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Abstract. Intelligent autonomous systems need detailed models of their
environment to achieve sophisticated tasks. Vision sensors provide rich
information and are broadly used to obtain these models, particularly, in-
door scene understanding has been widely studied. A common initial step
to solve this problem is the estimation of the 3D layout of the scene. This
work addresses the problem of scene layout propagation along a video
sequence. We use a Particle Filter framework to propagate the scene lay-
out obtained using a state-of-the-art technique on the initial frame and
propose how to generate, evaluate and sample new layout hypotheses
on each frame. Our intuition is that we can obtain better layout esti-
mation at each frame through propagation than running separately at
each image. The experimental validation shows promising results for the
presented approach.

1 Introduction

This paper investigates the construction of indoor scene models given an im-
age sequence. The models contain essential information about the environment
structure that may allow us to better understand the image. Prior approaches
demonstrate the fact that obtaining information about the 3D structure of the
scene is a powerful tool to improve the accuracy of other tasks [11].

Previous approaches on layout estimation use to assume certain constrains,
like the Manhattan World assumption, and try to solve this problem for sin-
gle images [9,3,13,8]. Other papers use sequential information to model the en-
vironment from a mobile camera. These approaches use to rely on SLAM or
Structure-from-Motion [4,19,5].

The goal of this work is to provide semantic information about the scene
layout traversed during the sequence (Fig. 1). Our approach propagates the
estimated scene by taking advantage of restrictions in the sequential data and
prior knowledge of the projection of man made environments in images. We show
how to achieve this task without the need to compute accurate camera motion
or 3D maps.
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projects DP12012-31781, DGA-T04-FSE and TAMA.
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Fig.1. 3D layout estimation along a sequence. 1) We have a mobile camera
recording indoors, and we want to process the acquired sequence 2) to estimate the
scene layout describing the 3D information of the environment at each frame 3).

Related Work. Recognizing the 3D structure of an environment captured in an
image is a widely studied problem. To solve the scene structure in general scenes,
study in [10] proposes to learn appearance-based models of the scene parts and
describe the scene geometry using these labels. Similarly, Markov Random Fields
are used to infer plane parameters for homogeneous patches extracted from the
image [18].

For indoor environments, additional assumptions can be made, such as the
Manhattan World assumption [2]. Using this constrain, a Bayesian network
model is proposed in [3] to find the ”floor-wall” boundary in the images. The
work in [13] generate interpretations of a scene from a set of line segments ex-
tracted from an indoor image. Similarly, the approach in [7] models the scene as
a parametric 3D box. The spatial layout in omnidirectional images was solved
in [14]. Extending similar ideas to outdoors, the work in [6] proposes to create
physical representations where objects have volume and mass.

If we consider images of a video sequence we can propagate the scene infor-
mation and get better and robust results. This is the idea exploited in this work.
Acquiring sequential information is the usual scenario in mobile platforms, and
the spatio-temporal restrictions between frames can provide both efficiency and
accuracy advantages.

Most of the papers using sequential data to obtain scene models, are based on
SLAM or structure-from-motion techniques. In. [4] geometric and photometric
cues are combined to obtain the scene model from a moving camera. Similarly,
structure-from-motion is used in [5]. The work in [19] describes a method to
model the environment using images from a mobile robot.

Attending how to propagate semantic information in video sequences using
probabilistic frameworks. We find the work in [1], that uses pixel-wise correspon-
dences, image patch similarities and semantical consistent hierarchical regions in
a probabilistic graphical model. The approach in [16] focus on label propagation
indoors for mobile robots. Similarly, the work in [15] estimates the 3D structure
of outdoor scenes by computing appearance, location and motion features.

Our work proposes a probabilistic framework to propagate information in se-
quences. We aim to propagate the 3D layout of the environment traversed by the
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Fig. 2. Scene model used to create the scene structure hypotheses, (a), and steps of
the base method [13], (b): 1, lines and vanishing points are detected, many structure
hypotheses are proposed, 2, and the orientation map is computed, 3. Hypotheses are
compared against the orientation map and the best is chosen as solution, 4.

camera. The initial frame layout is obtained using a single image technique [13],
and we then propagate this information in each consecutive frame.

2 Single image 3D layout

Our method uses the single image algorithm proposed by Lee et al. [13] to create
layout hypotheses on the first frame. Their approach proposes several physically
valid scene structures and validate them against an orientation map to find
the best fitting model (Fig. 2(b)). Authors adopt the Indoor World model that
combines the Manhattan World assumption [2] and a single-floor-single-ceiling
model. Layout hypotheses are generated randomly from the lines detected in
the image and then compared with an orientation map. The orientation map
expresses the local belief of region orientations computed from the line segments.

To extract the image lines Canny edge detector (Kovesi [12] Matlab toolbox)
is run and the vanishing points are detected following the method presented by
Rother [17]. The generation of hypotheses is made based on the model showed
in Fig. 2(a).

3 Propagating the 3D layout in a video sequence

The objective of this work is to compute the 3D layout at every frame of a
video sequence. We exploit the fact that consecutive frames in a video have
certain spatio-temporal restrictions that constrain the possible variations in the
scene acquired. By propagating the possible layouts, we improve the results and
obtain a more robust estimation of the layout on each frame. We adopt a particle
filter based strategy to track the posterior probability of the layout given all the
observations up to the current frame.

The process followed by our approach is the following: For the first frame,
hypotheses are created using the base algorithm (Section 2). These hypotheses
are evaluated and ranked and the best one is selected as the solution for that



Fig. 3. Layout and correspondent plane orientation, (a), and the orientation map com-
puted from the observed lines, (b). Both orientations maps are compared to compute
Somap- Lines supporting the model, Siines, (¢), and evaluated hypothesis (black) and
closest observed layout (red), used to compute Spmoder, (d). Best seen in color.

frame. For next frames, new hypotheses (particles) are randomly generated de-
pending on previous hypotheses and their evaluation score.

Layout parametrization. We parametrized the scene layout model (Fig. 2(a))
by the image coordinates of the junctions defining the middle wall, j, and the
directions of the scene vanishing points, V P;: z; = {j1, j2, j3, ja, VP,V Py, V P3}.

Hypotheses evaluation. The evaluation of the hypotheses is performed on
every frame. For all the images, lines and vanishing points are computed and
used to evaluate the compatibility of the layout hypotheses. We define three
evaluation measurements computed for each layout hypothesis z;:

Orientation map: The orientation map [13] expresses the local belief of region
orientations computed from line segments (Fig. 3(b)). This observed orientation
map, omap(l;), is compared with the orientation map defined by the hypothesis
being evaluated, omap(x;) (Fig. 3(a)). The evaluation score is computed as the
number of pixels where the orientation of both maps is the same divided by the
total number of image pixels, nPix = width X height

nPix
> omap(l;) = omap(x;)k
k=0

[ :1... P 1
Somapl nPix (k n 7/$) ( )

Lines supporting the model: This evaluation measures how many of the ob-
served lines support the hypothesis being evaluated (Fig. 3(c)). To evaluate how
a hypothesis fits the new observation, we look for lines parallel and close to the
model lines. The score is computed as the number of lines supporting the model
divided by the total number of lines detected.

supporting lines
Slines i — # bp g (2)
# total lines i

Distance to the closest layout obtained with new observed lines: This last
evaluation scores a propagated layout hypothesis, z;, by computing the closest
lines to this layout in the current image and determining a layout based on these



Table 1. Accuracy of the method for different evaluation methods (50 hypotheses).

mean Max

Somap [13] 70.58 95.12
Slines 75.47 93.78
Smodel 59.38 93.78

mean(Somap, Stines) |78.70 93.78
mean(Somap, Smodel )| 84.05 95.57
mean(SlineS, Smodﬁl) 75.14 93.78
Stotal 86.86 95.93

lines, zops (Fig. 3(d)). The distance between layouts, d(z;, Tps), is computed as
the mean distance between the junctions, ji, of both layouts:

1
Smodel % 1+ d(x“ xobs) where d(x'u xobs) I?iela’r}l“ |.7ka.7k ob8| |) (3)

The mean of the three scores, Siotai i, iS used as evaluation.

Sampling new hypotheses. A new set of hypotheses is created by sampling
from the hypotheses of the previous frame. The probability of generating a new
hypothesis, z, from previous hypothesis z; is p; = Stotal i-

Given the camera motion, a homography relates the projection of the copla-
nar junctions between frames and the vanishing points are related by the rotation
matrix. To create a new hypothesis from a previous one, we assume a random
motion of the camera, with zero velocity and random noise in camera transla-
tion and rotation. From hypothesis z;, sampled hypothesis z; will be related
by the random rotation, R, and translation, t. The junctions are related by a
homography, H, and the vanishing points are related by the rotation matrix:

t T
j,’c:H~jk:(Rf%)jk and VP =R- VP (k=1...4,1=1...3) (4)

where n is the normal of the plane where the junction points lie and d the
distance between the camera and the plane. We assume d distance as unitary so
the scale of the random translation ¢ is defined by the real distance to the plane.

4 Experiments

Experimental settings. We have tested our method on the 10 sequences in-
cluded in the dataset presented in [5]. These sequences have been acquired in-
doors with two different mobile cameras and include between 203 and 965 images.
For all the sequences, the ground-truth has been manually annotated in one of
each ten images. Fig. 4 shows example frames of the dataset sequences and the
layout computed.

The accuracy of the solution is computed as the number of pixels where the
orientation defined by the ground-truth and the orientation computed from the
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Fig. 4. Examples of the resulting layout in some frames of all the dataset sequences.
Best seen in color.
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Fig. 5. Accuracy of our method for different number of hypotheses. Mean (red) and
maximum accuracy (blue) of the layout solution along the sequence.

layout hypothesis is the same divided by the total number of pixels of the image.

Analysis of the proposed method parameters. The accuracy of our method
varies with two important choices: a) the evaluation measurements used and b)
the number of particles used.

Influence of the evaluation measurement. Table 1 shows the mean and max-
imum value of the accuracy of the solution hypothesis on all the frames of the
sequence Entrance 1. Results show that combining the different evaluation mea-
surements we get to choose always a better solution. Therefore, all the evaluation
measurements are used together in the remaining experiments.

Influence of the number of particles. Fig. 5 shows the accuracy of the algo-
rithm presented depending on the number of particles. Results show poor accu-
racy when few hypotheses are considered (25 particles), and how the accuracy
grows rapidly with the number of particles. For more than 50 particles, aug-
menting the number of hypotheses do not represent a big change in the method
accuracy.

Method evaluation. Table 2 shows results of our method run on all the dataset
and compared with the base method [13]. The base method is intended to work
on single images so we run this algorithm over all the frames of the sequence



Table 2. Mean and standard deviation (o) of the accuracy of our algorithm and the
base algorithm for all the dataset sequences (50 hypotheses).

Our Algorithm||Lee et al. Algorithm [13]
mean O mean o
Corridor |[42.93 11.99 ||56.84 30.78
Entrance 1{86.80 9.90 ||80.13 11.47
Entrance 2|71.34 15.49 ||74.27 15.76
Lounge 1 [56.52 17.47 |/47.40 30.68
Lounge 2 |31.78 31.17 ||36.38 28.20
Room 1 |60.69 14.52 ||50.73 25.97
Room 2 |75.91 10.20 ||66.79 25.11
Room 3 [63.42 16.83 || 36.82 35.82
Room 4 [20.64 13.41 ||25.93 24.24
Room 5 |69.27 16.07 ||64.70 22.63
Average |57.93 15.71 ||54.00 25.07

independently. For each sequence, the mean and the deviation of the accuracy
obtained for the solution hypothesis in all frames are shown. Our method per-
forms better for the majority of sequences and the average accuracy value is
higher. At the same time, our solutions are more stable across all frames, since
the standard deviation is smaller.

Fig. 4 shows examples of the layout solution obtained for some frames of the
dataset. The results for Entrances 1 and 2 are good (mean accuracies of 83.63 and
72.70, respectively). In sequences Lounge 1 and 2, Room 2, 3 and 5 the layout
fits the environment, but the method fails in adjusting hypotheses lines to the
structure. Finally, our method shows lower performance for sequences Corridor,
and Room 4 where more than 3 walls appear, and Room 1 that violates the
Manhattan World assumption.

5 Conclusions

In this paper we presented an approach to obtain the 3D spatial layout of all
the frames of a video sequence. The method is designed to work indoors, makes
use of the Manhattan World assumption and it is based in the previous work
from Lee et al. [13]. This technique, is integrated with a Particle Filter to take
advantage of the sequential information of video sequences. We have presented
different evaluation methods to measure how well a spatial layout fits to an
image. Experiments showed how our approach presents better accuracy than
the state-of-the-art base algorithm.
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