.05) 0.0 0.799 0.0
>0.05 0.0 0.444 | 0.10 ot
< 0.001 80.92 | 79.537 | 54.00
{0.001, 0.005) 18779 | 16.357 | 43.13 04
Experiment5 (0.005,0.01) 0.0 0.041 0.00 9
(0.2m,0.2m, 34.3°) (0.01,0.05) 0.0 0.811 0.00 £ oal
>0.05 0.28 3.052 | 2.85
< 0.001 80.38 | 74.94 | 52.184 i
{0.00T, 0.005) 18.864 | 16.53 | 42.01
Experiment6 (0.005,0.01) 0.0 0.37 0.0 oal
(0.2m, 0.2m, 45°) (0.01,0.05) 0.0 0.81 0.01 ‘
>0.05 0.751 7.32 5.78
. ‘ ‘ ‘ ‘ ‘ ‘

(b)
to the convergence criteria. One could think that the resuli%. 4. (a) Mean and).2 times the standard deviation of the convergence
should vary with stricter criteria. We carried out also thesete and (b) mean a2 times the standard deviation of the execution time.
tests and all the methods improved precision. However, the
tests revealed a problem of the IDC regarding precision and
independent of the convergence criteria (we discuss this topiccorrespondences) has to be increased as the errors increase.
in section 1V). For all methods, it affects the complexity, which§ N x M)

The convergence rate is the number of iterations untlherelV is the number of points of the angular region avd
convergence (we only used the true positives for this studyfje points of the reference scan. Thus, the time also depends
Figure 4a shows the mean and the standard deviation of thethe size of the angular region that has to be increased to
number of iterations for each method and experiment. Notideal with larger errors. In addition to this, for the IDC the
how the MbICP and IDC are very similar but both faster thagffect is more significant since the complexity has a factor of
the ICP. This result agrees with [17] (IDC), which pointe@, due to the computation of two sets of correspondences and
out the fact that taking into account rotation improves th&vo minimizations.
convergence rate of the ICP. In summary, the MbICP method has the best performance

Figure 4b shows the execution times of each method. Thaong the three methods in robustness, precision, convergence
MDbICP is in average the fastest algorithm followed by theate and computation time. This is more relevant as the errors
ICP and IDC. Although the MbICP and IDC have similain the location estimation increase.
convergence rates, the execution time of the MbICP is muchThe second test corresponds to the real usage of the method
lower, due to the fact that the IDC algorithm establishassing the robot odometry. As the ground truth is not available,
two different sets of correspondences and performs two mihe validation is done by plotting all the scans using the
imizations at each step (increasing computation time). For &kations estimated by the methods. The experiment is difficult
methods, the computational load increases with the error (frdmacause the floor was very polished and the vehicle slipped
Experimentl to 6). However, the time is not proportional toconstantly with a poor effect on the odometry (Figure 3),
the number of iterations. This is because the IDC needswhich in fact is the initial location error for the methods. The
maximum angular region to search correspondences for eachan displacement between scans w@S1m in translation
point [17]. The MbICP and ICP do not need this parametaand0.04rad in rotation and the maximum values weéxré6m
but we used it to accelerate the algorithm and therefore haviagd0.16rad respectively. With regard to the previous tests, the
a fair comparison with the IDC times. This parameter (regiomatching here is always done between different scans, and
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g % Ty the translation and RR the rotation). This strategy of two
i ngq%’*é:’:*’i e oy * sets of correspondences and two minimizations to estimate
T N different coordinates of a single variable affects robustness
5 -0.2, 5 ; s m 5 ) and precisioq as foIIows. (Figure 6 depicts_such a situation that
01 iterations occurred during our validation tests). At iteratianthe IDC
— ;gE was compensating one scan with a significant error in trans-
E 0 T : - XRR [ lation in orientation. However, in this iteration, the estimation
o YRR |. gop = (~0,~0,# 0) andqrr = (# 0,# 0,~ 0). In other
04 2 p Soraiond 10 12 14 words, the CP wants to rotate and the RR wants to translate.
0.051 —p However, the IDC estimation ig;pc = (~ 0,~ 0,~ 0) (no
3 . “ e e a4 <‘ motion error com.pensatlon).. As a result, the algo_rlthm is not
- g able to correct this error. This affects robustness if this effect
~0.05 ‘ ‘ ‘ ‘ ‘ ‘ ‘ happens far from the solution, or precision when it happens
0 2 4 Serationd ~ 1° 1214 close to it. The MbICP computes one set of correspondences

and minimizes the three coordinates at the same time. This
Fig. 6. The figure shows the error in location of the scan, and the correcti kes the algorithm faster and simpler, but, more important
computed by each set of correspondences, closest point (CP) and matc Ir}ﬂ/ ids th isbehavi derived f ”’1 ' £ diff t’
range rule (RR), at each iteration of the IDC algorithm. The initial error wd$ &VOI0S the MISbenaviors derived from the use of two ditreren
(0.13,—0.09,0.1). minimizations.
The new distance has an extra paramdtewith regard to
) ) ) ) _ the ICP to be tuned. This parameter represents the weight
there are other issues involved like spurious and non-visitd@tween translation and rotation in the metric. Ideally, one
structure from one to another scan. _ should accommodate this parameter according to the actual
Figure 5 depicts the results obtained with the MbICP angyor. However, as the method iterates, the error decreases in
the IDC. We observe how the visual result of the MbICP igach jteration and the parameter should be changed accord-
better than the IDC since it is able to align the corridor andqly. Unfortunately, the estimation of the remaining error
the office when the vehicle comes back to the initial locatiofy each iteration is not a trivial problem in these types of
The translation and rotational accumulated errors are |0"‘€9@orithms. From a practical point of view we found during our

for the MbICP than for the IDC. The mean convergence rafgperiments thaf, = 3 provides the best results for different
and the mean execution time was.2 iterations and0.076 nitial errors and different data.

seconds for the MbICR4.7 and 0.083 for the ICP and30.4  another issue is that the approximate distance is obtained

and 0.240 for the IDC. These experiments show how undehrough a linearization. This limits the applicability of our

more realistic conditions the behavior of the MbICP is alsgethod to rotation errors around zero. However, the results

globally better than in the IDC and ICP (robustness, accuragy,qw that the method is able to cope with errors ugao.

convergence and computation time). Another advantage of this formulation is the extension of

the scan matching problem in three dimensional workspaces.
IV. DISCUSSION ANDCONCLUSIONS Here there are three translations and three rotations to estimate.
In the context of scan matching, we have presented a meffice expression of the new distance in three dimensions is:

distance and all the tools necessary to be used within the 9

ICP framework. The distance is defined in the configuration d? = ||p2 — p1||* - % (8)

space of the sensor and takes into account both translation [Ipall* + L

and rotation error of the sensor. This represents an advanttigg allows to compensate all the degrees of freedom simulta-

with regard to the classical ICP algorithm, since the resultingeously.

correspondences better capture the error in the location of thén the future, we will focus on testing our new metric with

sensor and improve the convergence of the algorithm (FiguBB-datasets. We will also investigate techniques for speeding

1). Furthermore, the new distance also allows for establishing the matching process, based on geometric partitioning of

correspondences that are far away in Euclidean distance duth® 3D space.

errors of rotation. In order to capture these correspondences,

the ICP has to increase its validation gate that will increase V. ACKNOWLEDGMENTS

the probability of making wrong correspondences. Figure 2.We want to thank L. Montano, J. Tardés and J. Neira
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LT Inmaculada de Aragan
sets of correspondences and two minimizations: one with

the Closest Point Rul§CP) and the other with th&atch-

ing Range Rule(RR). Thus, it computes two estimations APPENDIX

gocp = (zop,ycpr,0cp) and qrr = (TrR, YRR, ORrR). The In this appendix we give the expression of the distance point
final estimation isq;pc = (2cp,ycp,f0rr) (CP captures to segment. We consider a pojnt and a line segmens; s-]
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MbICP

(@)

(a) Visual map obtained with the MbICP. (b) Visual map of the IDC. (b) Visual map of the ICP.

(b)

Fig. 5.

defined bys; + A(s2 — s1), A € [0, 1]. The distance between [4]
p1 and segmenis; sa], dps(p1,[s1 s2]) is:

dp(p1, 81) if A<O0 [5]
dps (p1, [51 82]) ~ dp(p1,s2) fFA>1
VS ifo<a<
where: el
2 2 (plyu2x - plxu2y)2 [7]
a = Uy, + Uy, —
2 2y Pl +pi, + L2
b = 2(u2w6lz + u2y51y) [8]
) (plyu2x - plmu2y)(51zp1y - 51yp1r)
pi, +pi, + L2 [9]
812P1y — O1yP12)?
c = 521 + 62 _ ( Yy Y
T P 4t + L2 [10]

whereuy = (usy, uzy) = s2 — s1 and &y = (814,61,) =
s1 —p1. The closest point tp; on [s; s3] in these three casesl11]

is respectivelys;, s; ands; — L us.

[12]
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