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Abstract This paper explores the impact that landmark paMonte Carlo error and consistency analysis), with simula-
rametrization has in the performance of monocular, EKFtions and real imagery data, using the standard and the robo-
based, 6-DOF simultaneous localization and mapping (SLA8&htric EKF-SLAM formulations.

in the context of undelayed landmark initialization.

Undelayed initialization in monocular SLAM challenges
EKF because of the combination of non-linearity with thel Introduction
large uncertainty associated with the unmeasured degfees o
freedom. In the EKF context, the goal of a good landmarkSimultaneous localization and mapping (SLAM) is the prob-
parametrization is to improve the model’s linearity as mucHem of concurrently estimating in real time the structure
as possible, improving the filter consistency, achieving roof the surrounding world (thenap), perceived by moving
buster and more accurate localization and mapping. exteroceptive sensors, while simultaneously gettowal-

This work compares the performances of eight differ-ized in it. The seminal solution to the problem by Smith
ent landmark parametrizations: three for points and five foRnd Cheeseman (1987) employs an extended Kalman filter
straight lines. It highlights and justifies the keys for sati (EKF) as the central estimator, and has been used exten-
factory operation: the use of parameters behaving propofively. In EKF-SLAM, the map is a large vector stacking
tionally to inverse-distance, and landmark anchoring. A un camera and landmark states, and it is modeled by a Gaus-
fied EKF-SLAM framework is formulated as a benchmarksian variable. This map, usually called ts@chastic map
for points and lines that is independent of the parametrizaS Maintained by the EKF through the processes of predic-
tion used. The paper also defines a generalized linearity irflon (the camera moves) and correction (the camera observes
dex suited for the EKF, and uses it to compute and compaﬁé‘e landmarks in the environment that had been previously
the degrees of linearity of each parametrization. Finally, Mapped).
eight parametrizations are benchmarked employing analyti  In order to achieve true exploration, the EKF machin-

cal tools (the linearity index) and statistical tools (lthee  ery is enriched with an extra steplahdmark initialization
where newly discovered landmarks are added to the map.

7. Sola Landmark initialization is performed by inverting the obse

1. CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 ToulouseYation function and using it and its Jacobians to compute,
France from the camera pose and the measurements, the observed
Université de Toulouse; UPS, INSA, INP, ISAE; LAAS-CNRS - F |andmark state and its necessary co- and cross- corredation

31077 Toulouse, France, . .
2. Ictineu Submarins SL, Barcelona, Catalonia, with the rest of the map. These relations are then appended

j sol a@ct i neu. net . to the state vector and the covariances matrix.

T. Vidal-Calleja Monocular SLAM refers to the case where the exte-
University of Sydney, ACFR, Australia. roceptive sensing means are limited to a single projective
t.vidal @cfr.usyd. edu. au camera. Monocular SLAM gained popularity back in 2003
J. Civera and J. M. M. Montiel thanks to the first full real-time implementation by Davi-
I3A, Universidad de Zaragoza, Spain. son (2003), based on Smith and Cheeseman’s EKF solu-

{iosemari, jciveraj@nizar.es tion. Davison’s technique elegantly solved a great number



of problems, but there still remained one that occupied reand experimental aspects of the problem and center our at-
searchers on visual SLAM for some years (Chiuso et altention to the effect that landmark parametrization hagsby
2002; Bailey, 2003; Kwok and Dissanayake, 2003; Lemairewn right, on monocular EKF-SLAM performance. For this,
et al, 2005): the problem of landmark initialization. the paper retakes the problem from a unified perspective that
Landmark initialization in monocular SLAM is difficult considers points and lines alike (edgelets are not covered)
because, due to the projective nature of the sensor, this ca@ind presents and analyzes a compendium of eight different
not provide the distance to the perceived landmarks: thgarametrizations, three for points and five for lines, among
measurements are rank-deficient and the observation funghich three are innovative to the best of our knowledge.
tions are not invertible. This means that a full 3D estimate
of the landmarks just discovered is not available for map-

ping, because the uncertainty in the unobserved DOF is infl:E':L Undelayed landmark initialization (UL)

nite and, be"‘g th_e measurement equation§ non-linea.r, E'_(Fo overcome the drawbacks of delayed initializationgde-
cannot deal with it. Early approaches (Davison, 2003; Ba'layed landmark initializatiofULI, also known apartial in-

ley, .2003; Lemaire etal, 2005,) took advantage of thg SENSQfialization, Sola et al, 2005) incorporates the partially mea-
motion to achieve fully 3D estimates before actually ifitia g, reqf jandmarks at the first observation, that is, before all

izing the landmarks. This family of methods introduces 3¢ their DOF are determined (@ufficiently estimated In
dglayuntil_the sensor mgtion has gained enough parallax fOBearings—onIy systemeg.a monocular camera, see Fig. 1),
triangulation, during which the landmarks, not yet mappedyy| | ajiows landmarks showing low parallax (those that are
cannot provide any information for localization. at remote distances or close to the motion direction of the

Monocular EKF-SLAM reached maturity with the ad- camera) to contribute to SLAM from the first observation,
vent ofundelayed landmark initializatiotechniques (ULI,  providing precious bearing information that helps coristra
explained in more detail in the next section), a need of parne camera orientation. In other words, ULI allows us to ex-
tial initialization firstly stated by Sola et al (2005). Tkey  pjoit the full field of view of the camera up to the infinity
to ULI is to substitute the unmeasured DOF by a Gaussiapange, regardless of the sensor trajectory, which results i
prior: the objective then is to find a way to allow this prior to 5ccurate localization with very low angular drifts.
possess an infinite uncertainty while still being manageabl o example, when turning a corner in a corridor, a vi-
by the EKF. Sola et al describe a preliminary solution based 5| s_AM system with ULI can immediately initialize a
on an exponentially distributed multi-hypotheses depth paygint or two at the other end of the corridor, which have just
rametrization, which was inspired on a previous work byhecome visible and will most likely remain visible along the
Kwok and Dissanayake (2004). The problem was succesgghole corridor. During this time, the conditions for triang
fully solved for the first time with the inverse-depth land- |ation are bad, as there is no significant increase in pacalla
mark parametrization (IDP) by Montiel et al (2006), which \jthout ULI, these landmarks must be ignored with the con-
has become very popular. More recently, Marzorati et akequence of the robot accumulating angular errors that afte
(2008) and Haner and Heyden (2010) have presented neytew meters may become the primary source of filter failure
parametrizations for which the authors claim better perforq e to inconsistency. Thanks to ULI, observing these land-
mances than IDP. Sola (2010) presents a comparative stuglyarks serves to constrain the camera orientation, meaning
of three parametrizations for point landmarks. that the robot can reach the end of the corridor without ac-

A smaller number of works incorporate line landmarkscumulating angular drift. The total angular drift for a wéol
or segmentso the EKF-SLAM framework. Gee and Mayol |oop closure (say, 4 corridors and 4 corners) is thus lim-
(2006), Smith et al (2006) and Lemaire and Lacroix (2007}ted to only the drift accumulated during the transitions in
use delayed techniques for initialization. Sola et al @8)0 the corners. We encourage the reader to consult (Sola et al,
reports the only ULI solution for infinite lines we are aware 2005; Civera et al, 2008; Sola et al, 2008) for discussions
of, which uses the Pliicker line. Edgelets (very short lineon delayed/undelayed initializations and their imporeanc
fragments associated to a 3D point) were introduced by Ead@ monocular SLAM, and (Bailey et al, 2006; Huang and
and Drummond (2006a), also in an undelayed manner, usir@issanayake, 2007; Huang et al, 2008) for insights on the
IDP as the supporting point type. sources of inconsistency in EKF-SLAM.

Overall, the methods here cited have many points in ULl is an interesting challenge in EKF because the filter
common. Unfortunately, their differences lie in many partsneeds to cope with naturally non-linear equations and huge
of the algorithm other than landmark parametrization, & th uncertainty levels associated with the unmeasured DOF (Fig
evaluation methods and/or in the heterogeneity of the expel). The best solutions accepted so far require some degree of
imental setups. This makes it difficult to tell which aspectsover-parametrization of the landmarks’ states. Two aspect
of the proposed solutions are at the base of the observed dhiave been identified as being beneficial (Civera et al, 2008;
ferences in performance. In this work, we fix the algorithmicSola et al, 2009b): first, the enormous (potentially inéhit
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(a) The back-projection of a pointgives place to a semi-infinite (b) The back-projection of a segmengives place to a semi-
line A where the point landmarf must lie. There is 1 unmea- infinite planer where the line landmark must lie. There are
sured DOF: the point’s depth or distance. To observe it, #me-c 2 unmeasured DOF: the line’s depth and its orientatios.in
era needs to gain parallax by moving away from the Ane The camera gains parallax by moving away from the plane

Fig. 1 The problem of undelayed initialization. Back-projectioidetected features in a monocular image at their first @aen. The unmea-
sured DOF’s have infinite uncertainty and need to be propedgieled by Gaussian shapes, and manipulated using refsbnaar functions.

uncertainty must be represented by a single and well-defined For points Fig. 1(a), ULI means that landmarks must

(i.e., bounded) Gaussian. Second, the observation functiori initialized so that the uncertainty in distance — the only

must be reasonably linear inside all this uncertainty rangaunmeasurable DOF — covers all the visual ray up to infinity.

These two severe requirements can be elegantly fulfilled Forinfinite straight linesFig. 1(b), ULI requires the ini-

by using parametrizations incorporating the non-obséevab tial uncertainty to cover 2 unmeasurable DOF: distance up

DOFs proportionally to inverse-distance, as it is done witho infinity, and all possible orientations.

e.g.IDP (Civera et al, 2008), homogeneous points (Marzo- - Bounded lines osegmentpresent additional difficul-

rati et al, 2008) and Plucker lines (Sola et al, 2009b)sThi ties. Unlike points, lines can be partially occluded, anel th

is because, on one hand, a bounded Gaussian in inversgjge detectors in use return therefore unstable endpoints.

distance including the origin of coordinates naturally S1ap This means that the endpoints of a 3D segment cannot be

onto an unbounded uncertainty region including the infinity estaplished from single observations, and that they are gen

and on the other hand, the inverse-distance is key in prasrally not re-observable. For these (and other possibie) re

jective geometry and the projection equations exploiting isons, it is common practice to employ the stochastic map

become quasi-linear precisely with respect to these highly, estimate just the infinite lines supporting the segments,

uncertain DOF. and to keep track of the segment’s endpoints separately. In
A third aspect that has proved positive is landmark anthis paper, we focus mainly on the estimation of infinite gine

choring. Although not explicitly stated, anchoring was a"supporting arbitrarily long segments (not edgelets), arig o

ready used in the delayed method of Davison (2003), angeneral guidelines are given about the management of the
later in IDP. Recently, it has been explicitly evaluated bysegments’ endpoints.

Sola (2010), who compares three different point parametri

zations. Anchoring allows the landmark uncertainty to be

referenced to a point close-by (thachor), which is chosen

to be the optical center at initialization time. This allothe 1.3 Alternative approaches to monocular EKF-SLAM

system to get rid of many linearization errors accumulated

since the start of the map, and to consider instead mainly thEhere exist a significant amount of research investigakiag t

local motion since the initialization of each particulanda  possibilities of using estimation techniques other thafrEK

mark. More complex anchoring uses the whole camera posd&fe find IDP used in Bayesian frameworks such as Fast-

(position and orientation), achieving a higher degree of deSLAM2.0 (Eade and Drummond, 2006b) and the unscented

coupling between global and local motions (Gee and MayolKalman filter (UKF, Sunderhauf et al, 2007; Holmes et al,

2006; Gee et al, 2008). These last schemes use shared &008). Very recently, methods based on Bundle Adjustment

choring to keep the map size small, and thus require that theptimization (BA, Triggs et al, 2000; Engels et al, 2006)

landmarks be initialized in groups. over a sparse set of keyframes on the sequence are gaining
popularity (Klein and Murray, 2007; Konolige and Agrawal,
2008). Real-time operation has been achieved by dividing

1.2 Points and straight lines the SLAM operation into a Bundle Adjustment thread, us-
ing mainly the software in (SBA, Lourakis and Argyros,

The problems of points and infinite straight lines are ssrpri 2004) and a camera tracking thread using pairwise geome-

ingly similar, and one of the aims of this paper is to maketry. Those keyframe approaches have also been successfully

this similarity evident. used with edgelets (Klein and Murray, 2008).



Very recently, (Strasdat et al, 2010) has proved a cleamuns and used to evaluate consistency. This work shows that
advantage of keyframe SLAM algorithms: while the domi-using ground truth Jacobians guarantees filter consistency
nant computation for EKF-SLAM (a complexit®(n?) in  and thus that inconsistency comes from the unavoidable er-
the state covariance update) has to be performed at evergrs produced when linearizing the system. More theoret-
step, the cost of the non-linear optimization in keyframeically sound insights have been provided by a remarkable
SLAM is amortized among several frames. As a consework by Huang et al (2008), where it is shown that, using the
quence, keyframe algorithms are able to include and meauthors’ words, “the observable subspace of the linearized
sure more features in their maps, hence improving the gersystem is of higher dimension than that of the actual, non-
eral accuracy of the keyframe estimation with respect tdinear one, leading to covariance reductions in directiains
the EKF one. Then, while there exist EKF-based algorithmshe state where no information is available, which is a pri-
with performances comparable to keyframe-based ones (Pazary cause of inconsistency”.
et al, 2008; Civera, 2009), they present a higher computa- All the studies mentioned above assume 2D implemen-
tional cost per map landmark. tations using range-and-bearing sensing and Euclidea poi

Still, EKF-SLAM (or other similar approaches based onparametrizations, exactly as they appear in the origind-EK
filtering and Gaussians such as UKF-SLAM or extended inSLAM solution. Our case of study differs from them in at
formation filter (EIF)-SLAM) is still widely used by major least four aspects. The first one is 3D operatian, (6 DOF
robotics and vision laboratories and is at the core of ottrer | motion). The second one is that we are dealing with monoc-
calization, mapping or modeling systems, with points (Paalar observations, which convey rank-deficient informatio
et al, 2008; Civera, 2009) (with performances comparable tabout the landmark locations. The third aspect, which is a
those of SBA), lines (Gee and Mayol, 2006), and even introeonsequence of the previous one, is that landmark param-
ducing planes (Gee et al, 2008). The opinion of the authorstrization can no longer be the trivial, minimal, Euclidean
is that EKF-SLAM can have an important niche of appli- one, but something more or less complicated and redundant
cations: as stated in (Strasdat et al, 2010), EKF monoculdhat seeks an improvement of linearity. The fourth and last
SLAM presents computational advantages in cases whegspect is that we also incorporate lines.
the computational budget is low. This particular case could Our aim with this paper, however, is not a theoretical
be of importance now that smart mobile devices are populathathematical analysis (in the style especially of (Huang
ing our lives. Also, the EKF keeps an uncertainty estimatioret al, 2008)) but a performance comparison that visualizes
for the map features that would be expensive to extract frorthe impact that landmark parametrization has on linearity,
a keyframe algorithm. This is especially valuable in situa-estimation error and filter consistency. We show that in-
tions where only a few landmarks are visible, as the filterconsistency comes mostly from covariance over-estimation
keeps a coherent estimate thanks to the prediction stage &ther than error magnitude, which corroborates Huang's
EKF, which is missing in non-linear optimization schemes.conclusions.

Finally, and apart from the fact that EKF-SLAM is the im- Because inconsistency has its roots in non-linearity, we
plementation with the longest tradition, two other techhic correlate our evaluation with measurements of the degree
reasons in our opinion keep it alive: its (relative) simipic  of linearity of each parametrization. We define for this pur-
of implementation, and the fact that large maps are usuallpose a linearity index that on one hand is pertinent to EKF
being built by means of small sub-maps, thus circumventingi.e., it accounts for non-linearitgnd uncertainty), and on
most of the EKF drawbacks: one is the mentioned computahe other hand it defines its metric in the measurement space
tional burden; the other is filter consistency, presentédén and therefore allows us to compare parametrizations having
following paragraphs. state representations of different sizes and natures.

The choice of the classical EKF engine for SLAM is not
casual: as a well-known algorithm, it serves the purpose of a
standard workbench through which to evaluate performance

The consistency issues of EKF-SLAM are well known andd|ff§rences that hgve their rost n non-hneanlty. As asiin
esting counterpoint, we additionally show with large-scal

have been the subject of numerous studies in the last years. < ! . )
. . experiments that algorithms robuster to non-linearityhsuc

Castellanos et al (2004) showed that inconsistency appears . . . .
. as robocentric EKF-SLAM also benefit from the linearity

even before the computational burden of the problem be-

comes prohibitive, and proposed in (Castellanos et al, 200 trf:gr;)r\:irr;ents ofthe landmark parametrizations proposed in
robocentric SLAM where the local operation of the filter re- '

sults in significant linearity improvements. A more concise

study of inconsistency is given by Bailey et al (2006), where1 .5 Contributions

the normalized estimation error squared (NEES) is averaged

over a number of conditionally independent Monte CarloWe provide several contributions:

1.4 Linearity and EKF consistency



1. A compendium of eight landmark parametrizations for2.1 Euclidean points (EP)
ULL, three for points (homogeneous points HP, anchored
homogeneous points AHP, and anchored modified-polaf Euclidean pointp (EP, Fig. 2(a)) is trivially coded with
points AMPP) and five for lines (Pliicker lines PL, an- three Cartesian coordinates
chored Plucker lines APL, homogeneous-points lines T
HPL, anchored homogeneous-points lines AHPL, andcep =P = [50 Y Z} €eR’,
anchored modified-polar-points lines AMPPL). Three of
these parametrizations (APL, HPL and AMPPL) are in—"’\l"zere we useLyanp to represent a landmark of type

novative to the best of our knowledge. ME ) ) )
2. A unified methodology to tackle all eight parametri-  1ransformation to camera frame and perspective (pin-

zations emphasizing the two keys to satisfactory ULI,h_Ole) projection are performed with the well-known expres-

namely landmark anchoring and inverse-distance behaw°"
ior. T 5
3. An analytical measure of linearity of multi-dimensional ® ~ KR (p-T)eP”, ()
fun;:tlcf)ns tga;.tlikes into account the time-varying SUPyhich we use to introduce some notation. Underlined fents
4 iortof p;_ro Ia ”Iy. i f root d (RMS indicate homogeneous coordinates in projective sp&tes
- A statistical evaluation of root mean square ( ) er- is the intrinsic matrix,
rors and average normalized estimation error square

(NEES) consistency, based on Monte-Carlo simulation au 0 ug
runs. K2 |0 ayw|; 2)
0 0 1

5. Abenchmark with real outdoors imagery of the point pa-

rametrizations on a robocentric SLAM |mplementat|0n,R — R(Q) andT are the rotation matrix and the translation

showing that our proposed solutions achieve error Ievi/ector defining the camera franGe which is coded by the

eIs.typlca_I of state-of-the-art SLAM based on non—llnearvectorc — (T, Q), Q being an orientation representation of
optimization. our choice suitable for EKF filtering.

Euclidean points lead to severely non-linear observation
functions in bearings-only systems and are not suited for
1.6 Outline undelayed initialization, as it has been extensively demon

strated, (Chiuso et al, 2002; Bailey, 2003; Davison, 2003;
This paper is organized as follows. In Section 2 we dekwok and Dissanayake, 2004; Eade and Drummond, 2006b;
scribe three parametrizations for points and give details 0gg|3 et al, 2008) and most particularly (Sola et al, 2005;
the necessary algebra to support them. In Section 3 we r¢jyera et al, 2008). In brief, the problem of ULI with EP
peat the process with five types of infinite lines. Section 4.3 pe explained as follows. In EKF, the requirements of
describes the initialization and updating proceduresti®®ec  fynction linearity must hold inside the whole uncertairey r
5 describes the methods we use for linearity and consisten@{on of the state variable. Because in Euclidean paranaetriz
evaluation, with simulation results in Section 6. Furtrer r tjgns the uncertainty region of partially observed landksar
sults with real images are presented in Section 7. The papgf ynbounded (it reaches the infinity in parameter space), th
continues with a discussion in Section 8 and the conclusiongpservation functions’ linear approximation should haid f

in Section 9. Afinal appendix gives accessory details on segs whole unbounded interval, and this is impossible.
ments endpoints management.

2.2 Homogeneous points (HP)
2 Parametrizations for 3D points

A homogeneous poilfHP, Fig. 2(b)) is coded by a 4-vector
This section presents some parametrizations for 3D point& projective spac®3. Itis composed of a 3D vectan and
with their projection and back-projection operations rezed a scalarp (usually referred to as tfeomogeneous part
for EKF-SLAM initialization and updates. We start wiitu-
clidean points(EP, no_t suited for ULI) just as a matt_er of Lyp=p= [m} _ [mm my m. p} T P8 cRY. 3)
completeness and to introduce some notation. The discourse P
evolves througlhomogeneous poin¢siP), anchored homo- - - - - —

1 We use normalized quaternions for encoding orientatioriniya

geneous pOINIEAHP), andlnverse-d|staqge pomtélDP?, because of the absence of gimbal lock, and because thedbiliela-
which we refer to here aanchored modified-polar points  tions appearing in the expression of the rotation matrixartale com-

(AMPP) for reasons that will be explained soon. putation of Jacobians very easy.
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(@) Euclidean point (b) Homogeneous point (HP)(c) Anchored homogeneous point (AHRH) Anchored modified-polar point
(EP) (AMPP)

Fig. 2 Point parametrizations. (a) EP is minimal but not suitedfbt. (b,c) HP and AHP do not require to be a unit vector. (d) In AMPP the
observed ray is coded by two angles: the derived directiatovés unitary and henceis exactly inverse-distance. The anchor pgiptin AHP
and AMPP corresponds to the optical center at initializatime.

A HP refers to the following EP: This is of central importance as this is precisely the factor
that will allow us to use such parametrization for ULI (see
p=m/p. (4)  section 4.2 for further justification and details). The same

Although HP have been only recently introduced for mo_qoncept of.inverse-distance is found in all the parametriza
nocular EKF-SLAM by Marzorati et al (2008), they have t.|ons described here (except of course EP), even the ones for
been extensively used in computer vision for years. In hol_mes.
mogeneous coordinates, a point in 3D space is represented
by an equivalence class, under proportionality transfoahs Homogeneous points have the additional interesting
a 4-vector(im, p). Based on this equivalence several canonproperty of presenting a bi-linear frame-transformatiqua
ical choices are possible. The chojee= 1 is the original tion:
Euclidean point representation; the choieg = 1 is the
conventional inverse-depth choice; and the chdieg| =1  p = Hp® 2 [R T} p¢, (6)
is the inverse-distance choice. Note that the last two are no’ o 01]=
absolutely equivalent, although they are very similar.ikinl
depth (or inverse-depth), which is defined with respect to
particular direction in space, inverse-distance has tharad
tage of being isotropic, that is, its properties are indejgen
of the orientation of the reference frame.

In this paper, however, we do not make a canonic
choice, and let the four parameterspofree to move to the . . 1
values determined by the different steps of the EKF esti~ Pp=KPoH "p, Q)
mator? _In HP we rather.exploit the fact that Fhe scatails _ with P 2 KP,H-', and whereP, is the canonical projec-
proportional toinverse-distance, as stressed in the foIIowmgtiOn matrix

where the super-index indicates the local framé where
é[)he pointis referenced to, addlis the homogeneous motion
matrix specifying this frame.
Homogeneous points project into perspective cameras
aﬁccording to

remark.
1000
i T Po2 (0100
Remark 1 (Inverse-distanc&yhen the pointis expressedin + 0 0010

the camera frame, the vectai corresponds to a director
vector of the observed optical ray, and the scaldepends  Thijs can be expressed in termsTgfR, m andp,

linearly with the inverse of the distanekfrom the optical

center to the 3D point, u=KR'(m—Tp) e P?, (8)

p=|ml/d. (5)  which s linear inp. Notice that when the point is expressed

. . . in camera framep® = (m¢, p¢), only the non-homoge-
The unbounded distance uncertainty, which spans from a P (m”, p) y 9

. ) o . Aeous parin® appears in the projection expression,
minimal distanced,,,;, to infinity, is transformed into a P bp pro) P

bounded intervap € (0, [|m||/dm;n] in parameter space. || _ . ;€ 9)

2 In fact, we make use of other kinds of redundancy in our param- . . L
etrizations, with very positive results. Refer to SectiofoBfurther ~Meaning that 1 DOF, the point's range intrinsically con-

discussion on redundant parametrizations in EKF. tained inpC, is not measurable.



On back-projection, the observed pan© in camera
frame is obtained by just inverting (9), Remark 3 (Landmark anchoringdnchoring the landmarks
m€ — K 'u. o) & the optical center at initialization time has the effect o

- decoupling the uncertainty of the term multiplying the most
The non-observed past cannot be obtained from any data yncertain parameter, the inverse-distanchis term was
in the system, and must be provided as prior (see Section 4igd HP and has becom@ —p) in AHP —see (8) and (14). It
about defining Gaussian priors appropriate for EKF). Overis easily seen that the uncertainty(@ — p;) is small after
all, the back-projection and frame-transformation conpos jnjtialization, while the current camera pokeés not far from
tion necessary for landmark initialization (see Sectid® 4. the anchoip, and their cross-correlation is significant. See

for the initialization algorithm) is performed with Remark 2 for the unanchored case, and Section 5.1 for the
m K-ua RK—1u + ToC impact that uncertainty has on the degree of linearity seen
o 2] n S [N ] BE
= Lr p P
(11)

The back-projection and transformation composition is

c - i - -
wherep® depends inversely with the distanéeto the cam performed with

era, viap® = ||K~'u|/d". It must be provided as prior.

Remark 2 (Inverse-distance and frame transformation) r fr(l) RK-Elu (15)
AHP — = )

HP, the interpretation of as the inverse-distance from the c
point to the camera is lost after frame transformation (6), p p
as p becomes an inverse-distance to the origin of CoordiWherepC must be provided as prior; its proportionality to
nates. Due to the bilinear character of this transformation arse-distance is given b = |Kul/d

this might have more or less adverse effects on the perfor- -

mance of tools such as the EKF (which demand reason-

ably linear systems). One one hand, wHile(that is, ro- 2.4 Anchored modified-polar points (AMPP)

tationR and translatioT) is accurately estimatede., after

s_mall_camera motions, bi_Iinearity can be considered quasipe lighten the previous AHP from 7 to 6 parameters by en-
linearity and the system is expected to work. On the othegqging the direction vectom with just elevation and az-

hand, wherH is no longer accurateg., after large camera juth anglege, a) of the observed optical ray joining, to

motions, the system is prone to failure. See also Remark 3p_ When these angles are appended with the inverse of the
distancep = 1/d, the result is a 3D point in modified-polar
coordinates(e, «, 1/d). Adding the anchop, leads to the

2.3 Anchored homogeneous points (AHP) anchored modified-polar poifAMPP, Civera et al, 2008,
Fig. 2(d)), coded by the 6-vector

We add an anchor to the HP parametrization to improve lin-

earity, as it is done in the well-known inverse-depth param- Po T 6
etrization (IDP, Civera et al, 2008), which we will see later £An PP = (e.@)| =[zoyo 20 @ p] €R®. (16)
Anchoring the HP means referencing it to a pgigtin 3D p

space different from the origin (Fig. 2(c)). Thachor point
po is chosen to be the optical center at initialization time
This leads to thenchored homogeneous po(®HP, Sola, Remark 4 (Inverse-depth point&) this article we refer to
2010, Fig. 2(c)), parametrized with the 7-vector the originally named “inverse depth points” (IDP) in (Ciger
etal, 2008; Eade and Drummond, 2006baashored modi-

Po T . fied-polar point§AMPP). There is absolutely no difference
Lanp = |m| = [z0 yo 20 mq my mz p] €RT. between IDP and AMPP, and the name change is justified
P by two facts: on one hand, our name better explains the na-
(12)  ture of the parametrization as it recalls the previously ex-
An AHP refers to the following EP: isting “modified polar coordinates” term (Aidala and Ham-
mel, 1983, and possibly earlier). On the other hand, all our
P =Ppo+m/p. (13)  parametrizations share the concept of inverse-depth for in

Transformation to camera frame and projection resume to verse-distance), rendering the term “IDP” ambiguous and

non-informative.
u=KR'(m— (T -po)p) € P2. (14)




An AMPP refers to the following EP:

p=po+mi(ea)/p, 17)

wherem* (g, «) is a unit vector in the direction dt, «),

cos(e) cos(a)
cos(e) sin(a)
sin(e)

m(e,a) = (18)

Transformation to camera frame and pin-hole projection3

to the homogeneous plane are composed to give

u=KR" (m*(e,a) = (T = po)p) - (19)

of the homogeneous part of the Pliicker vector. These con-
nections clearly arise with the adoption of a discourse that
retraces the one we used for HP. They allow us to propose
the Plicker line as an interesting starting candidaterided
layed initialization of lines in monocular EKF-SLAM. Most

of the material here can be found in (Sola et al, 2009b).
The geometry of the Plicker line is taken from (Bartoli and
Sturm, 2001).

.1.1 The Ricker coordinates

A line in P? can be defined from two pointsandb of the
line by thePlucker matrix

The back-projection and transformation composition is

performed with

Po T
Lavpp = |(g,a)| = [p*(RK u)| | (20)
p p©

whereu* (m) gives elevation and azimuth anglgs«) of a
director vectom = (mg, m,, m.),

arctan(m.//m2 +m2)

H = i (g, ms) = [

«

arctan(m, /my)
(21)

The parametep® is now exactly the inverse-distantg¢d
becausen* is unitary. It must be provided as prior.

L=ba' —ab' e R (22)

witha = (a, a) € P? and the same fds. This is adx4 skew-
symmetric matrix (with 12 off-diagonal entriég = —1;;)
subject to théPlucker constraint

det(L) = 0. (23)

The Plucker matrix is independent of the two selected goint

of the line (more exactly, any two points of the same line

give place to a matriX,’ ~ L, i.e., equivalent up to scale).
This line is coded as a homogeneous 6-vettey € P°

with the so calledPliicker coordinatesThese coordinates

are any linearly-independent selection of the entdgg,

and have been defined in the literature in a number of dif-

ferent ways, some of them more fortunate (intuitive, easy to

understand or manipulate) than others. In order to make the
similarities with HP visible, it is handy to choose the rep-
resentation suggested by Bartoli and Sturm (2001), that we
name here thélucker line(PL, introduced to monocular

This section mimics the structure of Section 2, now for . X
the case of infinite straight lines. We remark the numer—EKF'SLANI by Lemaire and Lacroix (2007), and then by

ous parallelisms that can be established among them, arﬁ'?la et al (2009b) implementing ULI, Fig. 3(a)),
also between points and lines. We start with a quite ex- n T 5 5
haustive introduction to th@liicker line (PL), which be- Lpr = [V] = [na ny nzvp vy 0] €PPCRY, (29)
haves surprisingly similar to HP, and where the concept of

inverse-distance is associated to a 3D vector instead of 4hich corresponds to writing the Plicker mattbas
scalar. The discourse evolves through déimehored Plicker
line (APL), the homogeneous-points lingHPL), the an-
chored homogeneous-points lig®HPL), and theanchored
modified-polar-points linéAMPPL).

3 Parametrizations for infinite straight 3D lines

(25)

-V

L= [[H]KFB’}’ n,veR?,

with [n], the skew-symmetric matrix associated with the
cross-productie., [n], m = n x m),

N . 0 —n. n
3.1 Pliicker lines (PL) ], 2 [n : —ri] | (26)
This sub-section devoted to the Plucker line is long. We e O
decided to include all this material because, for the sakéhis choice and the definition (22) allow us to write
of providing a coherent picture, it is important to highligh |, _ .. 1, @27)
many interesting connections between homogeneous points

v = ab —ba, (28)

(HP) and Plucker lines (PL), notably the existence of bilin
ear transformation and projection equations reprodutiag t with which the Plicker constraint becomes the orthogonali
structure of those of HP, and the inverse-distance behavi@onditionn v = 0.
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(a) Plucker line (PL). The lin&€ and the origin® define the
support planer.

(b) Back-projection of a Plucker line. The prigrfor initiali-
zation is expressed in the bage; , e }.

Fig. 3 Geometrical interpretations of the Plicker line, withlbacojection details. The 3-vecteris not observable at initialization time. Its initial
covariance, however, must be defined in the plahéy means of a 2D Gaussian priér See Fig. 10 for further details.

The Plucker coordinates, when defined as in (27-28)1aving definedCp;, = (n,v), the expression of the trans-
admit a comprehensible geometrical interpretation (in théormation is amazingly simple (Bartoli and Sturm, 2001):

Euclidean sense, Fig. 3(a)):

— The vectom is a vector normal to the plamecontaining
the line£ (hence the points andb) and the originO.

— The vectorv is a director vector of the line, oriented
fromatob.

— The ratio||n||/||v]|| is the Euclidean orthogonal distance
d from the line£ to the originO.

R [T].R] [n®
Lpp=H-LE £ [0 | LX } : [Vc] : (29)
The inverse transformation is performed with
_ RT —RT[T n
2l AL 1 P )

Similarly, the Plucker matrix is projected into a pin-hole

— The point of the line closest to the origin (at the distance;amera according to

d) is given byq = (vxn)/|[v|]* € R*orq = (vx
n,v'v) e P
— The Plucker constraint trivially says that | v.

Remark 5 (Rlicker and inverse-distancé)he third property
above, saying = ||n||/||v]|, is crucial for undelayed initial-

ization in SLAM, notably because of the inverse-distance

behavior of the sub-vector. This is not possible with the
Euclidean Plucker coordinat€s. = (n, u) in (Lemaire and
Lacroix, 2007) because its director vectois normalized,
i.e, |[ul| = 1 and hencel = ||n]|. Instead of normalizing

N, =°PLP",

which is again linear ifL (see (26) for the meaning @f ).
The corresponding linear expression for the projectediine
homogeneous coordinatds; P?, is also very simple:

1=P-Lpr, =K-Po-H ' Lpr, (31)

with intrinsic and canonical projection Plicker matrices

Qy 0 0 100000
= 0 Qu, 0 , Po=1010000
— QU UQY — Oy VO Qg Qlyy 001000

v (or u), it would have been more interesting to normalizeThe whole transformation and projection process (31) can

n, yielding an exact inverse-distange| = 1/d. Anyway,

normalization is not really necessary: as we will see in thig _ K-RT-(

paper, just proportionality to inverse-distance is encfegh
achieving ULI. See also Remark 6.

3.1.2 Frame transformations and projection

It is easy to see, via (6) and (22), that the Plucker matrix i
transformed according to

L=HL“H'.

This expression is linear in the componentE.6fand there-
fore alinear expression exists for its vector countergai.

be expressed in terms @f R, n andv,

n—Txv). (32)

Notice that when the line is expressed in camera frame,
£%, = (n%,v©), only the plane’s normah® appears in
the projection expression,

meaning that 2 DOF, the line’s range and orientation con-

%ained invC, are not measurable.

We can now fully observe the revealing parallelisms be-
tween PL and HP by comparing equations (29) with (6), (31)
with (7), (32) with (8) and (33) with (9). Roughly speaking,
the vectom in PL plays the role ofn in HP, andv plays the
role of p. We will exploit this fact to achieve ULI operation.
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3.1.3 Pin-hole back-projection

A segmenl detected in an imagdg uniquely determines the
planer® containing the 3D line and the optical center (Fig.
3(b)). The plane’s normal in camera framg;, constitutes

the measured part; it is obtained by simply inverting (33),
n“=K"11. (34)

The director vector* is meant to lie on the plane®
and has therefore only 2 DOF, which are not measured.

A
A% B Npa=salsal?
- N
unit circle ——»,” Ba >
./ BB (! fl
‘\\ C /| e2
<< 7
vé NG e ¢ v
AT X
Ba=(0.4,0.2) Be = (1,0) Bc = (0,-2)

V\}:ig. 4 Different lines in the representation plan€, defined by the

ase{e;, ez} in camera frame, as a function of3. The directione;

need to isolate them to be able to provide the necessajyparaliel to the image plane. Give obtain the poinD = 3/|13]12

Gaussian prior for initialization. For this, we consider

and pass a line over it in the direction orthogonalstoThree exam-

to be generated by a linear combination of the vectors of aples: first, the lineA is defined bys, = (0.4,0.2); its closest point

orthogonal bas& = [e;, e;] of the planer, i.e.,

ﬂlvﬂ? ER,

with {e;, ez, n®} mutually orthogonal. Doing = (51, 32) €
R? we get the matrix form

ve= Bi-e1 + B2-ea,

ve=E.g3, (35)

andv® ¢ =€ for any value of3. The basé spans the null
space o, thus the Plicker constraint | v is satisfied
by construction.

The mutual orthogonality condition betwege, e, n¢}
gives us some freedom of choice for the bEsé-or conve-
nience, we arbitrarily buil@® so that|| 3| is exactly inverse-
distance and; is parallel to the image plane. This yields

T

C_nC0 c
_ M'HHCH and e, — niiel . (36)
(n§)? + (n3)? I

With this base choice the vect@radmits the following
geometrical interpretation:

— 8= (01,0)isaline parallel td, thus to the image plane,
passing over the poidd = (1/54,0).
— 8 = (0,52) is a line perpendicular td (but gener-

to Cis D4 = (2,1), at a distanca/||84]| = ||Dal|| = V/5; it has
directionv§ = (0.4e1,0.2e2). Second, the line3 is parallel to the
image plane, at a distance of||g|| = ||Dg|| = 1 from the optical

centerC. And third, the lineC' is orthogonal to the detected segment
in the image (the image plane is not shown in this figure, pleater

to Fig. 3(b)). Notice that the lin€ ¢ is generally not orthogonal to the
image plane, because the platfeis generally not orthogonal to it.

___\ e T T T 2

Fig. 5 Anchored Plucker line (APL).

at initialization time (see Fig. 10 in Section 4 on initiafig
the pdf of j3), this will be properly mapped to the 3D space
as a planapdf on the planer®. The support of high prob-
ability of this pdf covers from a specified minimal distance
to infinity.

ally not to the image plane), passing over the point

D = (0,1/52).

— B = (f1, 52) is aline in the direction of82, — 1) pass-
ing over the poinD = 3/||3||? which is the point of the
line closest to the optical center.

— The orthogonal Euclidean distance from the line to thelrL =

optical centeC is given byd = 1/]|5]|.

Fig. 4 shows some examples of parameteend their
corresponding lines in the representation plafe

Remark 6 (Role of) The planars-space is well-suited for
defining our Gaussian prior. Wheéh— (0, 0), the line tends
to infinity. Its orientation is given by the relative strehgif

(1 with respect tgds, and it easily covers the full circumfer-
ence. The valugg|| is the inverse of the Euclidean distance
from the line to the origin. When assigning a prjmf to 3

Summarizing, back-projection and transformationis per-
formed by composing (29), (34) and (35), yielding

#] = [%s] -

wheres must be provided as prior.

RK—'1+ TxRES
RES ’
(37)

3.2 Anchored Plucker lines (APL)

As we did with points, we add an anchor to the Plicker
parametrization to improve linearity. Ttachored Plicker
line (APL, introduced here for the first time, Fig. 5) is then
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Transformation and pin-hole projection require the pro-
jection of the two support pointse., for i € {1, 2},

This expression (which is obviously equal to HP’s (8)) may
be practical to design appropriate updating algorithms as i
contains information about the segment’s support points in

> lmal/p2
‘ol -~ the image. However, for the sake of comparing HPL against

| R N
other line parametrizations, we join the two projected oin

Fig. 6 Homogeneous-points line (HPL) defined with two HP that sup-into a homogeneous 2D line

port it.
l=u, xu,. (42)

the 9-vector: o
This yields after a few arrangemehts

Po
Lapr= |n| eRY. (38) 1= /CRT((m1 xmy) — Tx (pymsy — pgml)) . (43)
A%
_ o _ This last expression is important in the sense that it al-
Transformation and projection are accomplished by trangmws us to observe the parallelisms between parametriza-
forming the line to the camera frame, unanchoring it, andions. Comparing HPL (43) against PL (32), and remember-
projecting it into the pin-hole camera. This can be done inNng equations (27—28) defining the Pliicker sub-vectors, we

one single expression with: observe that:

1= IC-RT-(n — (T —po)xV) € P?, (39) — The producin; x m, is a vector orthogonal to the plane
m, and it can be identified with the PL sub-vector

in which we notice: — The term(p; my—pom; ) is a vector joining the two sup-

port points of the line. It is therefore its director vector
and can be identified with the PL sub-vector

— With these two identifications, equations (32) and (43)
coincide (using (27—28) this coincidence can be easily
proved to hold exactly).

— The linear character with respectito
— For accurate estimates OF — py), which is true for ob-
servations shortly after initialization, the linear chetea
also with respect to the non-obserwedvhich addition-
ally exhibits inverse-distance behavior.
Obtaining the expression for back-projection and trans-
formation should be trivial after the one used for HP. See
T Table 1 in page 13 for details.
Lapr = RK—11 s (40)
RES

Back-projection and transformation resume to

3.4 Anchored homogeneous-points lines (AHPL)
whereg must be provided as prior.
The anchored homogeneous-points li@HPL, used by
Smith et al (2006) with delayed initialization, and intro-
3.3 Homogeneous-points lines (HPL) duced here for the first time implementing ULI, Fig. 7(a))
can be built either by adding an anchor to the HPL or by
This and the following parametrizations are based on the fagoining two AHP with a shared anchor:
that a line in 3D space can be represented by two points sup-

porting it. We will use the point parametrizations explored Po
in Section 2 to build lines, in the hope that this will preserv m; "
most of the properties of the formers. Lagpr=|p1 | eR. (44)
A homogeneous-points lingiPL, introduced here for ms
the first time, Fig. 6) is coded by two HP that support it: P2
m; 3 To prove (43) we use the distributive property of the crasspct,
the identity(Ma)x(Mb) = det(M)M™ T (axb), the fact that regular
LupL = P c RS . (41)  and Plucker intrinsic matrices are related By K~ T, and remind
myo thatl € P? and therefore it remains equivalent under proportionality

P2 transforms.
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[ ———

T [m2]|/p2 T
R ’(’1' T Magt
(a) Anchored homogeneous-points line (AHPL) (b) Anchored modified-polar-points line (AMPPL)

Fig. 7 Anchored point-supported lines. The lines are defined bysuaport points like the ones in Section 2. The anchor is comtadoth
points.

Transformation and pin-hole projection require the pro-8. We have seen anchored and unanchored representations.
jection of the two support poinis, andu,, which are joined We have seen the surprising similarities between homoge-
into a homogeneous link= u, xu,. As before, this can be neous points and Plicker lines. We have highlighted the par
rearranged as allelisms between point-supported and Pliicker-based.lin

We have finally situated the modified-polar parametrization
1=KRT ((ml xmgz) — (T —po) X (p1ma —P2m1)) . (45)  as lightened versions of homogeneous entities. The figure

) o shows further parametrizations that fall out of our interes
See Table 1 in page 13 for the back-projection and trangefer to the figure’s caption for further justification.
formation equation.

3.5 Anchored modified-polar-points lines (AMPPL) 4 Landmark initialization and updates

The anchored modified-polar-points lineAMPPL, intro- Undelayed landmark initialization with partial measurerse
duced here for the first time, Fig. 7(b)) is coded by twomimics the algorithm for full measurements and incorpo-

AMPP that support it, which share a common anchor: rates the unmeasured magnitudes as Gaussian priors. We
first detail the way we express physical measurements on the
Po image plane, and the way to define the unmeasured priors.
(e1,01) We finally proceed with details on the initialization and up-
LamppL = p1 eER’. (46)  dating procedures related to the EKF machinery. For the ini-
(€2, 02) tialization and updates of the segments endpoints, oueof th
P2 Kalman filter, please refer to App. A. (For details on cam-

era motion models, refer &g.(Davison, 2003, for constant

Transformation and projection resume to velocity), (Sola, 2007, for odometry) or (Piniés et al0Z0

1= KRT ((mTsz)—(T—po)x(plmg—pgm’{)) @7 for inertial aiding).)

where we used the shortaut’ £ m* (g4, o), which corre-

sponds to the trigonometric transform (18). 4.1 2D measurements in the image plane
See Table 1 in page 13 for the back-projection and trans- . ) )
formation equation. The previous discourse assumed homogeneous parametri-

zations of points and lines in the projective image plBhe

We detail here how to obtain them from real point and line
3.6 Final comment - points and lines measurements defined in the Euclidean pixels image. Unfor-

tunately, going from homogeneous space to Euclidean can
We summarize in Table 1 all points and lines parametrizaenly be made at the price of some linearity loss. We decou-
tions with their main manipulation expressions. On complepled the two stages of projection to the homogeneous plane
tion of their descriptions we have seen many parallelismand transformation to Euclidean because only projectien de
that should help building a coherent picture of a number opends on the landmark parametrization. Transformation to
parametrizations suited for undelayed initialization in-m Euclidean only depends on the generic type of landmark,
nocular EKF-SLAM. These relations are represented in Figthat is, if it is a point or a line.
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Table 1 Summary of landmark parametrizations with their main malaifions

Lmk (size) | back-projection + transformation — g() transformation + projection — h()
EP (3) p=tRKlu+T u=KRT(p—-T)
HP (4) (’;‘) - (RK by T”C) u=KRT(m~Tp)
Po T
AHP (7) (m) = (RK1u> u=KR" (m —(T - po)p)
P p©
Po T
AMPP (6) ((a,a)) = (u*(RKlg)> u=KR" (m* —(T- po)p)
P p°
-1
PL (6) (3) = (R’C 1R+E;X REB) 1= KRT(n— Txv)
Po T
APL (9) (n) = (R/Cll) 1=KRT (n— (T —po)xv)
v RES
mi RK’lg1 + Tp%
C
HPL (8) oo | = | R 100, TS 1= KRT ((my xmz) — Tx (map1 —mip2))
P2 S
Po T
m; RKilg1
AHPL (11) p1 | = p% 1=KRT ((m1 xmz) — (T — po) X (ma2p1 — mlpg))
mo RK’lg2
p2 pS
Po T
(e1, 1) p*(RK™ ')
AMPPL (9) Pl = 0§ 1=KRT((mj xm3) — (T — po) x (mjp1 — mJp2))
(g2, a2) p*(RK™'uy)
p2 S

Points: A 2D point is measured as two Cartesian coordi-4.2 Defining the unmeasured Gaussian priors
nates in pixel space, and modeled as a Gaussian variable.
Please note that the numeric value of the measurement cofwo basic rules apply to the definition of the prior, bgft

responds to the mean valuieof the distribution: for points or3¢ for Pliicker lines: the origin must be well
. inside the2o support of thepdf, and the minimum consid-
u= " ~ N{a,U}. (48) ered distancél,,;, must (approximately) match the upper
LV 20 bound. For points and point-supported lines, this resumes
Its homogeneous counterpart is built with to (see Fig. 9)
] B al [uo p—no, =0, 0<n<2 (53)
w= [ vaw=w {00} e 520, = 1/duin (54)

Lines: A bounded 2D segment is measured as a 4-vectd?‘ good practice is to choose = 1, although this choice is
stacking its two endpoints: not critical as it will be revealed by the benchmarking. With

n = 1 we obtain
u Uo
o [Ej ~ N5 S} :N{ [g;] ’ {O U]} ' (50) 5 =1/3dmin, 0p=1/3dmin - (55)

The segments homogeneous endpointsused for initial- ~ For point-supported lines HPL, AHPL and AMPPL, we
ization of point-supported lines, are built like the regula iust need to stack two stochastically independenpriors,

points (Eq. (49)). The homogeneous line, used for initializ i-€- if we note such prior witht“ ~ A/{t; T}, we have
tion of Plucker lines, is built with (42), yielding a Gauasi 5 o2 0
pdf A{1, L} with t= H , T= {O’) 05} :
1 =0, xa, (51)

56

5 (56)
_ — 1T _ — 1T

L =[], U, + @], Ula,], . (52)  Pplicker lines PL and APL is a bit trickier, as it is difficudt t

Defining the 2D Gaussian prios ~ N{j3;B} for
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RECTANGULAR )

POINT-SUPPORTED
DIRECT ENCODING

POLAR

DISTANCE INVERSE-DISTANCE

UNANCHORED s ANCHORED

Fig. 8 Links between all proposed parametrizations and more. Rbaxes are points; square boxes are lines. Single-stral@esdpoxes are
directly-coded lines. Double-stroke square boxes aretysoipported lines. Gray boxes are anchored parametnizatirrows indicate the links
that we established within the discourse. The dashed amdases all parametrizations benchmarked in this paper.eSatimer possible pa-
rametrizations, in thin line, have not been studied hereréttare some repeated acronyms): polar pointi(BP|s, «, d]), modified-polar point
(MPP,[e, o, p]); the point-supported lines: Euclidean-points line (ERL, y1, 21, 2, y2, 22]), polar-points line (PPUg1, a1, d1, €2, a2, dz2]), and
modified-polar-points line (MPPL); and the directly-codees: polar line (PL]¢, ¢, «, d]), modified-polar line (MPL[¢, €, a, p]), and anchored
modified-polar line (AMPL). There is no such thing as a digecbded Euclidean line (EL). Elements in the first columntfwdashed boxes)
do not benefit from the inverse-distance property and aresumited for undelayed initialization. Minimal paramettioas are marked with an
asterisk.

/32 A 20'g [32 A

@% [

54 - '

1/dmin 1\/drnin
n=2 (a) Isotropic Gaussiapdf with (b) Non-isotropicpdf penaliz-
line’'s mean at infinity. ing lines at negative depths.

Fig. 9 Inverse-dis?ancepdf for HP, AHI;, AMPP_, HP_L,_AHPL ar_ld Fig. 10 Defining a prior3 ~ AN{3; B} for PL and APL. (a) The
AMPPL. A Gaussiarp(p) = N (p — p,op) is defined in inverse-dis-  sotropic Gaussian witf = (0,0) andB = 021 contains all possible

tance (vertical axes). We have ample. choice: in one extr&sokd(  ines at a minimum distance @f,,;,.: it has central symmetry, it in-
n = 0) we may define it so thai = 0; the other extreme (dotted, ¢jydes the origin which represents the line at infinity, afid,,., is at
n = 2)takesp— 20, = 0. In all cases, we hav@ +20,,) = K/dmin- 2. For reference, a Gaussian shape is superimposed on tzertai

They result inpdfsin distance (bottom) that cover from a minimal dis- gyis to evaluate the probability values at 2nd 3. (b) An interesting

tanced i, to infinity. K'is just a proportionality constarg,g.K' = 1 gjternative that penalizes lines at the back of the came@approx-

for AMPP, andi’ = K~ ul| for AHP and HP. We can also normalize  jmate just the right-hand half of thedf in (a) (here shadowed) by a

K- lu at_lnltlallzat_lon time and také&” = 1, in which case isexactly  new Gaussian. A good fit is obtained with= (1/3dmin,0) and an

equal to inverse-distance. anisotropic covariancB = diag(o%l ,0[232) with o, = 1/3dym:n and
0By = 1/2d7nin-

express the conditions as straightforward equations & ( o
and (54). We prefer to refer the reader directly to the expla#-3 Landmark initialization

nations of Fig. 10. For all the implementations presented in . ) o )
this paper we use the solution in Fig. 10(b), The ULI algorithm valid for all parametrizations is detalle

below.

. |:1/3dmin:| o |:(1/3dmin)2 0 1. Identify the mapped magnitudes~ A/ {x, P}, where

’ Lo <=l ==[a) =-

Pcc PCM]
Pyc Pum|’
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with C = (T, Q) the cameraframeard = (L4, ...,LxN)
the set of mapped landmarks (points, lines or a mixture
of them).

2. ldentify the measurement~ A{z, R} (Section 4.1%
is eitheru or s).

3. Define a Gaussian priar ~ N{7; II} for the unmea-
sured DOFs (Section 4.2;is eitherp®, t or 5°). predicted line

4. Back-project the Gaussian measurement; get landmal
mean and Jacobians

matched
segment

Efg. 11 Plucker line observation update. Direct measurement @f th
two signed orthogonal distances from the detected endpturihe ex-
pected (or predicted) line.

L =g(C,zn)
dg dg dg
Ge= ¢ Can G2 = s can Gr= 2, o 4.4.2 Line updates

with ¢() the composition of the measurement-to-homo-t is convenient to represent the matched segment by its two

geneous transforms (Section 4.1) with the back-projecendpointss = (uy, us) € R*. Due to the aperture problem,

tion and transformation function (functiog$) in Table  only the measurement components that are orthogonal to the

1). - expected line projection can be used for correction. There-
5. Compute landmark co- and cross-variances fore, a proper measurement space that accounts for this or-

. . . thogonality and these distances needs to be defined.

Pre = GcPecGe + GRG; + GAIIG, We define the measurement space as the set of 2-vectors

Prx = GcPcx = Gc[Pcc Pew] - containing the signed orthogonal distances from the dedect
endpointay; to a linel. This leads to the measurement func-
tion

< T T, /72 2
% |3, pe | P Pox| z= |7 = IT u,/ l12 + 122 e R?, (64)

L Pex Per 29 1" uy /12 + 15
which is in pixels units. If we name this functign (1, s),

the full observation function is its composition with thepr
jection functiong:() in Table 1,

6. Augment the SLAM map

4.4 Landmark updates

4.4.1 Point updates z = h(x,s) = hy(h(x),s) . (65)

The observation functioh() is the composition of the ones The EKF innovationy is defined as the difference be-

in Table 1 with the homogeneous-to-Euclidean transformyycen the actual measurement and the expectation
h2e(),

y=z— h(x,s).

For the measurement this corresponds to the distances
from the detected endpoints to the detectedligeu; x u,.

The complete observation function is therefdrex) — Because this linkis precisely defined by the two endpoints,

h2e(h(x)). Point updates follow the standard EKF-SLAM the measured vector is zero by definition, and we just need
formulation to consider a covariancB. = U € R? (see (48)) repre-

senting the pixel noise in just two of the four dimensidns.
Innovation mean: y = z— h(X) (59) The expectation corresponds to the distances (64) to the ex-
pected lind = h(C, x) (Fig. 11). This yields an innovation

z = h2e(u) = [Z;;Zﬂ cR?. (58)

Innovation covariance: Y = R+H-P-H' (60) 0 hix ith i N —R+H.P.H'.Th
Kalman gain: K — P.HT Y- 61) y=0—h(x,s)wi covarianceY’ = R + H-P-H . The
a gain. K= rest of the EKF update is as before.
State update: x+ x+ K-y (62)
Covariance update: P + P - K-H.P, (63) 4 The expressioR = U is only valid if the pixel noise is defined

isotropic viaU = o215, which is most generally the case. Otherwise

. . . we need to computR = HsSH_ with Hy the Jacobian of (64) with
with R = U the measurement noise covariance (see (48)}espect to the measured segmentn fact, Hs is such that ifS —

and the JacobiaH = % \i. diag(U, U) = 0214 thenR = U = ¢21,.
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4.4.3 A first comment about the(feker constraint measure of linearity allowing us to compare the degrees of
linearity of the observation functions for different pamm
When dealing with Pliicker lines PL or APL we do not apply trizations is therefore of clear importance. In (Civeralet a
any kind of correction to enforce the Pliicker constraing. W 2008), an analytic linearity index is proposed, based on the
ensured its satisfaction during landmark initializatiaith ~ variation in the first derivative of the function inside the
the specification of the initial covariance in theplane, Sec-  95% probability interval of the most uncertain state variable:
tion 3.1.3, and its validity at any later time is only approxi the inverse-distance parameter. This measure is restricte
mately guaranteed through cross-correlations. Althobgh t thanks to the particular symmetries of the problem, to just
is of course not the optimal way to proceed, we decided ta DOF, and it is difficult to generalize to our amalgam of
leave the method as parallel as possible with the others prgarametrizations. Very related to this work, the trace ef th
sented here, so that we can impute the differences in perforessian of the measurement model is proposed in (Eade and
mance exclusively to landmark parametrization — thus not trummond, 2007) as a measure of the degree of linearity in
algorithmic aspects. Refer to Section 8.2 for further discu several nodes of a multi-map SLAM. This second measure
sion. has the drawback of not incorporating the dimensions of the
uncertainty region.

4.5 Landmark re-parametrization In EKF, linearity must always be evaluated with respect
to the extension of the probability concentration region of

Landmark over-parametrization, which we have defendethe input variable, which is specified by the covariances ma-
for EKF performance so far, is expensive and should only b&ix. We introduce an analytical linearity index for mulip
used when justified. Landmarks should be reparametrized ioput/multiple-output (MIMO) functions which accountgfo
their minimal forms after convergence, that is, when the obthis probability region. As a desirable additional qualibe
servation functions of these minimal forms (ttiestination  proposed index is defined in the measurement space and
forms) are judged linear enough. therefore allows us to compare parametrizations having dif

For points, the natural choice is to reparametrize to EFerent state sizes, and even to compare the degree of tineari
The reparametrization is triggered by the linearity test deof points againstlines. As in (Eade and Drummond, 2007), it
scribed in Civera et al (2008), which is very cheap to comdinvolves the computation of the Hessian which concentrates
pute and can be easily adapted to HP, AHP and AMPP.  the local degree of non-linearity of a function.

For lines, and because of the need of endpoints, it may \ve are interested in the complete observation functions
be convenientto choose a non-minimal two-points represen: _ h(x), i.e. the composition of the transformation and
tation £ = (p1, p2) (EPL, see Fig. 8), with 6 parameters. pin_hole projection functiongs() in Table 1, with the ap-

In this case we can use the test for points in Civera et %ropriate measurement functions, (58) for points and (64)
(2008), which must hold for both support points. We canoy lines. For concision, we define the state- (C, £), i.e.,

also use any of the minimal representations, which are ofy the pair camera-landmark under consideration, whose
size 4 (see also Fig. 8). Tests for these other line represegsiimate in the map is a Gaussiai{x, P}. We denote the
tations might be defined from the linearity indices desaibe jeasurement and state dimensions with— dim(z) and

in the next section, although these indices are not condeive, _ dim(x). In our case we have a fixed = 2, and a

for speed. A compromise that would probably lead to satisyariaple10 < n < 18 depending on the selected parametri-
factory operation is to use the test for EPL, which is simple, ation.

and does indicate that the line has already converged, and

then reparametrize to any other form of our convenience. Ol_” linearity index is based_ on the error in the filter in-
We have not explored these last possibilities. novationy = z — h(x) due to linearization. For any mea-
surement, this error corresponds to the propagation error

throughh() of the state’s mean (Fig. 12), given by
5 Linearity and performance evaluation tools

We present here the analytical and statistical tools used in

this article to evaluate the performances of all parametriz € = E[2(x)] — h(E[x]) € R™ (66)
tions.
5.1 Analytical measure of linearity wherekE|e] is the expectation operator., x = E[x]. This

error is a magnitude expressed in the measurement space. To
The EKF requires high degrees of linearity in the measureebtain a computable approximation©ofve use the Taylor-
ment and dynamic model equations. Defining an analyti&Young expansion for multi-variate functions applied toleac
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functions showing a linear behavior inside the probability
region, and positively increasing as the validity of this hy
pothesis vanishes.

As an example, we illustrate in Fig. 13 the fitness of this
e ¢ index for a 2-input, 1-output function. Observe that thecfun
) tion is always the same but the evaluation region changes
position (the evaluation point) and dimensions (the co-
varianceP), greatly affecting the linearity index.

E[n(x)]

H(EX)

E[x] 5.2 Monte Carlo RMS errors and consistency evaluation
I';',g thr :rgf,ae%aggz ﬁ,:gr ?L;Ef,oﬁ?)u Sfﬁinpgiiga?ﬁ tgrrr;?n_“nearFor practical reasons and because the full SLAM state vector
E[h(x)] — h(E[x]) is large for Gaussians with large variandki¢k IS Of varying size, we restrict the error and consistency-ana
line, lef) and unnoticeable for narrow Gaussiattsr( line, right). yses to the state variables representing the robot (or ggmer
poseC, knowing that consistent localization indicates con-
sistent mapping (Huang and Dissanayake, 2007). We sys-

component of h(x), : i :
P (x) tematically transform mean and covariances matrix of the

_ - ose to a minimal representation (the orientation is trans-
hi = h”L 4 A P . . . .
(x) (%) + Z Jig Az, formed to the Euler angles) to avoid singularities in the co-
non variance.
1
+ Zziﬂijkmjmk +o(]| Ax)?), (67)
j=1k=1 5.2.1 RMSE evaluation
where Ax £ x — %, Ar; are the components alx, h;

We perform a numbel of Monte Carlo runs. At each time
d instantk, we evaluate the root mean square error (RMSE) of
each componeritof the camera pose,

are the components df(), J;; £ i (x) are the compo-

nents of then x n Jacobian matrix of first derivatives, an
2
Hji = L 0 ’;k (x) are the components of the x n x n Hes-

ox,
sian tensor of second derivatives. Inserting (67) into &8%) ~
ignoringo(|| Ax||?) yields the first-order approximation - Z = Cf D2, (71)
€~ )+ Jii Axs + —H,; i Ax; Axy,
Z 7= ; ; ’ ’ whereC;  is thei-th component, y, z, roll ¢, pitch6 and
— h(®) yaw ) of the true camera pose at tlnke and CJ kIS its

" non EKF estimate’s mean corresponding to thth among the
_ ZJijE[A% + ZZ HiE[Az;Azy) . (68) N Monte_CarI_o runs.

= gl For visualization purposes, these errors are compared
against the estimated error given by the filter. We take its
average over all the Monte Carlo runs,

Gik = ﬁivf;;, (72)

whereP“ . 1S thei-th diagonal component of the estimated
covariances matrix of the camera pose, for fiand at time
Finally, taking the norm yields the scalar index k. The RMSE plots in the Results section will show the true
errore; j, against the 2-sigma bound given 2y, ;..

[\D|P—‘

HavingE[Ax] = 0 and knowing that the covariance xfis
an x n matrix given byP £ E[AxAx "], with components
Pji & E[Az; Az, we obtain

N)I»—l

Z Z zykp_]k (69)

L=l e R*. (70)

Them-dimensional vector belongs to the measurement 5.2.2 Average NEES evaluation
space and is therefore expressed, in our case, in pixel units
It can be interpreted as the bias introduced in the EKF inWe use the average normalized estimation error squared
novation by the non-linearity of the measurement equation\NEES) for evaluating consistency. We follow strictly (Bai
Its norm, the proposed inde, also in pixels, is zero for ley etal, 2006), which is in turn following (Bar-Shalom et al
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(a) L = 0.0032 (b) L = 0.2269 (c) L =0.0014 (d) L =1.5263

Fig. 13 Linearity indexL of the MISO function: = h(z,y) = x-sin(y) for different probability regions. We illustrate the projen (thick black
of the 2-sigma elliptical bound of the probability regidhif black onto the surface& = {(z,v, z) / = = h(z,y)} (mesh. The more elliptic the
projected shape, the more linear is the function and snhiéeindexL. (a) A tiny probability region gives good linearity and ayamall index.
(b) A large probability region usually obliges the ellipsebtend over the surface, meaning high non-linearity andtregun a large index. (c) If
such a large ellipse falls on a planar region of the surfdeeirtdex drops to show good linearity. (d) An extreme casesof igh non-linearity.

2001, pp. 234-235). After a numh&rof Monte Carlo runs,

the averaged NEES value is defined by ,lff,l,}% Nl T
S g8 LY

AR B3

s 1o ~i\T s 1 & Rand N

e =7 Z(Ck -G) P (G—GC), (73) ,'} .
= R )
. . . . ”’ ‘107,22,,

whereC,, is the true camera pose at timeand {C/,, P} } - Ls0

is its Gaussian estimate corresponding tojttie amongV

Monte Carlo runs. For 6 DOF anf = 25 runs, the up-

per and lower bounds of the double-sided 95% probabilitfig- 14 Simulated 3D environment for benchmarking point parametri
zations.

concentration region are given by:
M = X{asxe) (1 — 0.975)/25 = 7.432
1N = X{asxe) (1 —0.025)/25 = 4.719 .

2m

6.2 Evaluation of point parametrizations

If nx < n for some significant amount of time (more than e penchmark HP, AHP and AMPP using the same simu-
2.5% of the time), the filter is conservativesjf > 7 (also  |ated scenario, the same software and the same seeds for the
by more that 2.5%), the filter is optimistic and therefore in-random generator. We start with a description of the simula-
consistent. tion conditions, then proceed with the results of the (ativaly

cal) linearity and (statistical) error and consistencylygses.

6 Simulation results

6.1 Software and SLAM algorithm
6.2.1 Simulated scenario

We have made available the software used for simulations
(Sola et al, 2009a). It consists in a 6 DOF EKF-SLAM sys-We simulate a robot performing a circular trajectory in an
tem written in MATLAB®), with simulation and 3D graph- area of12mx12m populated with 72 landmarks forming
ics capabilities. a cloister (Fig. 14). The robot receives noisy control irsput
The algorithm is organized as an EKF-SLAM with ac- which are used for the prediction stage of the EKF, fixing
tive features search (see Davison et al, 2007, for the activihe scale factor. One noisy image per control step is gadhere
search), which allows us to optimize information gain with awith a single camera heading forward. Three sets of param-
limited number of updates per frame. At each frame, we pereters have been used for the tests (see Table 2). In the first
form updates to the 10 most informative landmarks. We alsset, the robot makes two turns to the cloister (800 frames
attempt to initialize one landmark per frame. Unstable andre processed). The second set uses smaller odometry incre-
inconsistent landmarks are deleted from the map to avoithents and perturbations, and the trajectory is limited ® on
map overpopulation and corruption. Data association rrorquarter of a turn (200 frames). Set 3 is like Set 2 but with a
are not simulated and therefore data association is perfectdifferent inverse-distance prior.
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Table 2 Simulation parameters 0.05
Concept Set 1 Set 2 Set 3 004
£
Img. size 640 x 480 pix g
. % © 003
Focal 320 pix, HFOV = 90° S %
Pix. noise 1 pix gé 0.02
(O]
Pose step (8cm, 0.9°) (4cm, 0.45°) ££
Lin. noise,1o 0.5cm 0.25cm 0.01
Ang. noise,lo 0.05° 0.025°
1 . — _ 0 L L L L
pC prior (p,0,) = (0.01,05) m~" [ (1.0,1.0)m~? T R
Fig. 16 Linearity index for the three point parametrizations dgrihe
by Y first 35 frames of a landmark’s life
70 % 70 é‘f '
time is not null, and therefore that the effect of anchoriaig ¢
34 34 be observed. The index starts very high (bad linearity) due
+ HP € AHP,AMPP to the huge uncertainty region. It decays rapidly and remache

Fig. 15 3D view of some landmark @ estimates at the end of the & MinNimum at about frame 25. After this point it stabilizes
first loop. Inconsistency comes mostly from covariance esémation ~ to very small values (high linearity).
rather than mean errors, as can be seen by the too smalksliipshe The index of HP is clearly higher than those of AHP
HP caselgft). See the accompanying video. and AMPP, indicating a poorer linearity. The reason, as pre-
viously mentioned, is that setting an anchor propagates the
6.2.2 Visual evaluation camera uncertainty only from the anchor to the current loca-
tion, while HP propagates a wider uncertainty with respect
We provide the accompanying vidgoi nt s. nov show- to a world reference frame.
ing the three methods running in parallel under the condi- Itis worth remarking in this figure the low values of the
tions of Set 1. proposed index, two or three orders of magnitude less than
The differences in behavior are not easily visible in thetypical image noise or EKF innovations (which we recall
3D movies, and we need to zoom in to appreciate incorrediave been set to 1 pixel in these simulations). Although it is
operation (Fig. 15). We see that HP estimates have too smdfue that linearization errors introduce bias in an EKF-esti
covariances, a clear sign of overconfidence, and thereforgation, especially because they are of systematic origin, o
inconsistency. This over-estimation, which is in accoman experiments show that the value for this bias is small enough
with (Huang et al, 2008), is attributed exclusively to paegam to guarantee a good behavior of the EKF filtering for lo-
trization differences because the information providettieo  cal monocular SLAM. The same conclusion can be applied
filter for HP is exactly the same for all methods. Of the 25to line-based EKF-SLAM, as the quantitative results for the
HP runs, one diverged, and 35 landmarks had to be deletdiétes index are similar (see the linearity measures forsline
due to inconsistent observations (22 of which during the diin Fig. 21).
vergent run). Another aspect that is worth remarking is that the lin-
We do not observe any significant difference betweergarity index refers to the source of the estimation error at a
AHP and AMPP. No landmarks were declared inconsistengiven moment. This error accumulates over time following

in any of the 25 runs of AHP and AMPP. two mechanisms. The first one is just linear integration. The
second effect is the effect that heading errors at a givea tim
6.2.3 Linearity measures have on the position at a later time, due to translation with

inaccurate heading. These accumulated errors are vigble a

The linearity index in section 5.1 has been computed fofrrors in the camera pose, as illustrated in the next section
each measured landmark and for the three parametrizations

of interest (HP, AHP and AMPP), using the parameters 06.2.4 Error and consistency evaluation

Set 1.

Fig. 16 shows the linearity indices of one particular land-Error and consistency evaluations are based on the root
mark in order to illustrate the typical behavior. The chosermean square error (RMSE) of the camera pose, and the av-
landmark corresponds to the first landmark initializedrafte erage normalized estimation error squared (NEES), both de-
the camera has completed one quarter of a turn (100 framesgribed in Section 5. We us®¥ = 25 runs for each ex-
This is to ensure that the camera uncertainty at initidbrat periment, each run with a different seed for the random
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10 cm X — y —
HP ¢ 9%
AHP
AMPP
0 200 400 0 200 400 0 200 400
0.5 deg roll _ pitch

0 200 400

Fig. 17 RMS errorse of the three point parametrizations HP (red), AHP (greem) ANMPP (blue), averaged over 25 runs. The &timated
bounds are plotted in thicker line. AHP and AMPP have thedstrgstimated bound and the lowest error, leading to theréssits. See Fig. 18
for the corresponding consistency plots.

generator. The random generator affects several aspects ¢ 0%
the algorithm, namely the process noises and the measure
ment noises. In parallel, one simulated mobile camera with-
out process noise, gathering noiseless images of the envi 200
ronment, is used to generate the “ideal” or “perfect” run
against which the other “noisy” runs are compared for er-
rors. This ideal run is often referred to in the SLAM litera-
ture asground truth

The RMSE and average NEES plots in Figs. 17 and 18
(please notice the logarithmic vertical scales in the NEES 10
plots) confirm the results seen for the linearity indices. HP
behaves poorly, and there is no significant difference be- ¢ i
tween AHP and AMPP, except for a tiny but appreciable 2

difference in favor of AMPP. Both AHP and AMPP behave Fig. 18 Consistency of HP (top plot), AHP (bottom) and AMPP (bot-

consistent_ly, certainly with a_slight tendency to in_consis tom). Average normalized estimation error squared (NEESh® 6
tency, until shortly after the first loop closure. During the DOF vehicle posdz,y, z, ¢, 6,%]T over 25 runs for 800 frames (2

second turn the filter is inconsistent but it does not seem ttyrns) and parameters of Set 1. The dotted horizontal bametbe ab-
degrade too quickly scissas) = 4.719 andn = 7.432 mark the95% consistency region: if

. .. . . the average NEES is greater than the upper linfidr more thare, 5%
It is now clearly visible that HP inconsistency comesyf the time, the filter estimate is considered inconsistehe vertical

mostly from covariance overestimation: in the RMSE plotsline marks the loop closure at frame 308. The framed areagponds

there is a significant decay of the estimated sigma-value# the area covered by Fig. 19.

while the error magnitude is indeed larger but to a smaller

extent. As all methods process the same amount of informa-

tion, it must be concluded that overestimation comes frondirst 100 frames of Set 1, which have been boxed in Fig. 18):

the effect that linearization errors have over the KalmartiP is not good, largely inconsistent, and AHP and AMPP

gains. are again the ones that behave consistently. Interestingly
We tuned the algorithms with the second set of parameAHP and AMPP have the same average NEES values as the

ters in order to improve the conditions for linearity: odom-0Ones observed in the previous test, showing an important ro-

etry steps and noise are cut in half, reducing the measurUstness against varying operating conditions.

ments innovation, and the filter is bootstrapped with 10dand A third test consisted in selecting a different prior for the

marks being initialized at the first frame. Here, we focus orunmeasurable inverse-distance. The dashed plots in Fig. 19

the first quarter of the first loop (1/8 of the first run’s length show that AMPP and AHP are almost insensitive to large

to see the moment when the filters loose consistency. Theariations of these parameters, while the contrary must be

results in Fig. 19 show no significant improvement with re-said for HP. It seems, even if for AHP and AMPP the differ-

spect to those of Set 1 (these 200 frames correspond to tleace is small, that the filter behaves better with landmarks

100

40

Avg. NEES

0 100 200 300 400 500 600 700 800
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Fig. 19 Consistency of HP, AHP and AMPP. Average NEES over 25 0 . . . L "
runs for 200 frames (1/4 turn) and 10 initializations in thistfframe. 5 10 15 20 25 30 35
Solid: parameters of Set 2 with prigp,s,) = (0.01,0.5). Dashed:
parameters of Set 3 with an alternative pripro,) = (1.0, 1.0).

Fig. 21 Linearity index for the five line parametrizations during th
first 35 frames of a landmark’s life, showing the superioeérity of
anchored point-supported lines. Compare with Fig. 16.

1000

~

~ — _ —9» <«— robot

(@) Circular trajectory. (b) Arc trajectory.

Avg. NEES

Fig. 20 Simulated 3D environments for benchmarking the 5 line
parametrizations. The robot's trajectory and the housagbetcon-
structed are shown. (a) Circular trajectory, camera laplsideways
to the house. (b) Arc trajectory, camera looking forwardhe thouse.

initialized at (or close to) infinity £ = 0.01m~1) than at 2

some Close diStanCGC( _ 1m_1)' 0 50 100 150 200 250 300 350 400

Fig. 22 Consistency of PL, APL, HPL, AHPL and AMPPL. Aver-
age NEES over 25 runs for 400 frames (one turn around the house
Plucker-based lines (PL and APL) do not behave consisteaten
when anchored. Lines based on homogeneous points (HPLheneit
as expected from the HP behavior. Anchored point-suppditexs
We benchmark PL, APL, HPL, AHPL and AMPPL for lin- (AHPL and AMPPL) behave similarly and close to consistency.

earity, RMS errors and average NEES consistency, in two

different scenarios. L .
The first scenario (Fig. 20(a)) consists of a robot mak.chored parametrizations are the ones showing the poorest

ing a turn around a wireframe model of a house. Occlusioninearity. APL is better than all unanchored ones but not
are not simulated and all the house’s edges are visible. 46#P0d enough, probably because the Pliicker constraint is
frames are processed, and again only the 10 most inform&nlY @pplied at initialization time and not enforced on satbs
tive segments are processed at each frame. The cameradident updates (see Section 8 for a more detailed discussion)
looking sideways to the house and, the house being always The average NEES results are shown in Fig. 22 — please
visible, there is no loop closure. The simulation paranseternotice the logarithmic vertical scales. We observe that the
are equivalent to the ones we used for points in Set 1. only parametrizations that behave consistently are the an-
We provide the accompanying videones. mov show-  chored, point-supported lines AHPL and AMPPL.
ing the five systems running in parallel. At first sight all  The RMSE results are shown in Figs. 23 and 24. The
parametrizations seem to work correctly. As we did withPliicker-based lines behave poorly, especially if not areth.
points, we use the analytical and numerical tools to reveahmong the point-supported lines, anchored parametriza-
the differences in performance between parametrizations. tions exhibit both smaller errors and larger error estisate
The linearity indices are shown in Fig. 21. All indices indicating better consistency. We can say that they inherit
follow essentially the same pattern as we saw for pointsthe properties of the point parametrizations they are based
Moreover, their numerical values are similar for points andon.
lines (compare Figs. 16 and 21), suggesting that the index The second scenario (Fig. 20(b)) corresponds to a for-
can be used for comparing points against lines. Again, unamward motion, a situation that is more challenging for mo-

6.3 Evaluation of line parametrizations
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5cm X y — z
PL
APL ¢ 2%
2 0 200 400

0 00 400 0 200 400

™~ 0.3deg roll pitch yaw

0 200 400 0

Fig. 23 Averaged RMS errors of the Plucker-based line parametrizations PL and APLresjdhe2o estimated bounds. Anchoring the Plucker
line helps improving the estimates, but none of these Rltiparametrizations seem to work correctly. See discussi@ection 8 about the
Plicker constraint.

200 400 0 200 400

0.3 deg roll

400

Fig. 24 Averaged RMS errors of the three point-based line parametrizations HPL, AHPIL ANMPPL against theo estimated bounds. Anchor-
ing has produced both a larggr bound and a smaller errer AHPL and AMPPL behave almost exactly.

nocular SLAM as the parallax increase is slow and therefore ~ #°
the scene observability is weak. The camera looks forward o 2
and the robot performs an arc of a circle towards the house.g
The sequence is stopped after 100 frames when the robotits {7
actually inside the house and no more segments are in the™ 4
field of view. In this case we just show the average NEES
results for the anchored parametrizations (Fig. 25), ngmel %0 20 40 60 80 100
APL, AHPL and AMPPL —the rest are clearly inconsistent.gig. 25 Average NEES over 25 runs for 100 frames (frontal trajedtory
The results are equivalent to those of the first scenario{confor APL, AHPL and AMPPL. Again, only anchored point-supzatt
pare to the three corresponding plots in Fig. 22), showing afines behave close to consistency.

important robustness in face of large variations of the -oper

ating conditions.

10

7 Experimental results
7.1 Robocentric EKF-SLAM with points
Aninteresting alternative to the algorithm here benchradrk

is robocentric EKF-SLAM (Castellanos et al, 2007; Mar-
zorati et al, 2008; Civera, 2009). Robocentric EKF-SLAM
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(a) RTK-GPS ground truth over an aerial Google Maps view (c) Image from the sequence

Fig. 26 Bovisa urban image sequence data. (a) Ground truth of thiend i8ajectory. (b, c) Two representative images from theisaege.

performs the composition of the current frame and the locainark parametrization. Three different runs have been made
motion after the landmarks update. This greatly helps redudor each parameterization, each one of them initializing an
ing linearization errors, improving accuracy and consisge  measuring different features of the sequence, randomly cho
(Castellanos et al, 2007; Huang et al, 2008). The transformaen in order to increase independence between runs.
tion affects the full landmarks map, with the consequence of
making the robot pos& become the origin at every step, The results in Fig. 27 show that HP performs much
with null covariance, and hence thebocentricterm. Im-  worse than AHP and AMPP, agreeing with our previous sim-
mediately after, at initialization time, we have that the an ulation results. Using HP, the trajectory is off by 167 m in
chor to generate ipg = T = 0, with null covariance. We mean (80% of the area dimensions) with respect to RTK-
could then think of dropping it from the parametrization; ob GPS (with centimetric accuracy). AMPP derived 20m, and
taining ine.g.the AHP case, pure homogeneous points HPAHP only 13 m averaging the three runs. We can draw the
This combination of HP and robocentric SLAM constitutessame conclusions as in the previous simulations: anchoring
exactly the algorithm proposed by Marzorati et al (2008). is the major factor of improvement, and the difference be-
We have run robocentric SLAM using HP, AHP and tween modified-polar and homogeneous representations can
AMPP on a sequence of more than 68.000 images takdme considered negligible.
during an outdoors run of over 1600 m, covering an area
of some250 mx 250 m (the Bovisa dataset from Rawseeds We observe with this evaluation that the analysis per-
(Bonarini et al, 2006; Ceriani et al, 2009)). Figure 26 showsormed in this paper is valid also for this improved EKF-
an aerial view of the covered trajectory, along with two rep-based estimation algorithm. Known algorithms improving
resentative images of the sequence. The algorithm is set the degree of linearity with respect to classic EKF-SLAM
visual odometry mode, meaning that landmarks exiting tharesubmappingwhere a map is divided into a set of local
field of view are deleted. This way, one single EKF can bemaps, andobocentric where the map is always referred to
used for the whole run of 1.600m. Furthermore, the algothe sensor frame. In both cases the covariance of the local
rithm incorporates a 1-point RANSAC outlier rejection stepmotion (T — pg) is small and the effect of anchoring must
(Civera et al, 2009) that discards the negative effect introbe smaller than in the standard formulation. We see with the
duced by outlier correspondences. With all these featuresurrent experiment that even in these cases anchoring is sti
we can attribute the outcome differences uniquely to landnecessary.
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(a) Average error HP: 167m (b) Average error AHP: 13m (c) Average error AMPP: 20m

1 L 3 1

Fig. 27 Robocentric EKF visual odometry (red) against RTK-GPSdgjeover an outdoors run of around 1.600 m and more than G&@éges.
The figure shows 3 runs for each parameterization. (a) Hibeghooor performances, and the estimated trajectory iByff67 m in average. (b)
AHP completes the run successfully with an averaged drift3sh, an order of magnitude less. (c) AMPP, with an averagidadi20 m, is only
slightly outperformed by AHP. Notice that these resultsiaragreement with the simulation results (figs. 17, 18 andd8gre AMPP and AHP
show a very similar performance and clearly outperform HP.

7.2 Classical EKF-SLAM with segments Table 3 Reconstruction accuracy of the segments maps. DTP: déstanc
to plane; ATP: angle to plane; ABP: angle between planes.
We have implemented EKF-SLAM with real images for the | [ PL [ APL | HPL | AHPL | AMPPL

Iinfa parametrizations PL, APL, HPL, AHPL and AMPPL, [DTP (o, mm) | 75 57 31 16 15
using the segment detector and tracker of Berger and Lacroix arp (1o, deg) | 1.02 | 054 | 058 | 0.19 0.20
(2010). The scene contain®@° dihedral with several seg- ABP (deg) | 88.26 | 89.89 | 88.95| 90.00 | 90.00
ments on its planes (Fig. 28). The camera, controlled by
robotic arm, performs 8030 cm square trajectory perpen-
dicularly to its optical axis. The position increments give Tapje 4 Reconstruction accuracy of the segments maps with all ini-
by the arm are corrupted and used as odometry inputs to thializations at the origin.
system, thus providing the metrics for scale observability |
The videopl ucker - based- 1 i nes. nov andpoi nt -
support ed-1ines. mov show the methods PL, APL,
HPL and AHPL running in parallel (the AMPPL video, in-
distinguishable from the AHPL one, is not shown for space
reasons). A selection of snapshots of the AMPPL run is
shown in Fig. 28. It is worth mentioning the enormous size
of the uncertainty ellipsoids (in yellow color in the movies support plane. The second one is defined by the angles be-
shortly after initialization, a consequence of the undethy tween the segments and their support plane. Finally, we re-
initialization of unobserved DOF. As it happened with sim- port the angle between the two planes. The results are sum-
ulations, to the naked eye there are not big differences benarized in Table 3. We observe a progressive improvement
tween PL and APL, or between HPL and AHPL. However,of all of the map accuracy indicators as we adopt point-sup-
Plucker-based lines behave differently from point-supgb ~ ported parametrizations and incorporate anchors. AHPL and
lines. The most remarkable difference is the smaller siz&MPPL, the two parametrizations incorporating both fea-
of the uncertainty ellipsoids for point-supported linesed tures, exhibit an equivalent performance, the best of atlh w
to the superior representativeness of these parametrizati coplanarity errors of as low as5 mm (notice that the seg-
This issue is discussed in more detail in Section 8. ments are at some20 cm from the camera). Even when an-
To evaluate the accuracy of the resulting maps we idenchored, the Plucker lines exhibit a poorer performance tha
tify the two planes of the dihedral by optimally fitting them point-supported lines. Refer to Section 8 for a discussion.
on the segments endpoints, and compute two different co- To further emphasize the effect of anchoring, we have
planarity errors. The first one is defined by the standard deepeated PL, APL and AHPL runs with the segment detec-
viation of the distances from the segments midpoints ta theitor set to initialize lines only at the first frame. This situa

| PL [ APL | AHPL |

DTP (lo,mm) | 2.0 | 2.1 15
ATP (1o, deg) | 0.49 | 0.49 | 0.20
ABP (deg) | 89.34 | 89.52 | 90.00
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(d) Final, top view (e) Final, front view (f) Final, side view

Fig. 28 Monocular EKF-SLAM with ULI of AMPPL segments. (a) A samplaage with the tracked 2D segments. (b) The set of initialized
lines, all at a distance of 1 m from the camera, corresponttirije selected prior, thus defining a spherical distribbut{c) The final map, from

a viewpoint close to the camera (compare with (a)). (d, epf), Tront and side views of the final map, showing the correconstruction of the
scene, with the dihedral planes at precise right anglesgfitien the 3D views has 10 cm steps.

tion is generally unrealistic because it assumes that all ththe constraints, and that they do not always come together.
world is visible from the first sensor location, but when theSome ideas to situate these concepts follow.

hypothesis is valid (as is the case for this experiment)it co
stitutes for this precise fact the ideal situation, from ethi
the best possible mapping results have to be expected-It pro
duces anchors that are exactly zgsg,= T = 0, and with

null covariance. Results in Table 4 show, when compared
to Table 3, that the effect of anchoring disappears to make
unanchored parametrizations equivalent to anchored ones.
It is worth noticing that only point-supported anchored pa-
rametrizations perform in the general situation similarth
in this ideal one, and therefore that anchoring contribtges
keeping a performance comparable to the best case.

8 Elements of discussion

8.1 Redundancy and constraints in the EKF 3.

There exist recurrent discussions on whether estimatordgh
employ minimal state parametrizations or not, and the ef-
fects that redundancy and constraints have in EKF estimates
It is not our aim now to provide a detailed analysis of these
issues here, but this paper has clearly showed that redun-
dancy can be exploited to our benefit. With a little insight
we discover that not all redundancies are the same, neither

1. Using redundant parametrizations is possible in EKF

because of its Bayesian character. Bayesian estimators
use predictions to generate priors that constrain the re-
dundant DOF that otherwise would make convergence
difficult or even impossible (we think especially on it-
erative optimizers such as BA where prediction is not
present and a good canonical choice of the parametriza-
tions used is crucial for a quick convergence — see for
example (Engels et al, 2006)).

2. Homogeneous vectors are redundarmgprivalenunder

proportionality transforms. This equivalence has conti-
nuity in all dimensions of the state space, and thus it im-
poses no constraint to the filter: the new states resulting
from EKF updates are always valid homogeneous vec-
tors.

Quaternions are redundant only with respect to symme-
try: a quaternion and its negative are equivalent. They
are also constrained by a unity norm which defines a
unit spheroid inR*. In EKF, this normalization con-
straint can be applied explicitly, vi@ « Q/||Q]|, its
JacobianJ and the EKF prediction equations, result-
ing in a projection of the covariance onto the hyper-
planeS = null(J) tangent to the unit spheroid. Sub-
sequent EKF updates, constrainedtaesult in quater-
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nions escaping the spheroid and violating the sphericadtraint. This method is directly applicable to PL and APL.
constraint, and thus renormalization is needed. However, it requires several tuning parameters (initial co

4. Anchored landmarks are redundant in the sense thaariance ofn, rate of decay ofi, at which times and/or un-
landmarks with different anchors may be equivalentder which conditions to apply it, when to stop) and, for this
There exists a continuity of solutions, in this case not rereason, we do not feel the solution to be satisfactory enough
lated to proportionality, with no constraints. As we have  These facts might very well be at the base of the poor re-
seen, this redundancy allows us to arbitrarily select theults of APL, which otherwise would be expected to perform
anchor with the most beneficial effects. similarly to its point-counterpart AHP. According to our-ex

5. Plucker lines are defined in the projective spBt@nd  perience, the improvements produced by enforcing the con-
are therefore equivalent under proportionality transfor-straint with the methods here explained are small, and in any
mations. This DOF is not constrained. However, theycase not sufficient. This is possibly due to tuning issues, or
contain a second redundant DOF affected by the Pliickés maybe a matter of the method itself: the constraint is only
constraintn L v. The Plucker constraint is more deli- truly enforced at the end of the process, when the nolsas
cate than the normalization constraint in the quaternioronverged to zero, and the errors produced during conver-
because it can only be applied implicitly, viel v = 0 gence must most possibly have adverse effects. We have not
and the EKF correction equations. The application of theénvestigated this hypothesis fully, mainly because there e
EKF correction equations means that the covariance ist other strong reasons to prefer point-supported lines ov
intersected witl{notprojected to as it was in the quater- Pliicker-based lines, as we discuss in the following sactio
nion) the constraint manifold, with the subsequent risk
of collapse of the covariances matrix. This does have a

noticeable impact on the filter and is further discussed ir18'3 Endpoints managementin Pliicker-based and

the next section. point-supported lines

In addition to an accurate estimation of the infinite lines
8.2 The Pluicker constraint supporting the segments, a proper endpoints managementis

crucial to produce meaningful maps of segments. The meth-
We have seen in Section 3.1 that for a pai;v) to be  ods for endpoints management require some information to
a Plucker line the Pliicker constraint v = 0 is manda- be stored out of the map. We limit this to the two abscissas
tory. We have ensured its satisfaction at initializationdi  of the endpoints expressed in a local reference frame of the
by defining the inverse-distance prior in theplane, but we  line (see Appendix A for details on endpoints management).
have not enforced it further during landmark updates, for Plicker-based lines PL and APL condensate all the in-
several reasons. One reason is our desire to use a commfmnmation of the initial observation in the plane normah vi
algorithm for all parametrizations so that the differenices n = m; x m,, Eq. (27), and all other information on the
performance can be better interpreted. A second reason éndpoints’ initial view is lost. This constitutes an impeont
that we did not find a clean and convincing method for endrawback: the local line origin (poini, Fig. 3), where the
forcing such constraints in the EKF framework. In the lin-abscissas are referenced to, moves with the line’s orienta-
ear case, enforcing implicit equality constraiiisxc = 0  tion, which is initially unobserved and therefore undeigoe
can be done by performing a KF update with a synthetidarge variations during the convergence phase. Fig. 29(a)
measuremeri = z = Hx with infinite information. This  shows that not even the cross-correlations in the covaggnc
has the consequence of producing singular covariances miaratrix are able to account for this information. In other
trices. The directions of the state space being affected byords, the endpoints cannot be assumed to remain stable
this singularity become blocked and no more evolution orfrom one frame to the next one. Because choosing an alter-
them can be expected, creating a lifelong guarantee of theative local origin for the line with better properties does
constraint satisfaction. Unfortunately, in EKF the conabin seem to be trivial, the only reasonable strategy for mamgagin
tion of uncertainty and non-linearity prevents non-liniear  endpointsis to reset them at each frame using the current ob-
plicit equality constraintsi(x) = 0 from being enforced servation, potentially losing information about the segime
this straightforwardly. This problem has been treated anéxtension observed in previous frames.
solved by Lemaire and Lacroix (2007) for the Euclidean  On the contrary, anchored point-supported line param-
Plucker lines i(e., with normalized director vector) using etrizations AHPL and AMPPL have the ability to respect
the smoothly constrained Kalman Filter (Geeter et al, 1997)he initial view of the two endpoints via the anchay and
The idea is to apply a number of relaxed constraints ovethe director vectorém;, ms), as it can be observed in Fig.
time, with an EKF updaté = h(x) + n, wheren is a noise  29(b). This information is part of the state and is avail-
vector with a variance decreasing with time, to make the filable even after large updates thanks to the role that cross-
ter gradually converge to a state satisfying the equality co correlations play in the EKF update. This allows us to use
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(a) APL (b) AMPPL

Fig. 29 Endpoints covariance ellipsoids in Plicker-based andtgaipported lines, showing the superior representatofithe latter. The snap-
shots are taken 30 frames after initialization, before it @& the convergence phase. In APL, the ellipsoids are Sdiscthe plane defined by
the segment and the landmark anchor. In AMPPL, the elligsaid “pencils” pointing to the anchor.

more elaborate ways of updating the segments endpoints — tion of landmarks possible when they are perceived

see Appendix A for further reference. from projective sensors.

— Once ULl is achieved, landmark anchoring has shown
to be the major actor in further improving linearity to
reach satisfactory levels.

— Manipulations on the measurable parameters, such
as the use of rectangular or polar coordinates for the
director vectors, have shown to produce no remark-
able effects. This is because, being these parameters
measured with good accuracy, their degree of uncer-
tainty is small and the functions in which they appear
are regarded by EKF as being linear.

— Therefore, AMPP and AMPPL parametrizations are
preferred over AHP and AHPL because of their lower
computation cost for an equivalent performance.

3. Because of the higher representativeness of anchored

point-supported lines over unanchored and Plucker-based

lines, and because of the absence of constraints to be
guaranteed, the anchored point-supported lines consti-
tute the preferred choice for undelayed monocular EKF-

SLAM. Therefore, AMPPL is the preferred parametri-

zation for infinite straight lines.

A great number of parametrizations can be regarded as a

sequence of small modifications of ones with respect to

the others (Fig. 8). We have traversed a family of eight
parametrizations and established quasi-trivial links be-
tween them. We have shown that estimating points and
lines is fundamentally the same problem and admits fun-
damentally the same solutions. Estimating other para-
metric entities such as conic sections, splines or planes
should also be feasible as long as we can take good ad-
vantage of the principles exposed here.

Measuring non-linearity for high-dimensional MIMO

functions is an interesting but difficult task, especially

9 Conclusions

This paper was initially conceived as a compendium of land-
mark parametrizations for monocular SLAM. Our very first
aim was to show that all these methods are very intimately
related, as we have exposed amply. As the work evolved,
we realized that the material and insights provided should
also be a good basis for establishing good practices for ap-
proaching a more general problem, that is, the problem of
accurately estimating high-dimensional dynamic systeins o
non-linear nature and huge uncertainty levels with the fise o
relatively simple analytic tools such as the EKF.

We summarize here the main concepts and results pre-
sented in this work:

1. Undelayed landmark initialization (ULI) is fundamental
in the sense that it is the way we can make use of all
the geometrical information provided by the landmarks:
from the first observation, up to the infinity range, and 4.
independently of the sensor trajectory.

2. Implementing ULI within EKF is difficult because of the
combination of non-linearity and unbounded uncertainty
regions.

— Linearity and Gaussiannity are the two keys to sat-
isfactory EKF operation. Astute transformations and
redundancy in the parametric descriptions of the sys-
tem produce analytic expressions and probability
densities that are well adapted to the estimator in use.

— Inverse-distance behavior of the unmeasurable pa5'
rameters is the key that makes undelayed initializa-
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Fig. 31 The three general strategies for updating 3D segment end-
points. (a) Endpoints are defined at initialization time aeger up-
dated. (b) Endpoints are systematically updated accordirige cur-

rent observation. (c) Endpoints are updated only if thigikens the

3D segment.

the closest to the anchor, and the director veetor v/||v||?

providing the unit length (we make the normwfroportional to
distance to improve its projective behavior). Each endppinis
specified by an abscisgasuch that

vxn—+t;,v
pi = q+t;v/|v|? =Ppo+ TIQL . (74)

— In point-supported lines (Fig. 30(b)) the endpoints arendefiwith
respect to the support poings = po +m;/p;. The origin is aig:
and the unit length is defined fay, — q1, leading to the endpoints

(b) Point-supported lines HL, AHL and AMPPL.

Fig. 30 Segment endpoints in the local ordinate frame of Plucker-

based and point-supported lines.

. Visual inspection, linearity analysis, RMS errors and av

(75)

pi = (1—t)a1 + tiqz = po + (1 — ti)% Fp 2
1
The initial abscissas are defined trivially with , t2) = (0, 1).
if we Wam. the megsure to ?e us?fUI f‘?r comparing pa- - pgefore updating, we need to back-project the currently nlesk
rametrizations of different dimensionality. endpoints onto the 3D line. This is done by triangulating 3Reline

— We defined a linearity index that incorporates the lo-with the optical rays of the two currently observed 2D endf®iTo

cal knowledge of the uncertainty region, which is avoid aberrant results it is advised to update each abswiggaf the
well suited for EKF usage ’ triangulation angle between the ray and the line is greatan & cer-

- h g tain value (we usé5°). The result is a couple of candidate abscissas
— The index is expressed in the measurement spacey,, «,) that are assigned t@1, t>) depending on the the following
which is common to all parametrizations and allowsrules:
us to compare them with each other. — During convergence the abscissas are either not updatgd (Fi
31(a), used for AHPL and AMPPL), thus reflecting the initib} o

erage NEES consistency, all give a coherent picture of
the performance of each parametrization.

. Using more evolved algorithms such as robocentric EKF-

SLAM has not altered the relative performances of the
parametrizations. This is because the superiority of some

servation, or systematically updated (Fig. 31(b), usedPfgrAPL
and HPL), simply reflecting the last observation.

— Once the line has converged, an extending-only policy is ap-

plied (Fig. 31(c)): the abscissa is updated only if this thegs

the 3D segment. It is to note that a converged line is ready for
reparametrization to any minimal (or at least more econatpic
form.

parameterizations over others comes from the severe lin-

earity constraints that the EKF imposes, and hence the
conclusions drawn in this paper cpuld be extendgd R eferences
any EKF-based visual SLAM algorithm. It would be in-

teresting to see if this also applies to iterative optinszer ajidala v, Hammel S (1983) Utilization of modified polar coordtes
such as SBA, and in such case if the improvements ( for bearings-only tracking. IEEE Transactions on Autom&bn-
fewer optimizer iterations) are sufficient to compensate (ol 28(3):283-294 = .

. Bailey T (2003) Constrained initialisation for bearinghoSLAM. In:
for the extra amount of computational powerd.more

] A i - Int. Conf. on Robotics and Automation, vol 2, pp 1966-1971
operations per iteration) that would be required. Bailey T, Nieto J, Guivant J, Stevens M, Nebot E (2006) Cdesisy

of the EKF-SLAM algorithm. In: IEEE/RSJ Int. Conf. on Intigient
Robots and Systems, Beijing, China, pp 3562—-3568

Bar-Shalom Y, Li XR, Kirubarajan T (2001) Estimation withpjza-
tions to tracking and navigation. John Wiley and Sons

Bartoli A, Sturm P (2001) The 3D line motion matrix and aligemn
of line reconstructions. In: IEEE Computer Society Confieeson
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A Segment endpoints management

The segment’s endpoints in 3D space are maintained out dfltie
via two abscissa&, t2) defined in the local 1D reference frame of the
line.

— In Plucker-based lines (Fig. 30(a)) the local frame is aefiby a
single axis with the origin at the poirt = po + (v xn)/||v||?,
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