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Abstract

The Simultaneous Localization And Mapping by an autonomous mobile robot –known by its acronym SLAM– is a computationally
demanding process for medium and large-scale scenarios, in spite of the progress both in the algorithmic and hardware sides. As a
consequence, a robot with SLAM capabilities has to be equipped with the latest computers whose weight and power consumption
might limit its autonomy.

This paper describes a visual SLAM system based on a distributed framework where the expensive map optimization and
storage is allocated as a service in the Cloud, while a light camera tracking client runs on a local computer. The robot onboard
computers are freed from most of the computation, the only extra requirement being an internet connection. The data flow from
and to the Cloud is low enough to be supported by a standard wireless connection.

The experimental section is focused on showing real-time performance for single-robot and cooperative SLAM using an RGBD
camera. The system provides the interface to a map database where: 1) a map can be built and stored, 2) stored maps can be reused
by other robots, 3) a robot can fuse its map online with a map already in the database, and 4) several robots can estimate individual
maps and fuse them together if an overlap is detected.
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1. Introduction

The acronym SLAM, standing for Simultaneous Localiza-
tion and Mapping, refers to the problem of simultaneously es-
timating a model of the surroundings of a mobile robot –the
“map”– and the robot’s location into it from a stream of sensor
data [1]. SLAM is a problem of key importance in robotics; as
an accurate model of the environment is a prerequisite of most
of the mobile robots’ tasks (e.g., navigation, exploration or ma-
nipulation). In a practical robotic setting, the computation and
memory requirements of the SLAM algorithms are two aspects
of prime interest: SLAM algorithms tend to be computation-
ally demanding and the onboard resources of a mobile robot
are limited. Also, SLAM has strong real-time constraints as it
is integrated in the control loop of the robot.

In recent years the possibility of massive storage and com-
putation in Internet servers –known as Cloud Computing and
Cloud Storage– has become a reality. The availability of such
technology and its possible use in robotics have opened the
door to a whole new line of research called Cloud Robotics
[2]. Regarding SLAM, robots could benefit from the use of the
Cloud by moving part of the SLAM estimation from their lim-
ited computers to external servers; saving computational and
power resources. This paper tries to answer the following ques-
tion How should a SLAM system be partitioned in order to
leverage the storage and computational resources in the Cloud?
Notice that the answer to this question is not trivial. Due to the
real-time constraints of SLAM algorithms and the network de-
lays the naı̈ve solution of moving all the computation to the
Cloud would be unfeasible. In order to guarantee the real-time,

part of the computation must be performed on the robot’s com-
puters.

The contribution of this paper is the partition of a real-
time SLAM algorithm that allows part of the computation to
be moved to the Cloud without loss of performance. Our ex-
perimental results show that the bandwidth required in all cases
does not exceed a standard wireless connection. We demon-
strate the capabilities of the framework to provide the inter-
face to a map database in a multi-map multi-camera experiment
where the users can: create and save several maps, relocate
within them and improve them as new areas are explored, and
fuse several maps into one if an overlap is detected. As part of
the paper, we plan to release the software after acceptance.

We take as a starting point the monocular SLAM algorithm
described in [3], the so-called Parallel Tracking and Mapping
or PTAM. The processing of PTAM is based on two parallel
threads. On the one hand, a geometric map is computed by
non-linear optimization over a set of selected keyframes usu-
ally known as Bundle Adjustment. This background process is
able to produce an accurate 3D map at a low frame rate. On
the other hand, a foreground tracking process is able to esti-
mate the camera location at the frame rate assuming a known
map. This method is able to produce maps composed of thou-
sands of points using standard computers for room-sized envi-
ronments. From this SLAM system, we propose C2TAM stand-
ing for Cloud framework for Cooperative Tracking And Map-
ping that moves the non-linear map optimization thread to a
service operating in the Cloud.

On top of the computational advances of the keyframe based
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Figure 1: Computer intensive bundle adjustment is performed as a cloud ser-
vice running on a high performance server. Camera location with respect to the
map is computed in low performance mobile devices. Several tracking threads
can be run on the same map data. The data flow from tracking to mapping is
composed of the new keyframes when gathered images contain new informa-
tion with respect to the available map; and from mapping to tracking the flow
is the computed map.

methods, the resulting communication between the tracking and
mapping processes requires low bandwidth. The tracking pro-
cess sends a new raw keyframe only when the gathered im-
age contains new information with respect to the available map.
The mapping sends a new map after every iteration of the Bun-
dle Adjustment, at a frequency substantially lower than the frame
rate. Even in exploratory trajectories, the number of new key-
frames is small compared with the frame rate; and in the case
of already visited areas no new keyframes are sent. See Fig. 1
for a scheme of the framework. The low communication band-
width allows us to use a standard wireless connection and run
tracking and mapping on different computers. Also, in both data
flows the algorithm is robust to latencies. The camera tracking
thread can run on suboptimal maps until the next global opti-
mization is finished and sent. Also, with an appropriate policy
on map management, the camera tracking is robust to delays in
keyframe addition.

We believe that a SLAM system partially running on the
Cloud has a wide array of benefits and potential applications:

• Allocating the expensive map optimization process out
of the robot platform allows a significant reduction in
the onboard computational budget, hence reducing the
payload and power consumption; both critical factors for
field robotics (e.g., unmanned aerial [4] or underwater
vehicles). More importantly, it provides the foundations
to accommodate SLAM algorithms within the distributed
computation framework, which makes it possible to ex-

ploit the newly available Cloud computation resources.

• The interoperability between different visual sensors comes
as a prerequisite in our system, as very different robots
with different cameras could connect to the mapping ser-
vice.

• The raw keyframe images are stored in the Cloud along
with the point-based map. Optimizing a sparse 3D scene
of salient points is just one of the Cloud services that
can be run over the keyframes. Additionally, other back-
ground processes at different time scales can handle map
management operations aiming at life-long mapping [5],
semantic mapping [6, 7], layout estimation [8] or com-
puting free space for navigation [9].

• The centralized map building also allows a straightfor-
ward massive data storage of robotic sequences and ge-
ometric estimations that could be used to provide a sig-
nificant training sample for learning. It can be seen that
the size of the computer vision datasets [10] tends to be
much larger than those of the robotics [11]. The creation
of datasets with data exclusively from robots is essential
for exploiting the commonalities in the robotic data [12].

• The proposed framework naturally adapts to the cooper-
ative SLAM problem [13, 14]; where several robots have
to build a joint map of the environment. The server can
operate on different maps and fuse them independently
of the trackers running on the robots. As the number of
clients grows the server computation can be parallelized.
The bandwidth required for each tracker is low enough to
be provided by a standard wireless connection.

• The technologies involved in the proposed system are
in an advanced state of maturity: Cloud Computing and
storage has already been successfully incorporated in mul-
tiple domains and the keyframe-based SLAM is one the
most promising mapping methods available [15]. Addi-
tionally, the proposed framework can provide the inter-
face to an advanced database of visual maps in the Cloud.

The rest of the paper is organised as follows: Section 2
refers to the related work; section 3 discusses the main SLAM
components, section 4 provides the formulation of the SLAM
problem and section 5 gives the details of the proposed system,
C2TAM. Finally, section 6 shows the experimental results and
section 7 sets out the conclusions and presents lines for future
work.

2. Related work

In recent years, the Cloud Computing paradigm has revo-
lutionized almost every field related to computer science [16].
The idea in a few words is that the software pieces are replaced
by services provided via the Internet. In the robotics commu-
nity the potential applications, the benefits and the main lines
for research regarding Cloud Computing have already been fore-
seen [17, 18] and some platforms are already starting to emerge
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[19]. Nevertheless, with some recent exceptions referred to in
the next paragraph, there is still a lack of specific algorithms
and specific realizations of these ideas. This paper aims to con-
tribute with a concrete realization of a SLAM algorithm oper-
ating in the Cloud and a thorough experimental testing.

In [20], Bistry et al. analyse how SIFT extraction and match-
ing can be moved from a robot to several servers in the Cloud.
[21] queries the Cloud service Google Goggles to read text in
signs and uses this for loop closing detection. More closely re-
lated to our concerns, [22] implements a laser-based FastSLAM
algorithm running on the Cloud by distributing the particles
among several computing nodes.

Very recently, [23] presented a real-time dense 3D recon-
struction that shares some similarities with our approach. Specif-
ically, this work also builds on PTAM and uses a distributed ar-
chitecture very similar to the one presented in this paper. Our
contribution is to address the multi-user multi-map case ([23] is
a single-user single-map system). The contributions that allow
our system to support multiple users and multiple maps are 1) a
two-step map relocation robust to communications delays, and
2) a map fusion algorithm that operates in the Cloud server.

In [24, 25], Castle et al. introduce in PTAM the relocation
capability in a set of multiple maps. Our relocation algorithm is
built on top of this work, our main contribution being the two-
step relocation that is able to cope with the standard network
delays of Cloud Computing.

3. A discussion on the SLAM components

The aim of this paper is to provide a splitting of the SLAM
problem such that its strong real-time constraints are not af-
fected by the network delays when Cloud Computing is used.
For the sake of clarity in later sections, we will start with a
high-level definition of the main components of a modern vi-
sual SLAM system.

1. Mapping. The mapping component estimates a model
of the scene –a map– from sensor data. We will denote
the map model asM; and will assume that our mapping
system can have several independent maps The initial ap-
proaches to SLAM used to update the camera pose and
map estimation jointly and sequentially for every sensor
data arriving [1]. Nevertheless, recent research [3, 15]
has proposed a clever partition of the problem into a one
frame-rate thread for camera pose estimation and a sec-
ond one at a lower rate for map estimation, and has shown
that it has computational advantages without a loss of
performance or accuracy. This is hence the approach we
will take in this paper.

2. Tracking. The tracking component estimates the cam-
era pose T t for every time step t given an estimation of
the map M. A multiple-user-multiple-map SLAM sys-
tem has one tracking component per user. As this pose
estimation is based on the tracking of visual features in
an image sequence, it should be done at a high frequency
and with strong real-time constraints. If real-time is lost,

the image tracking is likely to fail and hence the pose
tracking will also fail.

3. Relocation. Once the tracking component has failed, the
relocation component tries to relocate the camera and re-
start the tracking. The tracking failure can be caused
by several reasons: occlusions, high-acceleration motion,
blur or lack of visual features. This component also has
strong real-time constraints. If the relocation takes too
much time the camera might have moved from the relo-
cation position and the tracking component might not be
able to start.

4. Place Recognition. We understand by place recogni-
tion the capability of a SLAM system to relocate in a
large number of maps. This problem is also known in
the robotics community as the kidnapped robot problem;
where a robot perceives an unknown environment and has
to recognise the place it is in from a number of possibil-
ities. Notice that the difference with relocation is the a
priori knowledge on the location. Relocation comes just
after a tracking failure, so we can assume a small camera
motion and check nearby places to re-start the tracking.
Place recognition does not assume any particular loca-
tion, so every possible location is equally likely and every
map in the database should be checked.

5. Map Fusion. Map fusion merges two independent maps
into one when an overlapping area is detected by place
recognition. First, we search for correspondences be-
tween local features in the two independent maps. After
that, using the geometric constraints of the corresponding
points, the rigid transformation between the two maps
is computed. One of the maps is then put in the refer-
ence frame of the second one and duplicated points are
deleted.

4. The SLAM formulation as Tracking and Mapping

4.1. Mapping

The mapping component contains l local maps {M1, . . . ,Mk,
. . . ,Ml}. Each local mapM is composed of a set of n 3D points
{P1, . . . ,Pi, . . . ,Pn} and m keyframes

{
C1, . . . ,C j, . . . ,Cm

}
M =

{
P1, . . . ,Pi, . . . ,Pn,C1, . . . ,C j, . . . ,Cm

}
. (1)

Each map entity is modeled with a set of geometric parame-
ters and, for most of them, an appearance descriptor. The model
for a 3D point P =

{
P, dp

}
contains its Euclidean 3D position

P =
(
XWYWZW

)>
and a normal n =

(
nW

x nW
y nW

z

)>
in a world

reference frame W; and its descriptor dp = {w1, . . . ,wr} is com-
posed of r different patches extracted at different scales from
a source image. For efficiency reasons, at the implementation
level we save the pyramid at r different scales of the source
image. Hence, each point P contains a pointer (u v r)> to a
pixel and a scale of the pyramid where the descriptor can be
extracted.
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A keyframe C = {C, dc} is modeled quite similarly. First the
3D camera pose C =

(
XWYWZWαWβWγW

)>
using its Euclidean

coordinates
(
XWYWZW

)
and roll-pitch-yaw angles

(
αWβWγW

)
all of them in a world reference frame W. As the keyframe
descriptor dc we use –as [26]– the frame Ic; subsampled to size
40 × 30, filtered with a Gaussian mask g(σ) and normalized by
subtracting the mean.

dc = I40×30
c ∗ g(σ) − I40×30

c ∗ g(σ) . (2)

For each point Pi we have several image measurements in
different keyframes C j that we will denote as z j

i . Each image
measurement z j

i puts a geometric constraint between the geo-
metric parameters of the point Pi and the keyframe C j given by
the projection model f

z j
i = f(Pi,C j,K j) ; (3)

where K j is the internal calibration of the jth keyframe.
The mapping component computes the Maximum Likeli-

hood Estimation (MLE) of the geometric map parameters
(
P̂i, Ĉ j

)>
by minimising a robust cost function of the error ∆z j

i ; following
what it is usually known as Bundle Adjustment [27].

(
P̂i, Ĉ j

)>
= arg min

Pi,C j

n∑
i=1

m∑
j=1

ρ(∆z j
i /σ) . (4)

The error ∆z j
i = z j

i − f(Pi,C j,K j) is the difference be-
tween the actual image measurements z j

i and the projected ones
f(Pi,C j,K j). σ is a median-based estimation of the standard
deviation of the measurement’s noise. As in [3], in order to
avoid the influence of outlier correspondences, we do not mini-
mize the error directly but use a robust function of the error. We
use Tukey’s biweight function that is defined as

ρ(ξ) =

1 − (1 − ξ2)3, |ξ| <= 1
0, else

; (5)

The initialization of a map is one of the key aspects in any
visual SLAM system [28, 29]. In the first frames of a sequence
the SLAM estimation is degenerate or quasi-degenerate and hence
it might fail quite often. As the PTAM system [3] is oriented to
Augmented Reality applications, it initializes the map by ask-
ing the user to perform a careful translation of the camera in a
scene with a dominant plane. We believe that this initialization
procedure is not suited to a general robotic application; as we
cannot guarantee that the initial motion is a translation –it will
be constrained by the scene– or that the scene has a dominant
plane.

For the initialization of the proposed C2TAM map, we have
used an initial multiple model filtering scheme similar to [28].
Filtering schemes are less sensitive to initialization problems

in image sequences than approaches based on pairwise corres-
pondences. This initialization process is as follows: an interact-
ing multiple model scheme (see [28] for details) is run on the
robot client for the first frames of the sequence. Once enough
parallax has been detected and the estimation is not degenerate,
the first frame of the sequence is set as the first keyframe C1
and the current frame as the second one C2. Both keyframes are
sent to the mapping component and the optimization described
above is started.

All the experiments in section 6 were run using this initiali-
zation. While the initialization process will have an extra com-
putation cost on the client side; it will not be high as the map is
just started and its size is small. See the details in section 6.1.

4.2. Tracking
The tracking component models each frame It from the im-

age sequence as a set of geometric and appearance parameters
T t = {T, dt}. The geometric parameters are those of the camera
pose that acquired the frame T =

(
XWYWZWαWβWγW

)>
. The

frame descriptor is composed of a global descriptor dG
t and a

set of b local descriptors dL
t : dt =

{
dG

t , d
L1
t , . . . , d

Lb
t

}
. The global

descriptor dG
t is a subsampled, filtered and normalized version

of the frame. The local descriptors dL
t are the image patches

surrounding a set of salient FAST features [30] extracted at 4
scales. Again, for efficiency reasons, only the image pyramid
and the FAST feature positions are stored instead of the image
patches.

The tracking component estimates the camera pose param-
eters Tt =

(
XWYWZWαWβWγW

)>
at every time step k from the

information of previous camera poses, the current frame It and
the current mapMk. This estimation is done in 3 steps. First,
the camera pose Tt|t−1 at time t is predicted from the informa-
tion up to the previous frame at t−1 applying a constant velocity
model.

In the second step, the points in map Mk extracted at the
coarsest scale –that we will name as P∗k– are projected into the
current image It. For each point P∗k,i we search for its corre-
spondence among the closest salient points in It. The camera
pose is roughly estimated from this first set of correspondences
by a robust minimization.

T̂t∗ = arg min
Tt

∑
i

ρ(∆z∗i /σ
∗) ; (6)

where ρ(ξ) is again Tukey’s biweight function (equation 5),
σ∗ is a median-based estimation of the standard deviation of
∆z∗i , and ∆z∗i is the reprojection error of each point P∗k,i in the
current frame T t at time step t

∆z∗i = z∗i − f(P∗k,i,T
t,Kt) . (7)

Using this first estimation T̂t∗ as a seed, a fine grain esti-
mation for the pose T̂t is finally obtained by projecting every
map point –at every scale and not just the coarsest one– into the
current frame T t and minimising the reprojection error.
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T̂t = arg min
Tt

∑
i

ρ(∆zi/σ) . (8)

Again ρ(ξ) is Tukey’s biweight function, σ the median-
based estimation of the standard deviation of ∆zi, and ∆zi the
reprojection error of each point Pk,i in the current frame T t.

A multiple-user PTAM-like system will have a pose track-
ing per user; hence the tracking component will be {T1, . . . ,Te,
. . . ,Tr}.

4.3. Relocation

Relocation, or the ability to quickly compute the pose of
the camera when the tracking thread is lost, is done as a two
step process. First, for each new image It, its global descriptor
dt is extracted as shown in equation 2. We extract the clos-
est keyframe C j in the current map Mk by computing the Eu-
clidean distance between dt and the global descriptors for each
keyframe dc1, . . . , dc j, . . . , dcm. Assuming that the 3D space is
densely populated with keyframes, the nearest-neighbour of dt

will be a keyframe very close in the 3D space.
Using a simple global descriptor, like the reduced version

of the image that we use, might seem at first sight to offer a
poor representation of the image content. Nevertheless, several
works have proved the good performance of such descriptors.
[31] shows the most relevant work on the use of downsampled
and filtered images as descriptors for scene recognition as a
very efficient alternative to more elaborate models with no no-
ticeable degradation in performance. Such a descriptor is called
here Tiny Image. The key here is the dense population of the im-
age space by growing the training set size to 80 million images.
Recently, [32] has reached the same conclusion for the problem
of place recognition in mobile robots. The good performance of
this descriptor for place recognition in SLAM is also reported
in [26]. In these two latest references, the key aspect is again
the dense sampling of the image space. In [32] the experiments
are done with an autonomous car that shows limited viewpoint
differences. In [26] the amount of keyframes in the optimiza-
tion is kept high to guarantee that a close match will always
exist.

After that, the camera location of It is set as that of the
keyframe C j and the rotation is compensated by minimising the
error between the global descriptors

(
XW
T t YW

T t ZW
T t

)>
=

(
XW
C j

YW
C j

ZW
C j

)>
(9)(

αW
T tβ

W
T tγ

W
T t

)>
= arg min(

αW
T t β

W
T t γ

W
T t

)
(
dt − w(dc j, α

W
T tβ

W
T tγ

W
T t )

)
;(10)

where w(d, α, β, γ) is the warping of the image descriptor
d by a rotation given by the angles (α, β, γ). After this initial
pose has been assigned, the tracking thread of section 4.2 is
re-started. If the tracking is successful the camera is relocated,
if not the relocation algorithm of this section is repeated again
with the next image It+1.

4.4. Place recognition and ego-location
By place recognition, we understand the ability to recognise

a part of a mapMk from the visual information in a frame It.
The subtle difference with the relocation described in section
4.3 is the scale of the problem. The relocation component starts
when the camera tracking is lost; hence we can assume that the
camera has not moved much and we are in the surroundings of
the latest camera pose. Only the closest keyframes in the cur-
rent mapMk will be analysed for similarities. The place recog-
nition component, from the information in the frame It, tries
to recognise a map from all the maps in the SLAM database
{M1, . . . ,Mk, . . . ,Ml}.

For place recognition and ego-location we will use the same
algorithm as in the previous section; but the fact that the com-
putation is larger will introduce differences in our C2TAM algo-
rithm, as is detailed in section 5.5. For very large map databases,
an interesting line for future work would be to use more efficient
search algorithms, such as the Approximate Nearest Neighbour
[33] or the recent [34].

4.5. Map fusion
Suppose that, from the l local maps in the Cloud server

{M1, . . . ,Mk, . . . ,Mq, . . . ,Ml}, the place recognition compo-
nent from section 4.4 has detected that mapsMk andMq over-
lap in some specific region. The map fusion component merges
the two maps in a common reference frame.

Our map fusion algorithm works as follows. When the map
optimization over Mk receives a new keyframe Ck

j from the
tracking node; the latest is compared with every keyframe in
the rest of the maps in the server. Similarly to the relocation
component of section 4.3, we will use the global descriptor dt

as defined in equation 2 to quickly extract a set of potential key-
frame candidates that are imaging the same area.

In a second step, once we have two potentially overlapping
keyframes Ck

j and Cq
h from the mapsMk andMq we search for

point correspondences between the two maps. We project the
3D points from the two maps Pk and Pq in the common key-
frame Ck

j, resulting in two sets of image points z j,k = (z j,k
1 , . . . ,

z j,k
ik
, . . . , z j,k

nk )> and z j,q =
(
z j,q

1 , . . . , z j,q
iq
, . . . , z j,q

nq

)>
.

z j,k
ik

= f
(
Pk

ik ,C j,k,K j

)
(11)

z j,q
iq

= f
(
Pq

iq
,C j,k,K j

)
. (12)

As the two keyframes are assumed to be very similar, corres-
pondences between z j,k

ik
and z j,q

iq
are computed based on their

distance in the image plane ‖z j,k
ik
− z j,q

iq
‖: If this distance is lower

than a threshold (2 pixels in our experiments) the image points
are considered to match. Using the correspondences between
Pq and z j,k –3D points in mapMq and image projections from
mapMk– we can compute the relative transformation between
the keyframe Ck

j and the mapMq using the Perspective-n-Point
(PnP) [35]. The relative transformation between the mapsMk

andMq are calculated from the composition.
Finally, the duplicated points (correspondences between z j,k

and z j,q) are deleted and the rest of the points and cameras in
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map Mq are transformed according to the relative motion be-
tween the two maps and merged intoMk.

It should be noticed that the formulation of the proposed
mapping and tracking components in sections 4.1 and 4.2 uses
only the RGB information; and hence the maps in the database
are estimated up to a scale factor. This fact becomes relevant
for map fusion, as two maps of different scales cannot be fused
directly. There are two possible solutions. The first one is to
estimate the transformation and the scale when two maps are
fused; as for example in [36]. The second one is, if a RGB-D
sensor is used, to extract an estimation of the real scale of the
map from the depth channel of the camera.

We chose the second option for this paper. For all the points
{P1, . . . ,Pi, . . . ,Pn} in a map M we extracted their real depth
measurement DRGB−D =

(
DRGB−D

1 , . . . ,DRGB−D
i , . . . ,DRGB−D

n

)
from

the RGB-D keyframe where they were initialised. We then
extracted their depth values at the map scale as the distances
DM =

(
DM1 , . . . ,D

M
i , . . . ,D

M
n

)
between each point position Pi

and the position of the keyframe C j where it was initialised.
Finally, we estimated the scale ratio as the median value of
DRGB−D − DM. With this value, each map can be transformed
into a real-scale map and it can be fused with any other map in
the database using the algorithm described in this section.

Notice that the relocation in section 4.3 and the map fusion
in this section allow several working modes:

• Single-user-multiple-maps, where a single user is esti-
mating a map that can be fused with other map instances
in the database –previously estimated by other users. As
a result, the final map comes from the fusion of two or
more maps estimated at different times possibly by dif-
ferent users.

• Multiple-user-multiple-maps, where several users are es-
timating independent maps at the same time that might
be fused if they belong to the same environment. As a
result, we obtain a global map from several individual
maps that are being estimated at the same time. After the
maps are fused, the different users can keep tracking and
improving the global map cooperatively.

5. C2TAM: A SLAM in the Cloud

5.1. Mapping as a Cloud Service

The estimation of the map database of our system {M1, . . . ,
Mk, . . . ,Ml} is the most demanding computation in our frame-
work and does not have strong real-time constraint. The map
optimization in equation 4 can take several frames of the se-
quence and the tracking can still operate in a non-optimal map
from a previous optimization. The mapping component might
be a perfect candidate for Cloud Computing as it can tolerate
the network delays; but it is also necessary that the data flow
with the onboard robot computers is low enough. We will anal-
yse this in the next sections.

SERVER SIDE CLIENT SIDE

M1

M2

Ml

C15

C15
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C21

C22
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Figure 2: Coarse-grained place recognition in the Cloud server. The robot client
R1 sends a frame from the sequence to the server; which tries to relocalize
the camera with respect to every keyframe in every map in the database using
the algorithm in section 4.3. If there is a match, a set of close keyframes is
downloaded to the client for fine-grained place recognition.

5.2. Tracking as a client in the robot
The camera pose tracking is a process with strong real-time

constraints that has to operate at the frame rate and might fail if
a few frames are skipped. This component is hence not resilient
to network delays and should be allocated in the robot.

The mapping service in the Cloud receives as input new
keyframes from the tracking client. This produces a low-bandwidth
traffic, as typically the ratio of keyframes to total frames in the
sequence is quite low (in our experiments, this ratio is around
10−2). The mapping serves to the client the current mapMk ev-
ery time the map is optimized. This produces quite high traffic.

5.3. Relocation as a client in the robot
Relocation refers to the ability of a SLAM system to relo-

cate in a map previously estimated and stored in the Cloud. A
tracking node may need to relocate in two cases: (i) the track-
ing node, operating successfully over a map, is lost because
of a sudden motion or large occlusion. In this case, the cam-
era is likely to be in the previous map, and relocation should
only check the current map. This relocation is performed on
the tracking node. (ii) The tracking thread has been lost for a
long time, or just started. In this case, the camera could possi-
bly be in a large number of maps. In this case, relocation should
look for correspondences against a possibly very large number
of stored maps. As this case will be more demanding, it should
run partially on the mapping node.

5.4. Place recognition and ego-location in two steps
Place recognition and ego-location in a large number of

maps can be computationally demanding, and hence it should
be allocated in principle as a Cloud service. On the other hand,
it is also a critical process sensitive to network delays: if the
ego-location estimation takes too much time, the robot might
have moved and already be in another place. In our experi-
ments, Tiny Image comparisons take around 0.03 milliseconds.
With maps of several hundreds of keyframes and databases of
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possibly hundreds of maps, the cost of this place recognition
might easily be a second. This is why we propose a two-stage
relocation algorithm, the first part being run on the Cloud and
the second in the robot client.

In the first stage, the mapping server in the Cloud coarsely
relocates the camera in a possibly large number of maps. This
first coarse relocation can take a significant amount of time, and
the camera may have moved when the relocation data arrives at
the client. The server sends to the client a small number of fil-
tered relocation candidates consisting of the closest keyframe
from the first stage and several close keyframes from the same
map; assuming that the camera may have moved during the re-
location search in the server. Figure 2 illustrates this process.

In the second stage, the client runs a fine-grained relocation
among the filtered candidate keyframes sent by the server. De-
lays are not influential in this second stage, as relocation has a
very small number of candidates and it is entirely done by the
client without data transmission. A scheme of this fine-grained
relocation can be seen in figure 3.

Tracking OK== ?

Get lost

Relocated

CLIENT SIDE

Figure 3: Fine-grained place recognition on the robot client. The robot client
tries to relocate with respect to the set of candidates coming from the first stage,
using the algorithm from section 4.3

5.5. Map fusion as a Cloud service

The map fusion is entirely done in the Cloud server in our
C2TAM framework; as it is a process that does not have real-
time constraints. An illustrative example of the map fusion al-
gorithm in the Cloud and the associated data traffic is shown in
figure 4. In figure 4.a a robot client R1 is tracking the camera
pose and uploading a new keyframe C1

3 to the mapM1. Every
new keyframe that is uploaded to the Cloud server is compared
with every map in the database. In this case the server detects
an overlap of this new keyframe C1

3 in M1 with the keyframe
C2

2 inM2. This is graphically shown in figure 4.b.
The map fusion algorithm from section 4.5 is then applied;

mapM1 andM2 being fused into a single mapM1,2 as is shown
in figure 4.c. Notice that this fusion might produce high traffic
between the Cloud server and the robot client as the keyframes
and points that did not have a local copy in the robot client –in
this case, the keyframes and points in mapM2– have to be sent.
But notice also that this process does not have strong real-time
constraints. The robot can track its pose with a suboptimal map
while new keyframes are arriving, as is shown in the experiment
in section 6.3.

In the case thatM2 is a large map and its download requires
a large amount of time, some heuristics can still be applied in
order to guarantee the robustness against latencies.

• When a map Mk is sent from the server to a client, the
keyframes

{
C1, . . . ,C j, . . . ,Cm

}
should be downloaded ac-

cording to their distance from the current camera frame
Tt. In this manner the client always has the best possible
estimation for the areas that are currently being visited;
while far areas might be outdated. We implemented this
heuristic in our code and did not observe a big difference
in our experiments, but it might be an important technical
detail in the case of large maps.

• While a large map Mk is being downloaded, the client
can be exploring new areas and hence uploading new
keyframes to the server. The estimated pose of these new
keyframes might take a long time to be downloaded by
the client, as the large map Mk has to be downloaded
first. The solution for this problem is to perform a lo-
cal Bundle Adjustment in the server any time a new key-
frame arrives, and send it to the client with high prior-
ity. In this manner, we are sure that a first initial seed
for new keyframes will be sent very quickly to the client
and tracking is not lost. Again, we did not encounter this
problem in our experiments but it might be a relevant is-
sue for large mapping in the Cloud.

6. Experimental results

In this section we detail 4 experiments that show different
modes of use of the proposed C2TAM framework. All the ex-
periments were recorded using RGBD cameras at 640 × 480.
Nevertheless, it should be noted that only the RGB channels are
effectively used for the visual SLAM and the depth from the D
channel is only used for visualization. All the experiments were
run in real-time and using the standard wireless of our Univer-
sity, demonstrating that the proposed system is resilient to its
network delays.

The experimental results are organized as follows. In sec-
tion 6.1 a single-user-single-map experiment is performed to
evaluate the cost and bandwidth required for the operation of
the tracking, mapping and relocation components. Section 6.2
shows a single-user-multiple-maps experiment to demonstrate
the real-time place recognition capabilities. Once the real-time
relocation in a stored map is shown, section 6.3 shows how an
online estimation of a map can be fused with a previously stored
map. Finally, section 6.4 presents a multiple-user-multiple-map
experiment where two independent maps of the same room are
first estimated, fused when a significant overlap is detected, and
the two users keep enlarging the joint map cooperatively after
the fusion.

6.1. Cost and Bandwidth Analysis

In this experiment, a single user is estimating a single map.
Our aim is to illustrate the computational advantages of the
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Figure 4: Map fusion in the Cloud. a) The robot client R1 uploads a new
keyframe C1

3 to the map M1. b) The keyframe C1
3 in M1 presents an overlap

with the keyframe C2
2 inM2. c)M1 andM2 are fused intoM1,2 and the fused

map is downloaded by the robot client R1.

proposed architecture with a simple example before going into
more elaborate examples. The camera tracking client was run
on a laptop (Intel Core i7 M 620 at 2.67GHz, 4GB RAM) and
the mapping service was run on a desktop PC (Intel Core i7-
2600 at 3.4GHz, 8GB RAM). Both processes, tracking and
mapping, have been implemented using ROS (Robot Operating
System) [37] and the open source libraries of PTAM [3]. The
tracking client and the mapping server were connected through
the standard wireless connection in our institution.

Figure 5 shows in a double-axis figure the computational
cost per frame of the tracking client and the size of the map for
a 4961 frame experiment. It can be seen that the tracking cost
remains constant at around 10ms –even when the map size is
growing–, well under the threshold imposed by the frame rate
of the sequence that is 33ms. This suggests that the tracking
could be done on a lower-performance computer. Notice that
with a proper policy of reducing the number of measured points
–as done in [38]– this cost could be even lower and the tracking
run on mobile phone devices. Notice also the high computa-
tional cost (around 70ms per frame) of the first 20 frames of
our algorithm. This is caused by the automatic initialization
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Figure 5: Computational cost of the camera tracking client for a 4961 frame
experiment and map size. Notice the almost constant complexity and low cost
of the tracking thread, even when the map size grows.

described in section 4.1. This is clearly a line for future work,
as we are able to avoid the manual initialization of PTAM and
the initialization algorithm works at an even lower frame rate.
However, the cost is rather high and should be reduced.

Figure 6 shows the bandwidth required for the algorithm in
the same experiment. The horizontal axis is set in seconds to
compare with the bandwidth of a standard wireless. The blue
spikes show the required bandwidth for the data from tracking
to mapping, registered at the time the data arrives. Notice that
all the blue spikes are of the same height. This is because the
only communication from the tracking client to the mapping
server comes from uploading keyframes, which have the same
size. The red spikes stand for the data flow from the mapping
to the tracking. This data flow is the download of the 3D points
from the map.

Notice also in figure 6 that the server-to-tracking data flow
–the red spikes– slightly increases over time. This comes as a
result of the map becoming larger as we explore. While this
is not a problem for the experiments described in this paper,
it might become a relevant issue for very large maps. In this
case, the same solution we proposed in section 5.5 applies: the
keyframes and points that are closer to the current camera pose
should be given a higher priority for the client not to lose track.

C2TAM succesfully built the map from this sequence using a
standard wireless connection. The average bandwidth required
was around 1MB/s; which should be less than the maximum
available –a standard number is 3.75MB/s. We measured the
specific bandwidth in our institution and found it to be around
1.45MB/s; below the maximum but still enough to guarantee
the good performance of our algorithm.

With the figures above, we can roughly estimate the delays
in the data transmission. New keyframes that are sent from the
client to the server are 640 × 480 RGB images, whose size is
around 1MB. At a transmission rate of 1.45MB/s, the expected
delay is approximately 1 second. The data flow from the server
to the mapping is dependent on the map size and so are the de-
lays, but for the typical sizes of our experiments we estimated
a delay of 100 − 200 milliseconds. Notice that the two delays
are much bigger than the time between camera frames –1/30
seconds–; making the naı̈ve approach of sending every frame
to the server infeasible and justifying our approach. Notice also
that neither the mapping service nor the tracking client was in-
fluenced by this network latency in the communications with
the proposed C2TAM.
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Figure 6: Data flow produced by C2TAM in a sequence of 4961 frames (around
3 minutes). Red represents data from the mapping service to the tracking client,
blue represents data from the tracking client to the mapping server. Each peak is
registered at the time the data arrives. The average data flow for this experiment
was 1MB/s, below the usual wireless bandwidth of 3.75MB/s.

6.2. Relocation in Multiple Maps

In this experiment, three different maps were created using
the single-user-single-map mode from the previous section 6.1.
The RGBD sequences were recorded in different areas in our
research laboratory. The first one, called desktop sequence, was
recorded in the surroundings of the desktop of one of the au-
thors. The second one, called wall and bookshelf sequence, was
recorded pointing the camera at a bookshelf. Finally, the third
one, called hospital room sequence, was recorded in a replica
of a hospital room available in our laboratory.

After each map was created, it was saved and stored in the
Cloud server. Figures 7(a), 8(a) and 9(a) show some keyframes
for each of the sequences; that is the desktop sequence, the wall
and bookshelf sequence and the hospital room sequence in that
order. Figures 7(b), 8(b) and 9(b) show a 3D view of the es-
timated maps of the desktop, wall and bookshelf, and hospital
room respectively.

After these three maps were created, another sequence tra-
versing the whole laboratory and hence the three above men-
tioned areas was recorded. Figure 10 shows some keyframes of
this new sequence, named as laboratory sequence. Notice that
although this new sequence covers the same three scenes, the
new keyframes show some areas that were not seen before and
hence will be able to extend and improve the previous maps in
figures 7(b), 8(b) and 9(b).

In this new sequence, C2TAM tried to relocate the current
camera in one of the three previously stored maps as described
in section 4.3.

Once the camera was successfully relocated in one of the
maps, the tracking thread in the client added new keyframes to
this map and then extended and improved this map. Figures
7(c), 8(c) and 9(c) show the improved maps for each of the
scenes –desktop, wall and bookshelf, hospital room– respec-
tively. The maps were noticeably extended, as can be seen when
compared with the maps before the laboratory sequence was
processed (figures 7(b), 8(b) and 9(b)). Specifically, the desktop
map was extended from 2662 points and 28 keyframes to 3313
points and 47 keyframes, the wall and bookshelf map from 2711
points and 32 keyframes to 3987 points and 58 keyframes, and
the hospital room from 642 points and 29 keyframes to 1624
points and 58 keyframes.

After the relocation and improvement process, a set of mea-
surements has been performed in order to verify the accuracy
of the maps generated by C2TAM. Figure 11 shows the mea-

(a) Sample keyframes from the desktop sequence.

(b) Map estimated from the desktop sequence.

(c) Estimated map for the desktop after the laboratory sequence

Figure 7: Keyframes and map for the desktop scene.

surements taken, and the Table 1 contains the comparison of
these measurements with the ground truth of the scenarios. The
ground truth measurements were made by a tape measure with
millimeter precision due to the tape resolution.

6.3. Overlapping map fusion

This experiment aims to show the map fusion capabilities
of the proposed C2TAM system. The mapping server contains
the maps estimated for the previous experiments. We run the
C2TAM on a sequence imaging a desktop. We will denote this
scene as desktop A. The camera later moves to another desktop
that we will call desktop B. Figure 12(a) shows the estimated
map of desktop A, just before moving to desktop B.
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(a) Sample keyframes from the wall and bookshelf sequence.

(b) Map estimated from the wall and
bookshelf sequence.

(c) Estimated map for the wall and
bookshelf after the laboratory se-
quence

Figure 8: Keyframes and map for the wall and bookshelf scene.

(a) Sample keyframes from the hospital room sequence.

(b) Map estimated from the hospital
room sequence.

(c) Estimated map for the hospital
room after the laboratory sequence

Figure 9: Keyframes and map for the hospital room scene.

Figure 10: Sample keyframes from the sequence traversing the whole labora-
tory.

Among the maps in the server there is an estimated map
of desktop B, which is shown in figure 12(b). As the camera
goes from desktop A to desktop B and adds keyframes to the
map, the similarity of the new keyframes and every keyframe
in every other map in the server is computed. When the camera
reaches desktop B, the map fusion process detects the similar-
ity with a keyframe from a previous map (see the keyframes
from both maps in figure 13) and merges them into one. Fig-

Map Element C2TAM ground truth
Desktop Laptop 0.340 0.337
Desktop Table 1.107 1.102
Desktop Window 1.205 1.201
Room Bed 2.039 2.044
Room Cabinet 0.418 0.420
Room Walls 3.105 3.096
Wall Bookshelf 2.723 2.727
Wall Door 1.790 1.795
Wall Table 1.106 1.107
Wall Whiteboard 1.267 1.264

Table 1: Comparison between C2TAM measurements and the ground truth. All
the measurements are in metres.

ure 12(c) shows the map when the similarity is detected, and
figure 12(d) shows the map after merging with the map in the
database. Notice the correct alignment after the map fusion in
this latest figure.

Regarding the map fusion process, the communication flow
between tracking and mapping is the critical point. C2TAM
deals with this providing an approach that efficiently manages
the amount of data exchanged between processes. Once the
overlap is detected, the mapper server merges both maps and
has to send the new keyframes and points to the tracker.

In the experiment proposed, the current map desktop A (112
keyframes and 7925 points) is fused with a previous map desk-
top B stored in the server (42 keyframes 4098 points). This
process involves sending the new keyframes and points from
the server to the client. In this case the data flow generated
is 16 MB, according to the standard wireless bandwidth. This
communication takes about 5 seconds. This time could be re-
duced taking into account the principle of locality: if the server
starts to send only the information related with the keyframes
close to the pose of the current camera, the data flow will be
reduced.

Despite the amount of data flow exchanged, the client per-
formance is not affected. The client is working with a subop-
timal map while the mapping is sending the new information
about the keyframes and points. The client can work properly
because the working area is covered by keyframes contained
in the suboptimal map. Once new information (keyframes and
points) arrives, the client takes into account this information in
the tracking process and updates the local copy of the map.

For more details on the experiment in this section, the reader
is referred to the video accompanying the paper 1.

6.4. Cooperative SLAM

This section shows a cooperative SLAM experiment using
the proposed framework. The aim is mapping an office using
several cameras initially unaware of each other. The clients at-
tached to the cameras perform tracking in each map separately.

1A high resolution version of the video can be found at http://webdiis.
unizar.es/~riazuelo/videos/c2tam_desktop.mp4

10



0.34
0m

1.205
m

1.107m

2.
03

9
m

   0.418m

3.105m

1.790m

  2.723m

1.267m

1.106m

Figure 11: Set of the measurements taken on the scenarios.

(a) Map of desktop A, estimated on-
line.

(b) Map of desktop B, stored in the
mapping server.

(c) Map of desktop A when a common area with the map of desktop B is
detected.

(d) Maps desktop A and desktop B after the fusion.

Figure 12: Several snapshots of the maps for the map fusion experiment.

Figure 13: Images of the keyframes of the previous (left) and the actual map
(right).

As shown in section 6.3, the server optimizes every map but
also looks for overlaps between them. When an overlap is de-
tected, the server fuses both maps. From there, both trackers
operate on the new fused map.

Figure 14: Initial images taken by first tracker (left) and second tracker (right).

Specifically, we used two RGBD cameras and cooperatively
mapped an office in real-time. Two laptops (Intel Core i7 M 620
at 2.67GHz, 4GB RAM) were attached to the cameras and acted
as clients. A PC (Intel Core i7-2600 at 3.4GHz, 8GB RAM) in
another building of our university acted as the server. In several
parts of the experiment the trackers were lost and were able to
relocalize as explained in section 4.3.

Figure 17 shows the scene to be mapped. Figure 14 shows
the initial images taken by the two cameras. Notice that the
areas do not overlap and hence two different maps are started:
the first one of a desktop and the second one of a bookshelf.
Figure 15 shows the 3D estimated maps after some keyframes
have been added.

When the second tracker approaches the desktop area, even-
tually a significant overlap is found. Figure 16 shows the actual
image of the second tracker just before the fusion and an image
of the first tracker from the beginning of the experiment when
this area was mapped. Notice that the image approximately
shows the area above the desktop where the first map started.
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After the overlap detection and motion estimation, both maps
are finally fused. Map 1 contained 25 keyframes and 1578
points, and map 2 38 keyframes and 4833 points. The fused
map contains 63 keyframes and 6302 points. Notice that while
the number of keyframes is the sum of the individual maps, this
does not happen with the number of points as the duplicated
ones are deleted. Figure 18(a) shows the individual 3D maps
of each tracker before the fusion and figure 18(b) shows the fi-
nal map after the fusion. After the fusion both trackers map the
scene over the same map. The following figure 19 shows the
potential of the framework for cooperative SLAM: the second
tracker stops mapping (figure 19(b)), and the first tracker con-
tinues exploring and expanding the office map (figure 19(a)).
Figure 19(c) shows the map before and after the expansion. Fi-
nally, when tracker two starts moving again, it is able to relocal-
ize in the area that tracker one has mapped as both are working
on the same map instance.

Figure 15: 3D estimated maps by first tracker (left) and second tracker (right).

Figure 16: Images of both trackers on the same area. First tracker (left) second
tracker (right).

Figure 20 shows the final 3D reconstruction built cooper-
atively by the two cameras. This final map contains 100 key-
frames and 7483 points. We encourage the reader to see the
video 2 of the experiment for further understanding.

7. Conclusions and future work

The paper describes a novel framework for distributed keyframe-
based SLAM where the map optimization is moved to a server
or an array of them outside the robot –the Cloud–. The robot
only has to run a light camera tracking and client relocation and
has access to an Internet connection. A direct consequence is
that the computational load on the client side –on the robot–

2A video of the whole experiment can be found at http://webdiis.
unizar.es/~riazuelo/videos/c2tam_room.mp4

(a) 3D maps of each tracker before fusion. First tracker (left one) second
tracker (right one).

(b) Final map after fusion both maps.

Figure 18: 3D maps before and after fusion process.

is reduced. This reduction might be critical in robotic applica-
tions with strict constraints on both power and weight, such as
unmanned underwater or aerial vehicles.

Our algorithm exploits the fact that the state-of-the-art vi-
sual SLAM algorithms divide the Simultaneous Localization
and Mapping problem into two parallel threads, one for camera
pose tracking and the other for map optimization. Our experi-
mental results demonstrate that the communication between the
two threads is small enough to be supported by a standard wire-
less, and that the latency introduced by the network does not
influence the performance of the algorithm. In our experiments
we use an RGBD sensor, using the RGB images to align the
cameras and the point clouds from the D channel for visualiza-
tion and map fusion.

The most critical point of the algorithm where the latency
is important is the relocation with previous maps. This paper
contributes with a 2-stage relocation algorithm; an expensive
coarse relocation is run on the server over all the stored maps
and returns the specific map where the camera is, and a sec-
ond fine relocation downloads this map to the client and runs a
cheap relocation on the keyframes of this map. We have also
demonstrated the ability to build maps concurrently between
several sensors observing the same environment.

We have implemented a map fusion component that enables
the possibility of building a cooperative map of an environment.
Each robot can explore a new area and estimate a map while
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Figure 17: Panoramic snapshot of the experimental environment room.

(a) First tracker image. (b) Second tracker image.

(c) 3D map before and after the first tracker update

Figure 19: Cooperative update of the map.

the Cloud server looks for similarities with the maps that the
rest of the robots are estimating. Once the map of one robot is
detected to have a common area with another map, the Cloud
server will fuse both into a single one independently from the
tracking processes.

Figure 20: 3D map reconstruction by the two cameras.

We believe that the allocation of the bulky map estimation
and management in a Cloud of servers outside the robot sets
the basis for the mapping systems to exploit the next step of
computing power in order to keep track of Moore’s Law. Addi-
tionally, it opens the door to a new array of possibilities: 1) the
online estimation can be massively parallelized and hence very
large maps can be optimized in a short time (like in [39]); also,
parallelizing the relocation could boost the number of maps that
can be managed in a reasonable time. 2) The developed algo-
rithms provide the basis for the interface of a map database in
the Cloud. 3) The map can be improved and enriched offline
with expensive computations that cannot be done online, both
geometric (e.g., map smoothing assuming a planar environment
[40] or free space estimation [9]) and semantic (e.g., recogni-
tion of objects [6, 7]). The new geometric or semantic features
will be available if a later user relocates itself in a previous map
and downloads this map. 4) The massive storage of maps in the
Cloud could serve as a training database for learning algorithms
to model the commonalities of robotic maps and their variations
in the temporal dimension.
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