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Abstract— This paper presents a probabilistic scan match-
ing algorithm to estimate the robot planar displacement by
matching dense two-dimensional range scans. The general
framework follows an iterative process of two steps: (i)
computation of correspondences between scans, and (ii)
estimation of the relative displacement. The contribution is a
probabilistic modelling of this process that takes into all the
uncertainties involved, the uncertainty of the displacement
of the sensor and the measurement noises. Furthermore, it
also considers all the possible correspondences resulting from
these uncertainties. This technique has been implemented and
tested on a real vehicle. The experiments illustrate how the
performances of this method are better than previous geomet-
ric ones in terms of robustness, accuracy and convergence.

I. INTRODUCTION

In this paper we present a new probabilistic scan
matching algorithm. The objective of the scan matching
techniques is to compute the relative motion of the sensor
between two consecutive configurations by maximizing the
overlap between the sensor measurements obtained at each
configuration. These techniques have been widely used in
the context of mapping, 3D data registration, object recog-
nition or scene understanding [18], [12]. In robotics, they
have been successfully used in a wide range of applications
as an ameliorated odometry (i.e. simultaneous location and
map building [20], [8], [10], local map construction [14],
[11], [15] or people tracking systems [19]).

One of the main differences between the existing algo-
rithms is the usage or not of high-level entities such as lines
or planes. In structured environments, one can assume the
existence of polygonal structure in the environment [7],
[5]. These methods are fast and work quite well in indoor
environments. However, they limit the scope of application
to the extraction of geometric features that are not always
available in unstructured environments. On the other hand,
a great deal of work has been done to perform in any
type of scenario dealing with raw data. For example [3]
constructs a piecewise continuous differentiable density
that models on a grid the probability to measure a point,
and then, apply the Newton’s algorithm. By converting
the scans to statistical representations, [21] iteratively
computes the crosscorrelation that results in the displace-
ment. In [6] the motion parameters are estimated using a
constrained velocity equation for the scanned points. Our
working context are these unstructured scenarios.

The most popular methods usually follow the Iterative

Closest Point (ICP) algorithm [2]. They are based on an
iterative process where they first compute the correspon-
dences between the scans, and then they minimize the
distance error to compute the sensor displacement [13], [9],
[1], [17]. This process is repeated with this new estimate
until convergence. A common feature of most versions of
ICP is the usage of the Euclidean distance to establish the
correspondences and to apply the least squares. However,
this distance does not account for the fact that points far
from the sensor could be far from its correspondent due to
rotations of the sensor. We understand that this is a central
problem of the ICP algorithms: to find a way to measure
(to find the correspondent and to apply the minimization)
in such a way that it captures the sensor translation and
rotation at the same time. To overcome this limitation [13]
proposed to combine the closest point rule of the ICP
algorithm with a range rule to capture the sensor rotation.
This method performs well under large rotation errors.
However, it is a geometric algorithm that do not model
the uncertainties involved in the process.

In fact, another important difference of the scan match-
ing techniques is whether they model the noises associated
to the sensor measurement process and the uncertainty of
its displacement between both scans. We understand that
this is another central problem in the sensor matching
techniques since the sensory process is uncertain, and this
might be taken into account in the scan matching context.
This issue has been partially addressed in [17] modelling
the noise of the sensor measurements. However, they do not
include the uncertainty of the sensor location. Furthermore,
another remaining issue is to consider all the possible
associations resulting from these uncertainties.

This paper presents a probabilistic formulation of the
scan matching problem. The general framework follows
an iterative process of two steps: (i) probabilistic com-
putation of the correspondences between the scans, and
(ii) estimation of the relative displacement. With this
formulation we address the two problems of the scan
matching algorithms mentioned above. First we take into
account the uncertainties of the displacement of the sen-
sor and of the observation noises to establish the cor-
respondences. Moreover, our probabilistic model allows
to estimate these correspondences integrating over all the
potential associations betweens the points of each scan.
Second, the translation and rotation are implicitly captured
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Fig. 1. Probabilistic model. The figure shows the representation of the
relative displacement q and the points p and r. The cross represents the
true physical point and the dark and light points the observations of this
point acquired in Rnew and Rnew and the corresponding measurement
noise (continuous ellipses). Taking into account the uncertainty of the
relative displacement q makes the observation r and p compatibles (light
dotted ellipse).

in this framework simultaneously. With this new method,
we obtain results that ameliorate the algorithm that we
were using [13] in terms of robustness, convergence and
precision. We further believe that this technique would be
better suited to deal with noisy sensors than pure existing
geometric techniques.

The paper is distributed as follows: Section II intro-
duces the probabilistic model. In Section III presents the
scan matching algorithm. In Section IV, we discuss the
experimental results and compare the method with existing
methods. Finally, the conclusions are presented in Section
V.

II. PROBABILISTIC MODEL AND NOTATION

Let Sref = {r1, ..., rn} be a set of n point measure-
ments (ri ∈ R2) acquired in a given sensor location
Rref , and Snew = {p1, ...,pm} another set of m point
measurements acquired in another sensor location Rnew.
Let q = {x, y, θ} ∈ R2 × [0, 2π] be the relative location
of Rnew with respect to Rref . The problem is to estimate
the sensor displacement q such that maximizes the overlap
between Sref and Snew.

We model the scan matching problem within a prob-
abilistic framework where the observed points ri and pi

and the relative displacement q are random variables. Our
model considers the first two moments of the distributions
of these random variables. We consider that the obser-
vations of the points in both scans are independent and
corrupted with white zero mean noises with covariance
matrices Pri

and Ppi
1,

1Without loss of generality in the following we assume that the points
are given in Cartesian coordinates. In the practical case of a laser range
sensor pi = {p̂i,Ppi} are computed from the polar coordinates and
the sensor uncertainty parameters using the appropriated Jacobian of the
transformation between polar and Cartesian coordinates.

r̂i = rtruei + wri , wri ∼ N(0,Pri
)

p̂i = ptruei + wpi , wpi ∼ N(0,Ppi
)

where r̂i and p̂i represent the observations of the true
physical points ptruei and rtruei . Let q̂ be the estimation
of the relative location. The initial displacement q̂0 and
its associated covariance matrix Pq represent the prior
knowledge about the relative location of Rnew with respect
to Rref . Figure 1 illustrates our probabilistic model for the
observation process and for the relative location q. It also
shows how the error on the relative location affects the
position of the points in Snew.

III. PROBABILISTIC SCAN MATCHING

The objective is to estimate the relative displacement q.
A common approach is to perform an iterative process in
two steps. At each iteration k, the algorithm establishes
for each point pi in Snew a correspondence ai using the
current estimate q̂k and the points in Sref . The result is a
set of pairs of points < ai,pi >. Next, a new estimation
of the relative location q̂k+1 is computed by minimizing
the error of these correspondences.

The problem of establishing the correspondences be-
tween scans is crucial in this process. This is particularly
difficult when using raw data in the presence of large errors
in the sensor displacement estimation and the noises of
the observations. Moreover, sensors usually have a discrete
angular resolution which implies that the observations do
not necessarily correspond to the same physical points.

We describe next both steps with an special emphasis
in the correspondences, since it is a key point of this
technique.

A. Computing the correspondences (Step 1)

The objective is to compute for each pi of Snew a
correspondence ai from the set of reference points Sref .
We address this by reducing the initial set of all possible
correspondences Sref to a subset Ai = {ai1, ...,aik} that
contains all the points in Sref statistically compatible with
pi. Next, we compute the correspondence ai by integrating
over all the potential associations of Ai.

To compute the compatible associations of Sref , we
perform an individual compatibility test based on the
Mahalanobis distance DM (rj,pi) between rj and pi,

D2
M (rj,pi) = δijCij

−1δij

where δij = f(q̂k, p̂i) − r̂j. The function f transforms
the point pi to the reference system Rref using the current
estimation qk:

f(qk,p) =

(
cos θpx − sin θpy + x
sin θpx + cos θpy + y

)
(1)

Linearizing f using a first order Taylor approximation,
the matrix Cij has the following expression,



Cij = Prj
+Jq(q̂k, p̂i)PqJq(q̂k, p̂i)

T+Jp(q̂k)Ppi
Jp(q̂k)T

The matrices Jq(q̂, p̂) and Jp(q̂) are the Jacobians of
the function f with respect to q and pi evaluated at the
current estimate q̂k and the point p̂i,

Jq(q̂k, p̂i) = ∂f(q,r,p)
∂q

∣∣∣∣∣
q̂k,p̂i

Jp(q̂k) = ∂f(q,r,p)
∂p

∣∣∣∣∣
q̂k

Under Gaussian assumptions the Mahalanobis distance
has a chi-squared distribution with m = dim(δij) degrees
of freedom. A point rj is compatible iff D2

M (rj,pi) <
χ2
d,α, where α is the desired confidence level of the chi-

squared test. Using this procedure for all points of Sref
we get the set Ai of compatible associations for a given
pi.

We model ai as a random variable defined over the set
Ai. We compute the expectation of âi and its covariance
matrix Pai

by integrating over all the points of Ai,

âi = E[ai] =
∑

j

aijp(aij) (2)

Pai
=

∑

j

(aij − âi)(aij − âi)
T p(aij)

The term p(aij) represents the probability of point rj

being the correspondent point to pi. In order to take into
account the uncertainty on the sensor location and the
noises of the observations we integrate over all the possible
locations of the point pi and all the possible locations of
the sensor q,

p(aij) = ηi

∫ ∫
p(r̂j | qk,pi)︸ ︷︷ ︸
∼N(f(q̂k,p̂i),Prj

)

p(pi)︸ ︷︷ ︸
∼N(p̂i,Ppi

)

p(qk)︸ ︷︷ ︸
∼N(q̂k,Pq)

dqkdpi

where ηi =
∑
j p(aij) is a normalization coefficient

assuring that the sum of the probabilities of all the corre-
spondences of pi is one. According to the model presented
in Section II p(pi) and p(qk) are Gaussian distributions
N(p̂i,Ppi

) and N(q̂k,Pq) respectively. To obtain an
analytical solution for the previous equation we model
p(r̂j | qk,pi) as a Gaussian distribution N(f(q̂k, p̂i),Prj

).
The resulting distribution is also Gaussian with mean
f(q̂k, p̂i) and covariance matrix Cij. The probability p(aij)
is obtained evaluating this Gaussian at aij.

Figure 2 illustrates the previous procedure. The esti-
mated correspondences have two important characteristics.
First, since the algorithm integrates over all the possible
associations, it captures the uncertainty in the correspon-
dences. This is reflected in the covariance matrix which
depends on the uncertainties of the sensor relative location,
on the measurement noises and on the environment. Notice
how the estimated covariance of the correspondent point
of Figure 2 represents the uncertainty in the associations.
Second, the use of the probabilistic model takes into
account both the translational and the rotational error of
the sensor location simultaneously (Figure 1).
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Fig. 2. Computation the correspondent point of pi (cross). The set
of possible correspondences are the points satisfying the χ2 test (dark
points inside the dashed ellipse). The resulting mean and covariance of
the correspondence depend on the measurement noises, the uncertainty
of q and the structure of the environment (square and solid ellipse) .

Using the previous procedure for each point pi in Snew
we obtain a set of t correspondences Sa = {< a1,p1 >
, ..., < at,pt >}. Note that t ≤ m since the set Ai can be
empty for some of the points in Snew.

B. Estimation of relative location (Step 2)

The objective is to improve the current estimation qk.
The strategy is to use a Least Squares method to minimize
the squared error of the correspondences computed in the
previous step. Each correspondence < ai,pi > and the
relative displacement of the sensor q are related through
an implicit measurement function e,

e(ai,pi,q) = f(q,pi)− ai = 0

Linearizing the function f and rearranging terms we get
a linear system for each correspondence,

e(âi, p̂i, q̂k) = Jq(q̂k, p̂i)(q̂k − q)

The Least Square method minimizes the following cri-
terium,

M(q) =
n∑

i=1

e(âi, p̂i, q̂k)TC−1
i e(âi, p̂i, q̂k) (3)

where the covariance matrix Ci is,

Ci = Pai
+ Jq(q̂k, p̂i)PqJq(q̂k, p̂i)

T

+Jp(q̂k)Ppi
Jp(q̂k)T

The estimate of the parameter vector q̂min is,

q̂min = [HTC−1H]−1HTC−1E

where C = diag(Ci) is a block diagonal matrix of the
covariance matrices Ci of each correspondence and the
matrices H and E are,
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Fig. 3. Scans used in the experiment: a structured environment (top)
and an unstructured one (bottom).

H =




Jq(q̂, p̂1)
...

Jq(q̂, p̂t)


 E =




e(â1, p̂1, q̂k)
...

e(ât, p̂t, q̂k)




If there is convergence the final estimate of the algorithm
is qmin, if not the algorithm iterates with q̂k+1 = qmin.

IV. EXPERIMENTAL RESULTS

In this Section we outline the experimental results. We
tested the method with data obtained with a wheelchair
mobile robot equipped with a Sick laser scanner.

To compare our method (probabilistic Iterative Cor-
respondence, pIC in short) with existing scan matching
techniques, we chose the standard ICP and the widely
known IDC algorithm [13]. The IDC algorithm uses two
types of correspondences (translation and rotation) and
performs two minimizations. This method is designed to
deal with large rotation errors.

We did not implement the IDC for the comparison.
We accumulate experience in the IDC method since we
have had this tool working in our laboratory for some
years [16], [14], [15]. In our IDC implementation, we have
modified the rotation rule to be more robust to the sensor
noise and we interpolate between successive range points
(local structure). We reject outliers using visibility criteria
[13] and range criterions [17]. Furthermore, we use a
trimmed version of the ICP to manage the correspondences
[4] that improves the least squares minimization, and a
smooth criterion of convergence [17]. We also implemented
these features in the ICP algorithm. In order to show a
fair comparison, we used the same values for common
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Fig. 4. (a) Estimations of the three methods. (b) Zoom on the estimations
around the ground truth projected in the XY plane.

parameters (actually we used our IDC previous parameters
for the ICP, and pIC). The covariance matrix of the initial
estimation for the pIC was computed from the odometry
readings or set according to the noise introduced through
the experiments (this is the only ad hoc parameter but with
a clear sense).

We outline next two types of experiments. The first one
evaluates the properties of the pIC algorithm by matching
a pair of scans for random location errors. The second one
evaluates the global algorithm performance with a run with
the vehicle within our university (Figures 6).

The first experiment consisted on matching two different
scans acquired in the same sensor location. Thus, the scans
are different due to the sensor noise and we know precisely
the ground truth (0, 0, 0). We added random noise to the
initial location estimate up to 0.2m in x and y, and up
to 45◦ in θ. Notice how large are the maximum errors
especially in rotation. Convergence of the algorithm was
achieved when the error ratio was below 0.0001% and
the maximum number of iterations was 500. We perform
this test in two different scenarios (structured and non
structured, Figure 3). The scans were taken in a place
where the range information was more or less equally
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Fig. 5. Convergence rate (without the ICP negatives).

distributed in all directions, which is a well-conditioned
situation for the methods. We repeated each experiment
500 times for each scenario (a total of 1000 runs).

Figure 4a depicts the final estimates of all the methods.
The pIC and IDC converged all the times and all the
estimates concentrate around the true solution (0, 0, 0). In
other words, all the results of the three methods were
True Positive (see Table below). On the other hand, in
1.1% of the trials the ICP did not converge leading to
negatives. Another measure of robustness is that some of
the ICP positives were False Positives. They corresponded
to situations were the ICP converged but towards a local
minimum that did not correspond to the real solution
(Figure 4a).

TABLE I

PIC VS IDC AND ICP (%)

Positive False Positive Negative False Negative
pIC 100 0 0 0
IDC 100 0 0 0
ICP 92.9 6 1.1 0

These results show that the pIC and the IDC are more
robust than the ICP: (i) all the results of the pIC and IDC
were True Positives while the ICP had Negatives (they
correspond to large errors in orientation that could not
be compensated). And (ii) the ICP had 1.1% of False
Positives (also due to large errors in orientation) which are
really bad for these methods since the estimate is wrong
although the result is positive. The pIC is as robust as the
IDC facing large errors in rotation (our method performs
as good as methods designed to deal with these situations).

Figure 4b depicts a zoom on Figure 4a projected on the
XY plane. Many solutions of the pIC concentrate closer
to the ground truth than the solutions of the IDC and ICP,
and some others further. They tend to concentrate in two
different clusters for each scan and algorithm. Next table
depicts the mean and standard deviation of the error in both
coordinates (we only use the True positives):

TABLE II

PIC VS IDC AND ICP ERROR

x error y error th error
µ σ µ σ µ σ

pIC (10−3) 0.3 0.4 0.4 0.4 <0.0 <0.0
IDC (10−3) 0.4 0.22 0.8 0.16 <0.0 <0.0
ICP (10−3) 0.3 0.13 0.4 0.16 <0.0 <0.0

When the algorithm converges to the right solution, the
medium and covariance of the errors are very similar. The
pIC seems as accurate as the IDC, but the errors are so
small (sub millimeter precision) that are not significant.

Figure 5 depicts the number of iterations for each trial.
The converge rate is better in the pIC than in the IDC and
ICP. The pIC converges faster than all the algorithms. This
is because it deploys a correspondence process where the
set of possible correspondences are used and captures the
statistically possible local structure of the scenario.

We remark that this test was carried out with large
errors in translation and rotation. This experiment illus-
trates how the pIC is as robust and precise as methods
designed to have good performance under these conditions,
and it is better than the standard ICP. Furthermore, the
pIC converges faster than previous methods. Although we
have tried to give the maximum generality with the scans
selected, the conclusions given are valid for these scans. To
confirm these results we present next an experiment with
real motion in a real scenario.

The second experiment corresponds to a run in our
University with the wheelchair vehicle. The robot traveled
70 meters getting out of an office, traveling around a
corridor and coming back to the office. The experiment is
difficult because the floor was very polished and the vehicle
slipped constantly with a poor effect on the odometry.
In addition, there were glass in several parts of the run
providing a significant number of spurious measurements
and the corridor was quite long and there was not many
frontal structure to correct the location in this direction.

Figure 6 depicts the results obtained with the IDC and
the pIC methods. We see how the visual result of the pIC is
better than the IDC, since it is able to align the corridor and
the office when it comes back. The rotational accumulated
error is lower for the pIC than for the IDC. Moreover,
note how the error in translation is also quite small. In
this experiment the scans changed from one iteration to
another (involving issues as spurious and new parts of the
scenario). The mean convergence rate was 23 for the pIC
and 33 for the IDC. Thus, these experiments show how
under more realistic conditions the behaviour of the pIC is
globally better than in the IDC (robustness, accuracy and
convergence).

V. CONCLUSIONS

This paper presents a probabilistic scan matching algo-
rithm to estimate the robot planar displacement by match-
ing dense two-dimensional range scans. The contribution
is a probabilistic modelling of this process that takes into
account the uncertainty on the sensor location and the
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Fig. 6. Laser data and vehicle trajectory obtained with (a) raw odometry, (b) pIC method and (c) IDC method.

noises of the measurement process. This increases the
robustness of the method in real scenarios with respect to
pure geometrical methods.

Furthermore this framework captures the translation and
rotation simultaneously. As a consequence our method
is able to deal with large odometry errors especially in
rotation, which is the difficulty of most of the existing
approaches and has deserved a lot of discussion in this
discipline.

We have implemented and tested the technique in a real
vehicle and compared with the Iterative Dual Correspon-
dece scan matching (IDC) algorithm and the standard ICP.
The results demonstrate that we improve previous methods
in accuracy, robustness and convergence.
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