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Abstract—In this paper, we present a work-in-progress ap-
proach to detect integrity attacks to Smart Grids by analyzing
the readings from smart meters. Our approach is based on
process mining and time-evolving graphs. In particular, process
mining is used to discover graphs, from the dataset collecting
the readings over a time period, that represent the behaviour
of a customer. The time-evolving graphs are then compared in
order to detect anomalous behavior of a customer. To evaluate
the feasibility of our approach, we have conducted preliminary
experiments by using the dataset provided by the Ireland’s
Commission for Energy Regulation (CER).

I. INTRODUCTION

Traditional power grids are networks of power lines, and
their associated equipment, used to transmit and distribute
a specific type of power or energy, over a geographic area.
During the last decade, these grids have been incorporating
Information and Communication Technologies (ICT) to en-
able bi-directional communication among their components
to improve operations, maintenances, planning, coordination
and control. This new type of architecture of power grids is
called Smart Grids and it is characterized by an Advanced
Metering Infrastructure (AMI) that enables the collection
and distribution of information in real-time between smart
meters, located at customer sites, and utilities [1].

Although Smart Grids provide a lot of benefits, they
also pose several security challenges. Cyberattacks to Smart
Grids take different forms, such as denial of service, gaining
access to the power grids control system or stealing infor-
mation [2], [3]. Our work focusses on data injection attacks
on the meters of the customers [4], and on their detection.
This kind of attacks causes mis-billing as well as quality of
service depreciation, and may lead even to destabilize the
energy market system [5]. As posted in [6], the FBI reported
the first case of financial losses due to smart meter hacking
suffered by a single electric utility, which were estimated of
several hundreds of millions of dollars annually.

Most of the current approaches on detecting data integrity
attacks are oriented to protect the infrastructure, the power
suppliers and system operators, but disregard the integrity
attacks targeted to the final customer [7], [8]. To the best of
our knowledge, there are few approaches aimed to detect
the corruption of data from a particular meter and they

propose anomaly detection methods embedded in the smart
meter [8], [9]. Our approach, instead, does not necessarily
require additional devices or hardware mechanisms, and can
be developed as a remote service. The anomaly detection
method proposed in [5] combines two traditional data mining
techniques, Principal Component Analysis (PCA) and clus-
tering, to verify the smart meter measurements. However,
our approach, that is based on [5], relies upon process mining

and time-evolving graphs.
Process mining [10] is a relatively young discipline,

whose main goal is to discover, monitor and improve busi-
ness processes by extracting knowledge from event logs,
produced by information systems in operation. In this work,
we are interested in model discovery techniques based on
fuzzy mining that are used to automatically generate graphs
from event logs.

Time-evolving graphs [11] represent data at different
time periods and are used to detect changes of behavior
or temporal anomalous patterns. The dynamic graph-based
techniques rely upon the concept of graph distance (or
graph similarity), for anomaly detection: the main approach
consists of comparing graphs related to consecutive time
periods by using a distance or a similarity function [12].
When the distance is greater than a predefined threshold (or
conversely, the similarity is smaller than a certain threshold),
the corresponding graph is characterized as anomalous.

The rest of the paper is organized as follows. Section II
describes the approach proposed. Conclusions and current
work under development are given in Section III.

II. APPROACH OVERVIEW

The rationale of this work is to develop an efficient auto-
matic technique to detect integrity attacks to the smart-grid
AMI. Therefore, we propose an approach to discover graphs
that model the consume patterns of the customers from the
readings of their smart meters over a time period, and detect
outliers in a particular period. This approach has three main
steps that are depicted in Figure 1: Classification, Graph

discovery, and Integrity attack detection. In the following,
each step is discussed in more detail.
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Figure 1. Overview of the approach

A. Classification

The first step corresponds to a pre-processing phase,
where the consumption dataset is transformed to event logs.
The consumption dataset collects the readings, from the
smart meters, related to the energy/gas consumption of the
customers over a time period. On the other hand, an event
log is a set of execution traces, where each trace consists
of a sequence of time-ordered events. Three main attributes
characterize an event log: the case identifier, the event

timestamp and the event type.
Since a smart meter is associated to a customer, the smart

meter identifier can be trivially considered as a case identifier
and the time of the reading can be taken as the event
timestamp. Concerning the event types, they represent the
consumption, whose types are real values (e.g., gas/energy
consumed in kW), whereas the event types in logs need
to be discrete values. Therefore, each value registered by
a smart meter is associated to an ordered set of levels
L = {Li}, where Li < Li+1 (i = 1, . . . , N �1) by defining
a monotonic mapping function C : IR ! L such that:
8x, y 2 IR : x < y ) C(x)  C(y).

Each level actually corresponds to an interval of
gas/energy consumption (e.g., [0, 5[ Kw, [5, 10[ Kw, etc.).

In the following we unveil the problems that need to be
addressed for this step.
Discussion. The main issue of this step is the definition
of the mapping function to be considered, as that function
should take into account several parameters such as, the type
of customer. Each type of customer (e.g., residential cus-
tomer, SME, etc.) has a different consumption behavior. For
example, considering the dataset provided by the Ireland’s
Commission for Energy Regulation (CER) [13], Figure 2
shows the different range of the gas consumption, in kW,
registered by three different smart meters during a week.
In addition, the consumption behavior of a customer varies
according on the epoch of the year (e.g., winter, summer,
holidays, etc.). Therefore, the main statistical qualifiers (e.g.,
min, max, mean values, etc.) of the customer consumption,
over a time period of reference, should be also considered
when defining the set of the consumption levels.

B. Graph discovery

In this step, we resort to process mining and, in particular,
model discovery techniques, to generate graphs from the
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Figure 2. One week gas consumption by different smart meters.

event logs automatically. An event log, produced by the pre-
vious step and representing the consumption of a customer
c over a time period T , can be defined as a set of ordered
tuples:

ELT
c = {htj , uji}j , tj�1  tj , j = 1, . . . ,M

where uj 2 LT ✓ L is the consumption level registered by
the smart meter during the time interval [tj�1, tj ].

A graph should capture at least the consumption levels
and the change of consumption levels observed during T .

We have developed an algorithm that generates a weighted
graph G

T
c = hN,E,W i, where each node n 2 N corre-

sponds to a consumption level and an arc e ⌘ (nk, nl) 2 E

represents the change of consumption from level nk to level
nl. In addition, both nodes and arcs are characterized by a
weight (W : N [ E ! IN) that represents the frequency
of the consumption level, W (n), or the frequency of the
change of consumption level from nk to nl, W (e), in the
log.

The tool Disco [14], among other functionalities, can
support this algorithm. Figure 3 shows two graphs, generated
by Disco1 from two event logs ELW0

1565 and ELW1
1565 without

filtering option, that represent the consumption behavior
of a customer during two subsequent weeks. Each node
represents a consumption level that corresponds to an

1Our algorithm produces the same graphs, though only in textual format.

137



interval of gas consumption (i.e., 5[i� 1, i[ kW, i = 1, 2, 3).
The numbers associated to nodes and arcs correspond to
the frequencies.
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Figure 3. Consumption graphs of customer #1565 of two consecutive
weeks.

Discussion. The number of consumption levels defined by
the mapping function (see Subsection II-A) is an upper
bound for the number of nodes of a graph. Indeed, the
mapping function is defined over a time period of reference
(e.g., a year), whereas an event log used to produce a graph
represents the consumption over a shorter period (e.g., a
week or a month). Moreover, reasonable sizes for the set of
consumption levels L is of order of tens. Therefore, we do
not expect to deal with large graphs.

On the other hand, a graph generated by the aforemen-
tioned algorithm is characterized by one type of feature, that
is the node/arc frequency. Similarly to fuzzy mining [10],
which relies upon an interesting set of significance and
correlation metrics to generate fuzzy nets, we could consider
other graph features to be exploited in the graphs comparison
(subsection II-C).

C. Integrity attack detection

In this step, we use the time-evolving graphs, generated
in the previous step, to detect integrity attacks to the AMI.

The detection problem can be stated as follows: Given
an ordered sequence of graphs {GTi}i=1,...,K , that models
the consumption behavior of a customer during consecutive
time periods Ti, find those time periods that correspond to
anomalous behaviors. An anomalous behavior corresponds
to integrity attacks that produce counterfeit readings.

In [15], random scale and average attacks, already studied
in [5], were considered, using the Ireland’s CER dataset [13].
We generated two synthetic datasets from the original one,
that represent the anomalous behavior of the considered
customer according to two types of integrity attacks and,
then, we obtained the corresponding time-evolving graphs,
{Grs

Ti
}i=1,...,K and {Gavg

Ti
}i=1,...,K , by applying the previ-

ous two steps of the approach (subsections II-A and II-B).
In time-evolving graph techniques [11], the anomalous

behavior is detected by comparing consecutive graphs using

a distance (or similarity) function and verifying whether the
distance is greater (or smaller) than a predefined threshold.
In our approach, we chose one distance and one similarity
measure: the Hamming distance, that is purely structural,
and the cosine similarity measure, that takes into account
frequencies associated to the nodes and arcs of the graphs.

To evaluate the effectiveness of the two measures in the
detection of the two types of attacks, we applied the paired-t

approach, that is based on the computation of the confidence
interval for the mean difference [16]. The approach allowed
us to determine the statistical and practical significance of
the difference between the normal behavior (i.e., no attacks)
and the anomalous behavior due to an integrity attack.

In particular, we considered the following sets of pairs,
where each pair models the behavior of the customer (smart
meter id = 1565), in two consecutive weeks:

• {(GTi , GTi+1)}, the set represents the normal behavior
assuming the integrity of the smart meter;

• {(GTi , G
rs
Ti+1

)}, the set represents the case of a random
scale attack in the period Ti+1, and

• {(GTi , G
avg
Ti+1

)}, the set represents the case of an aver-
age attack in the period Ti+1.

Each set, consists of 77 pairs, covering an overall period
of 78 weeks. For each pair of graphs, we computed the
distance (similarity) according to the selected measure f ,
i.e., fi = f(GTi , GTi+1), frs

i = f(GTi , G
rs
Ti+1

) and f

avg
i =

f(GTi , G
avg
Ti+1

), and the corresponding differences between
the normal and anomalous behavior due to the two types of
attacks, i.e., ⇣rsi = fi�f

rs
i and ⇣

rs
i = fi�f

avg
i , respectively.

Finally, each set of differences {⇣rsi } and {⇣avgi } was used to
compute a confidence interval for the mean of the difference
⇣ random variable, considering the Student t-distribution
with N-1=76 degrees of freedom.

Random scale attacks for the Smart Meter Id 1565
⇣̄ �⇣ lb0.10 ub0.10 R.E.

⇣H 0.004149 0.330856 -0.071147 0.079444 10.12%
⇣Cos -4.8227E-05 0.002 -0.0005034 0.000407 0.05%

Average attacks for the Smart Meter Id 1565
⇣̄ �⇣ lb0.10 ub0.10 R.E.

⇣H 0.393579 0.387513 0.305389 0.481769 43,43%
⇣Cos 0.023530 0.041048 0.014189 0.032872 1.42%

The previous table summarizes the results for the two
types of attacks and each type of measure, i.e., the Hamming
distance ⇣H , and the cosine similarity ⇣Cos. The columns of
the Table (from 2nd to 6th) show respectively: the sample
mean ⇣̄, the sample standard deviation �⇣ , the lower lb0.10

and upper ub0.10 bounds of the 95% confidence interval,
and the minimum relative error (R.E.). In particular, R.E. =
min( lb0.10

f̄
,

ub0.10
f̄

), where f̄ is the sample mean of the set
of distances (similarities) {fi}.

From the experiments, we learnt that the cosine simi-
larity measure seems to be not a good choice since we
were not able to discern between normal changes in the
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behavior and anomalous behavior. Indeed, for random scale
attacks, the differences are not statistically significant, i.e.,
0 2 [lb0.10, ub0.10], and for average attacks, the minimum
relative error is negligible. Concerning random scale attacks,
the results are not statistically significant also in the case the
Hamming distance is used. On the other hand, the results
obtained by using the Hamming distance are promising in
the detection of average attacks (i.e., the differences are
statistically significant and the R.E. is above the 40%).
Discussion. We have identified two main open issues in
this step. First, the choice of a good distance measure that
effectively enables to detect the anomalous behavior. In
particular, we cannot draw general conclusions about the
suitability of the Hamming and cosine measures initially
considered, since the results concern the behavior of just one
customer. Second, the definition of a threshold that enables
to discern between the change of behavior, due to the epoch
of the year, and the anomalous behavior due to an integrity
attack. Both issues can be addressed with a validation of
the approach, considering the consumption data collected
by different smart meters and tuning the parameters (e.g.,
observation periods, attack model parameters) to minimize
false positives and false negatives.

III. CONCLUSIONS

Most current techniques to detect integrity data attacks
on Smart Grid are focussed on protecting markets, power
suppliers and system operators, but not the AMI as our
approach does. Moreover, the approach does not necessarily
requires additional devices or hardware mechanisms and can
be developed as a remote service. At this respect privacy
maybe a concern, in particular, when the service is provided
by third-parties [17] and will be considered as future work.

Our current work, instead, is focussed on overcoming the
issues reported in the Discussion sections and on carrying
out an in-depth evaluation of the approach by considering
different datasets and more distance metrics.

ACKNOWLEDGMENT

We thank the Lt. Etienne Chotard for the preliminary
analysis done under the supervision of the authors. The
used smart meter dataset is accessed via the Irish Social
Science Data Archive (www.ucd.ie/issda). This work has
been funded by the projects CyCriSec [TIN2014-58457-R]
and Aragon Government Ref. T27-DISCO research group.

REFERENCES

[1] E. Ancillotti, R. Bruno, and M. Conti, “The role of commu-
nication systems in smart grids: Architectures, technical so-
lutions and research challenges,” Computer Communications,
2013.

[2] Y. Mo, T. H. Kim, K. Brancik, D. Dickinson, H. Lee,
A. Perrig, and B. Sinopoli, “Cyber-physical security of a
smart grid infrastructure,” Proceedings of the IEEE, vol. 100,
no. 1, pp. 195–209, 2012.

[3] W. Wang and Z. Lu, “Cyber security in the smart grid: Survey
and challenges,” Computer Networks, vol. 57, no. 5, pp. 1344
– 1371, 2013.

[4] A. Giani, E. Bitar, M. J. Garcia, M. McQueen, P. P. Khar-
gonekar, and K. Poolla, “Smart grid data integrity attacks,”
IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1244–1253, 2013.

[5] V. Badrinath-Krishna, G. Weaver, and W. Sanders, “PCA-
Based Method for Detecting Integrity Attacks on Advanced
Metering Infrastructure,” in Proc. of QEST 2015 - Volume

9259. New York, NY, USA: Springer-Verlag New York,
Inc., 2015, pp. 70–85.

[6] R. Former, “Fbi: Smart meter hacks likely to spread,”
2012, Krebs on Security. In depth security news and in-
vestigation, Available: https://krebsonsecurity.com/2012/04/
fbi-smart-meter-hacks-likely-to-spread/.

[7] R. Tan, V. B. Krishna, D. K. Y. Yau, and Z. Kalbarczyk,
“Integrity attacks on real-time pricing in electric power grids,”
ACM Trans. Inf. Syst. Secur., vol. 18, no. 2, pp. 5:1–5:33, Jul.
2015.

[8] W. Yu, D. Griffith, L. Ge, S. Bhattarai, and N. Golmie, “An
integrated detection system against false data injection attacks
in the smart grid,” Security and Communication Networks,
vol. 8, no. 2, pp. 91–109, 2014.

[9] M. Raciti and S. Nadjm-Tehrani, “Embedded Cyber-Physical
Anomaly Detection in Smart Meters,” in Critical Informa-

tion Infrastructures Security, B. Hämmerli, N. Kalstad, and
J. Lopez, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2013, pp. 34–45.

[10] W. M. P. van der Aalst, Process Mining - Data Science in

Action, 2nd
Edition. Springer, 2016.

[11] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly
detection and description: a survey,” Data Mining and Knowl-

edge Discovery, vol. 29, no. 3, pp. 626–688, May 2015.

[12] S. Cha, “Comprehensive survey on distance/similarity mea-
sures between probability density functions,” Int. Journ. of

Mathematical Models and Methods in Applied Sciences,
vol. 1, no. 4, pp. 300–307, 2007.

[13] “Commission for Energy Regulation,” Irish Social Science
Data Archive. URL: https://www.ucd.ie/issda/.

[14] C. W. Günther and A. Rozinat, “Disco: Discover Your
Processes.” BPM (Demos), vol. 940, pp. 40–44, 2012.

[15] E. Chotard, “Use of process mining techniques for the de-
tection of integrity attacks to a SmartGrid,” Master’s thesis,
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