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Abstract

Automated tridimensional scene and egomotion estimation from the only
input of a set of images taken by a monocular camera has been a long-term
aim in the Computer Vision community since the decade of the eighties. As
the result of intense research, the so-called Structure from Motion (SfM)
problem has experienced great advances.

Automated detection of salient features in natural images and the poste-
rior establishment of correspondences along the rest of the images has been
one of the first milestones in this thread of research. Also, geometric rela-
tionships between pairs of images have been modeled based on projective
geometry concepts including the most general cases; assuming no known
information about the scene and including degenerate configurations and
uncalibrated settings. From these relations and a set of matches, relative
transformations between pairs of camera poses and scene structure can be
estimated. This initial solution can be refined in a non-linear optimization
stage –known as Bundle Adjustment (BA)– in order to obtain a globally
consistent estimation.

Differently from this main trend based on pairwise initial estimation fol-
lowed by Bundle Adjustment, filtering-based SfM estimation have received
considerably less attention and still lacks a thorough analysis of the main
geometric issues tackled by SfM research along the latest three decades: pro-
jective modeling of the scene, estimation under degenerate configurations
and self-calibration. This thesis’ main aim is to assess the efficacy, accu-
racy and quality of the filtering-based SfM incorporating all the previously
mentioned subjects. Real-time performance at 30 frames per second has
been demonstrated for the contributions presented in this thesis, opening
the path for real applications.

Specifically, the main contributions in this thesis are 1) the introduc-
tion of the projective concepts of low-parallax points and points at infinity
in a filtering framework and, based on that, the proposal of a drift-free
real-time mosaicing algorithm; 2) a projective coding for 3D points based
on explicit inverse depth parametrization, able to cope with low and high
parallax configurations in an undelayed and unified manner; 3) the use
of a camera-centered filtering scheme that reduces linearization errors; 4)
an efficient 1-Point RANSAC that exploits prior knowledge from filtering;
5) a probabilistic approach to model selection –opposed to the standard
one based on geometric reprojection error and regularization terms– well
suited to a Bayesian filtering scheme; and 6) a Sum of Gaussians filter
that allows accurate full camera self-calibration in a filtering framework.
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Chapter 1
Introduction

One of the most brilliant quotes attributed to Albert Einstein says that
you do not really understand something unless you can explain it to your
grandmother. With that in mind, computer vision researchers should con-
sider themselves rather lucky to be able to summarize the main aim of
their discipline with a simple and understandable sentence like “making a
computer see”. On the other hand, the lexical simplicity of this objective
hides a very complex reality which very often people are tricked into. Even
relevant researchers of the field are said to have fallen into the trap: The
anecdote that Marvin Minsky, Artificial Intelligence pioneer from MIT, as-
signed to solve the whole computer vision problem as a summer project to a
degree student back in the sixties is an illustrative and well-known example
[Hartley & Zisserman 2004].

The truth behind this apparent simplicity is that, although we all have a
clear experience about what “to see” implies, the biological mechanisms of
visual processing are yet not fully understood. And even if we knew it, we
could also wonder if a machine needs –or will be able to run– a visual sensing
similar to ours. This lack of a precise definition about what “to see” really
means and needs have made of computer vision a diverse and fragmented
discipline.

In spite of this, computer vision has experienced great advances since
its appearance. Computers still cannot see, but nowadays most of them are
able to use visual information in one or another sense. Also, cameras are
becoming the dominant sensor modality in many fields, for example in the
robotics research or the industry of videogames.

The general frame of the work is one of these uses of visual information,
specifically how visual information can be processed to extract a sparse tridi-
mensional estimation of the imaged scenario and the motion of the camera
into it. Figure 1.1 shows a typical example of the estimation results in this

1
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Thick red: low innovation inliers. Thin red: high innovation inliers. 
 Magenta: rejected by 1−point RANSAC. Blue: No match found by cross−correlation
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(a) Image from the input sequence
and tracked features. Ellipses in the
image are the regions where the corre-
spondences are searched. Correspon-
dences are plotted as green crosses.

Thick red: low innovation inliers. Thin red: high innovation inliers. 
 Magenta: rejected by 1−point RANSAC. Blue: No match found by cross−correlation
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(b) Top view of the 3D estimation
results. The black triangle stands
for the current camera pose, and
the black line is the estimated tra-
jectory up to the current frame.
The estimated features are plot-
ted as red crosses and their uncer-
tainty as red ellipses.

Figure 1.1: Example illustrating the usual EKF SfM or monocular SLAM
processing.

thesis 1. Subfigure 1.1(a) shows the image k in the video sequence, along
with the tracked features. Subfigure 1.1(b) shows a 3D top view of the esti-
mation results: the black triangle stands for the current pose of the camera,
the black line is the trajectory up to the current frame, and the red ellipses
represent the 3D 95% uncertainty region for the point features.

The algorithms described in this book provide a theoretical framework
to perform a sequential estimation of a camera motion and 3D scene from
the only input of an image sequence and in real-time up to 30 frames per
second. As a nice feature, the contents of the book allow to perform such 3D
estimation out-of-the-box ; that is, for any sequence and any camera motion,
assuming no knowledge over the scene nor the internal camera calibration
parameters.

This comes from the application of solid theoretical concepts, deeply
rooted in multiple view geometry and probability theory. As another out-
put of the application of a well-founded theory, also the length and the
accuracy of the estimation are greatly improved; from waggling camera mo-
tion in indoors scenarios and sequences of around a minute to half-an-hour
sequences of tens of thousands frames taken by a robot covering trajectories
of hundreds of metres.

1Produced with the open source Matlab code in http://webdiis.unizar.es/

~jcivera/code/1p-ransac-ekf-monoslam.html
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1.1. Structure from Motion and Monocular SLAM

1.1 Structure from Motion and Monocular SLAM

1.1.1 Structure from Motion

Inside the computer vision field, Structure from Motion (SfM) is the
line of research that, taking as the only input a set of image correspon-
dences, seeks to infer in a totally automated manner the 3D structure
of the scene viewed and the camera locations where the images where
captured. SfM has been one of the most active areas of research for
the latest three decades, reaching such a state of maturity that some of
its algorithms have already climbed to the commercial application level
[2d3 2011, Autosticht 2011, PhotoTourism 2011].

SfM origins can be traced back to the so-called photogrammetry, that
since the second half of 19th century aimed to extract geometric infor-
mation from images. Starting with a set of features manually identi-
fied by the user, photogrammetry makes use of non-linear optimization
techniques known as Bundle Adjustment (BA) to minimize the reprojec-
tion error [Mikhail et al. 2001]. The research done by the computer vi-
sion community has been mostly oriented to achieve the complete au-
tomation of the problem and has produced remarkable progress in three
aspects: first, the constraints imposed on the motion of the features in
two –or three– images under the assumption of the rigidity of the scene
have been formalized, even in the case of degenerate motion and uncal-
ibrated camera [Hartley & Zisserman 2004]; second, intense research on
salient feature detection and description with a high degree of invariance
[Canny 1986, Harris & Stephens 1988, Lowe 2004]; and third, spurious re-
jection [Fischler & Bolles 1981, Rousseeuw & Leroy 1987]. The result is an
automated way of robustly matching point and line features along images
and estimate the geometric relations between pairs.

Based on these three achievements several methods have been proposed
that, from a set of images of a scene, are able to estimate the three-
dimensional structure and camera locations up to a projective transfor-
mation in the most general case of uncalibrated cameras. With some ex-
tra knowledge about the camera calibration, a metric solution up to scale
can be obtained. This SfM estimation from constraints between pairs or
triplets of images is usually followed by a Bundle Adjustment (BA) step
[Triggs et al. 2000] that minimizes the reprojection error and refines this
initial pairwise estimation into a globally consistent one.

1.1.2 Monocular SLAM

On the other hand, the estimation of the ego-motion of a mobile plat-
form and its surroundings has also been tackled by the robotics community
from a slightly different point of view. The so-called SLAM (standing for
Simultaneous Localization and Mapping) [Durrant-Whyte & Bailey 2006,
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Bailey & Durrant-Whyte 2006] has been referred as one of the fun-
damental problems in mobile robotics research. The SLAM ad-
dresses the estimation of the motion of a mobile robot and a map
of its surroundings from the data stream provided by one or sev-
eral sensors. The first SLAM approaches made use of multiple sen-
sors, e.g. laser [Castellanos et al. 1999, Newman et al. 2002], radar
[Dissanayake et al. 2001], or sonar [Tardós et al. 2002]. Most of the times,
wheel odometry measurements were also included in the estimation and
sensorial fusion was also frequently performed [Castellanos et al. 2001]. As
computer vision algorithms became mature enough, vision gained a predom-
inant position in this sensor fusion schemes and even was used as the only
sensorial input. Monocular SLAM refers to the use of a monocular cam-
era as the dominant (even only [Davison et al. 2007]) sensor for performing
SLAM.

Structure from Motion and monocular SLAM present another difference
that is rather relevant for defining the purposes of this book. While SfM
has dealt with the problem in its most general form –that is, for any kind
of visual input–, monocular SLAM has focused in sequential approaches for
the processing of video input. This comes as a consequence of the speci-
ficity of the robotic application; as the sensorial input in a robot comes
naturally in the form of a stream. A mobile robot also needs sequential es-
timation capabilities: at every step the best possible estimation is required
in order to insert it in the control loop, and hence batch processing does
not make sense. This sequential constraint is not limited to the robotics
applications: Augmented reality, for example, also needs a sequential es-
timation in order to coherently and smoothly insert a virtual character in
every frame of a sequence and hence can make use of monocular SLAM
algorithms [Klein & Murray 2009].

1.1.3 Structure of the problem

Following the notation in [Strasdat et al. 2010a], both SLAM and SfM can
be represented in terms of a Bayesian network. Figure 1.2 shows a simpli-
fied example that illustrates this. In the Bayesian network in this figure, the
variables we are interested in estimate are: xCk , containing a set of parame-
ters related to the camera that captured image Ik –in the most general case,
internal and external calibration parameters; and yi, containing a set of
parameters modeling a 3D feature in the scene. The observed or measured
variables are zki , that represent the projection of a feature i in an image
Ik. The measurement model imposes constraints between the variables we
want to estimate and the image measurements, that are the arrows in the
net. As long as we have enough constraints, the variables xCk and yi can be
estimated up to a certain extent [Hartley & Zisserman 2004]. Notice that in
the specific case of an image sequence input, extra constraints can be added
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Figure 1.2: Bayesian network for SfM

from the variables of one camera xCk to the next one xCk+1
by modeling the

dynamics of the camera motion. In 1.2, this extra links that may appear in
the formulation are plotted in dotted line.

For the sake of clarity, figure 1.3 models the previous example as a
Markov random field. Here, the constraints imposed by the image mea-
surements zki and the motion model are represented by the links between
the hidden variables. If one were to solve this Bayesian network offline,
the standard approach would be to perform a global optimization over the
whole network. Such global optimization in this specific 3D vision prob-
lem receives the name of Bundle Adjustment [Triggs et al. 2000]. In order
to initialize the iterative Bundle Adjustment optimization, the correspon-
dences between pairs or triplets of images provide the geometric constraints
to calculate their relative motion [Hartley & Zisserman 2004, Nistér 2004].

The estimation of the 3D estructure and camera motion in a sequential
manner can be modeled with a Markov random field very similar to the one
in figure 1.2; but taking into account that the network grows at every step
with the addition of new camera poses for each frame processed, new 3D
features as the camera images new areas, and new tracked image features
that link both. This new Markov random field is shown in figure 1.4. The
aim in sequential SfM –or monocular SLAM– consists of propagating over
all the hidden camera and feature variables every new image evidence. At
the most basic level of local SLAM, two different approaches are mostly used
nowadays:

• Keyframe-based SLAM. This first approach adapts the offline Bun-
dle Adjustment to fit the sequential processing of a video sequence.
The SLAM computation is separated into two parallel threads: first,
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Figure 1.4: Markov random field for sequential SfM or monocular SLAM
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Figure 1.5: Keyframe-based SLAM

one thread for high frame rate camera tracking, where the cam-
era pose is estimated from the known features that are already in
the map. The second thread performs, at a much lower rate, a
global optimization over the tracked features and a selected set of
keyframes in the image sequence. Such keyframes can correspond
to the whole sequence [Klein & Murray 2007, Klein & Murray 2008,
Konolige & Agrawal 2008, Strasdat et al. 2010b] or a sliding window
around the current frame [Nistér et al. 2006, Mouragnon et al. 2006,
Konolige et al. 2007]. The tracked camera pose in the first thread
serves as the initial seed for this iterative non-linear refinement in the
second thread.

Figure 1.5 illustrates this first approach. Notice that in this simplified
example the intermediate cameras xC2 and xC3 are not keyframes and
hence are removed from the estimation. Notice also that the links
between features y2, y3, y4, y5 and camera poses xC2 and xC3 have
been also removed from the estimation and hence their information is
lost.

• Filtering-based SLAM. Differently from keyframe optimization, filter-
ing marginalize out the past poses and keep a joint probabilistic es-
timation over the current pose and the 3D map features. A filtering
algorithm adds at every step the current camera variables to the es-
timation, marginalizes out previous cameras and update the whole
network based on the image measurements in the current frame.

Figure 1.6 illustrates this in the proposed example. Notice that the
marginalization of a past pose introduces probabilistic links between
every pair of features in the map that do not appear in the keyframe
SLAM methods. The Markov random field in figure 1.6 presents less
nodes than the keyframe-based one in figure 1.5, but on the other
hand extra links have appeared between every pair of features. It is
also worth remarking that filtering algorithms marginalize the links
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Figure 1.6: Filtering-based SLAM

between past camera poses and features –that is, they integrate their
information into the current state– instead of removing them like
keyframe SLAM does.

The more sparse structure of the links in keyframe SLAM methods makes
them less computationally demanding than filtering-based ones. It can be
argued that they also process less information than filtering methods: in
figure 1.5 only the correspondences in images Ii; i = 1, 4, which are the
links between camera parameters xC1 and xC4 and features yi; i = 1, . . . , 6
are considered in the estimation. A filtering algorithm is able to integrate
the information in every image Ii; i = 1, . . . , 4 before marginalizing past
camera parameters. Nevertheless, it has been demonstrated very recently
[Strasdat et al. 2010a] that the ratio between the information gained by con-
sidering this extra cameras and the computational cost derived from a denser
structure compared with a keyframe SLAM is small enough to be worth.

Filtering algorithms maintain a joint probability density estimation over
the current camera and map in a more efficient manner than keyframe ones.
Most of the times, the high accuracy of the 3D visual estimation in a prac-
tical setting makes unnecesary the computation of such uncertainty. How-
ever, it is also true that the computation of such uncertainty distribution
can be profitable in critical situations –e.g intialization, small number of
map points or quasi-degenerate configurations [Frahm & Pollefeys 2006]—.
Filtering methods could be advisable in this case.

Structure from Motion under a Bayesian filtering framework, or vi-
sual SLAM, has been a relevant chapter on 3D estimation from im-
ages with examples as [Davison 2003] based on Extended Kalman Fil-
ter, [Eade & Drummond 2006] based on particle filters, [Holmes et al. 2008]
based on Unscented Kalman Filter and [Eade & Drummond 2007] based on
Information Filters. This book targets visual systems based on the Extended
Kalman Filter (EKF); having the system in [Davison et al. 2007] as its base-
line. Nevertheless, most of the concepts proposed can be extended from the
EKF to the other filtering schemes. Although the Extended Kalman Fil-
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ter is often accused of consistency problems due to its strong requirements
for linearity and Gaussianity [Julier & Uhlmann 2001, Bailey et al. 2006,
Castellanos et al. 2007]; it will be shown along the results of this book that
those requirements hold for the Structure from Motion problem at a local
scale and the EKF performance matches that of other methods. Further
insight in this issue can also be read in the recent [Solà et al. 2011].

1.2 Background

In order to fully apprehend the material included in this book, the
reader should be familiar with SLAM, Bayesian estimation and Geome-
try of Multiple Views. Regarding SLAM, the reader is referred to the
survey in [Durrant-Whyte & Bailey 2006, Bailey & Durrant-Whyte 2006],
that describes the SLAM problem and covers the essential algorithms.
[Davison et al. 2007] describes the first monocular SLAM system demon-
strating real-time performance and that we take as the starting point of this
book. [Bar-Shalom et al. 2001, Gelb 1999] are excellent references for esti-
mation and tracking from a general point of view. [Thrun et al. 2005] covers
the main sequential estimation techniques applied in robotics including the
Extended Kalman Filter; and hence is particularly advisable. The appendix
A in this book contains a very detailed description of the Extended Kalman
Filter formulation used along the book aimed to help the implementation of
the presented results.

Regarding single and multiple view geometry, the first chapters of
[Hartley & Zisserman 2004] introduce projective parameterizations, that
will be discussed along the book, and the camera model that we use along
the book. Regarding salient point detection and description, although a
wide array of detectors and descriptors with a high degree of invariance
are available for feature extraction and matching [Mikolajczyk et al. 2005,
Mikolajczyk & Schmid 2005], the results presented in this book make use
of the Harris corner detector [Harris & Stephens 1988] and plain normal-
ized cross-correlation [Brown et al. 2003] between warped image patches
[Hartley & Zisserman 2004] for matching. The maintenance of the prob-
abilistic estimation over camera and features makes possible to warp planar
patches according to the relative motion between frames, making unnece-
sary a high degree of invariance. For some of the results in the book, the
FAST detector [Rosten & Drummond 2005] has also been used, reducing
the feature extraction cost without noticeable performance improvement
nor degradation.

9



Chapter 1. Introduction

1.3 Outline of the Book

The main aim of this book is then to develop models and methods for
sequential SfM or monocular SLAM; fitting the projective nature of the
camera under a Bayesian filtering framework. In this section, the specific
topics of the book are introduced in more detail.

• Chaper 2: Points at Infinity. Mosaics using the Extended
Kalman Filter.

In Structure from Motion it is well known that cameras, as projective
sensors, are able to image very distant points, theoretically even points
at infinity. Several illustrative examples can be taken from our daily
lives: for example, we are able to see the stars even when they are
several million light years away. Homogeneous coordinates have pro-
vided an algebraic manner to manipulate very distant points in SfM.
Although distant features do not provide information for estimating
the camera translation, they have proved to be very useful to estimate
its orientation. Following the previous example, we cannot estimate
our position in the earth looking at the stars, but we can extract very
precisely directions –where the North is– by looking at them.

Although the notation close and distant points may be the most in-
tuitive one, the accuracy of the estimation in multiview geometry is
actually governed by the parallax angle. The parallax angle is the an-
gle formed by the two projection rays that goes from a point feature
to the optical centers of two cameras. The bigger this angle, the more
accurately the depth of the point can be estimated. Low values for this
angle may be caused by distant features, but also by small translation
between two images.

Early visual filtering estimation techniques
[Ayache & Faugeras 1989, Matthies et al. 1989, Broida et al. 1990,
Azarbayejani & Pentland 1995, Chiuso et al. 2002, Davison 2003] had
limitations with these low-parallax points. Hence, they were losing an
important source for orientation information and limiting the use of
cameras in outdoors scenarios where these type of features are rather
common. This chapter discusses the value of such low-parallax points
for camera orientation estimation. The extreme case of a camera
undergoing pure rotational motion –and hence zero-parallax points–
is presented and processed using a filtering algorithm able to estimate
camera rotation and point directions in real-time at 30Hz. Loop
closures of 360◦ are achieved as a proof of consistency.

A mosaicing application is also build on top of the estimated backbone
map. This mosaicing algorithm directly inherits the advantages of the
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EKF processing, being the first mosaicing technique that presents real-
time drift-free spherical mosaicing results for camera rotations of 360◦.

• Chaper 3: Inverse Depth Parameterization.

The step that naturally follows camera rotation and zero-parallax
point estimation is a unified parametrization for low and high par-
allax features, allowing to estimate camera rotation and translation.
The key concept of the parametrization proposed in this chapter is the
direct coding of the inverse depth of the features relative to the cam-
era locations from which they were first viewed. This inverse depth
parametrization offers two key improvements with respect to the stan-
dard Euclidean one. First, as homogeneous coordinates, it is able
to model zero-parallax points. And second, the addition of the ini-
tial camera position improves the degree of linearity of the projection
equation, which is a crucial requirement for the Extended Kalman
Filter.

The inverse depth point feature model solves in an elegant manner
what was called in monocular SLAM the initialization problem: Pre-
vious point feature models were unable to be inserted from the frame
they were first seen in the general estimation framework due to the
unobservability of the depth along the projection ray. The usual ap-
proach was to delay this initialization until the feature depth converged
to a value. Features initialized in such delayed manner would not con-
tribute to the estimation until they show parallax enough. Notice
that, in the common case of zero-parallax features, they would never
be added to the estimation and hence their information would be lost.
Inverse depth feature initialization is undelayed in the sense that even
distant features are immediately used to improve camera motion es-
timates, acting initially as bearing references but not permanently
labeled as such.

The inverse depth parametrization remains well behaved for features at
all stages of SLAM processing, but has the computational drawback
that each point is represented by a six dimensional state vector as
opposed to the standard three of a Euclidean XYZ representation.
We also show in this chapter that once the depth estimate of a feature
is sufficiently accurate, its representation can safely be converted to
the Euclidean XYZ form, and propose a linearity index which allows
automatic detection and conversion to maintain maximum efficiency
— only low parallax features need be maintained in inverse depth form
for long periods.

• Chaper 4: 1-point RANSAC.

This chapter has a double objective: first, it is aimed to illustrate for
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the first time how filtering-based visual SLAM methods, without nei-
ther submapping nor loop closure capabilities, can reach an accuracy
and trajectory length comparable to keyframe methods. Specifically,
a camera-centered Extended Kalman Filter is used here to process a
monocular sequence as the only input (and also combined with wheel
odometry), with 6DOF motion estimated. Also in this chapter fea-
tures are kept “alive” in the filter while visible as the camera explores
forward and are deleted from the state once they go out of the field
of view. In a few words, the EKF operates in a “visual odometry”
[Nistér et al. 2006] mode.

“Forgetting” the map permits an increase in the number of tracked fea-
tures per frame from tens to around a hundred. While improving the
accuracy of the estimation, it makes computationally infeasible the ex-
haustive Branch and Bound search performed by standard JCBB for
match outlier rejection. As the second contribution that overcomes
this problem, we present here a RANSAC-like algorithm that exploits
the probabilistic prediction of the filter. This use of prior informa-
tion makes it possible to reduce the size of the minimal data subset
to instantiate a hypothesis to the minimum possible of 1 point, in-
creasing the efficiency of the outlier rejection stage by several orders
of magnitude.

Experimental results from real image sequences covering trajectories
of hundreds of meters are presented and compared against RTK GPS
ground truth. Estimation errors are about 1% of the trajectory for
trajectories up to 650 metres.

• Chaper 5: Degenerate Camera Motions and Model Selection.

Degenerate camera motions have a capital importance from a practical
point of view of implementing real systems. For example, if a camera is
attached to a mobile robot, there will be large periods when the robot
is stopped. Pure rotation motion is also very frequent in industrial
robotic arms. Even in hand-held camera motion estimation, there
will be periods where the camera is almost still, and rotations are
more easily performed than large translations –particularly in outdoor
environments.

Any estimation algorithm modeling a general camera motion in any
of the above situations will fail. What happens here is that the image
noise incorrectly fits the extra parameters of the model. This prob-
lem is referenced in the SfM literature, where model selection schemes
are used when degenerate motion may be encountered. This schemes
discriminate models based on two terms: a term based on the repro-
jection error, which basically discards simplistic models; and an ad
hoc penalty term based on the complexity of the model that avoids
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selecting overparameterized models.

What we propose here is a model selection scheme that computes prob-
abilities over models, based on research on model selection carried out
by the tracking community. In a probability-based scheme, simplis-
tic methods will receive low probabilities, but also overparameterized
ones as their probability distribution function expands over unneces-
sary dimensions. Ad-hoc penalty terms for complex models are not
needed in the proposed probability-driven model selection.

• Chaper 6: Self-calibration.

The Structure from Motion methods were developed assuming a min-
imum or even null knowledge neither about the camera nor the scene.
We have already commented in previous paragraph that model selec-
tion algorithms were developed to cover every possible type of scene
and camera geometric configuration. The geometric constraints that
correspondences should hold have been formalized even in the case of
any additional information than the images; that is, for cameras with
unknown and possibly varying calibration parameters. Using some
reasonable additional information a metric reconstruction, egomotion
estimation and internal self-calibration can be estimated up to a scale
factor.

While this is a well-known result, monocular SLAM
and sequential SfM have mostly used precalibrated
cameras [Davison et al. 2007, Klein & Murray 2008,
Konolige & Agrawal 2008, Mouragnon et al. 2009]. The authors
believe that self-calibration would improve the usability of the SLAM
algorithms. For certain applications, like augmented reality for
endoscopic surgery [Grasa et al. 2011], self-calibration is a must: you
cannot expect wasting the precious time of a medical team in a
tedious calibration of an endoscope.

As a step towards this out-of-the-box SLAM, this chapter presents
an algorithm for monocular SLAM or sequential SfM from an uncal-
ibrated image sequence. Camera internal calibration, egomotion and
3D scene structure are estimated from an image sequence without any
prior information.

• Appendix A: Implementation Details.

This first appendix aims at providing every implementation detail that
can be helpful for the reproduction of the algorithms in this book.
Along the first seven chapters the emphasis has been in the concepts
and experimental proofs; and some of the details have been hidden for
the sake of a more clear presentation. Particularly, this chapter details
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the computation of the Jacobians for the dynamic and measurement
models used along the book; which are needed by the EKF processing.

• Appendix B: Filter Tuning Understanding via Dimensional
Analysis.

As already said, it is a well known fact that in the best of the cases
the Structure from Motion or pure monocular SLAM estimation can
only provide a geometric estimation up to a scale factor. Nevertheless,
in the formulation adopted in this book, the parameters in the state
vector are modeled using metric units. More specifically, the filter
tuning parameters (e.g., the acceleration noise) are the ones set in
metric units and act as the metric priors for the 3D estimation. The
scale of the estimation in every monocular experiment of the book is
then meaningless, as it is unobservable, and comes as a result of the
metric priors introduced in the filter.

The geometric priors that induce the scale of our experiments are
detailed in this appendix. More importantly, this appendix shows a
dimensional analysis of the SfM problem that allows: 1) the identifi-
cation of the relevant magnitudes of the problem; and 2) the proposal
of a new dimensionless formulation that separates the real scale of the
estimation from the monocular SLAM and allows to represent the es-
timated parameters in terms of dimensionless length ratios and angles.
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Chapter 2
Points at Infinity. Mosaics using the
Extended Kalman Filter.

2.1 Introduction

2.1.1 Points at Infinity

In SfM, the well-known concept of a point at infinity is a feature which
exhibits no parallax during camera motion due to its extreme depth. A
star for instance would be observed at the same image location by a camera
which translated through many kilometers pointed up at the sky without
rotating. Such a feature cannot be used for estimating camera translation
but is a perfect bearing reference for estimating rotation. Homogeneous
coordinates, used in SfM, allow explicit representation of points at infinity,
and they have proven to play an important role during off-line structure and
motion estimation.

This chapter presents a real-time EKF filtering algorithm for consis-
tently estimating the motion of a rotating camera observing such points at
infinity. This algorithm introduces the use of infinity points in filtering SfM
approaches, stepping forward to the use of those algorithms in outdoors
environments where low-parallax features are very common. This step is
culminated in next chapter with a unified parameterization for close and
distant –even infinity– points. Here, the accuracy and consistency of the
estimated camera rotation and feature map is shown in 360◦ loop closures
experiments using real-image sequences.

2.1.2 Real-Time EKF-based Mosaicing

The second contribution of this chapter is the use of a consistent map of point
features as the basis for a real-time, drift-free mosaicing system. This is the
first algorithm which can build drift-free mosaics over the whole viewsphere
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in seamless real-time: no backtracking, batch optimization or learning phase
is required; and arbitrarily long image sequences can be handled without
slow-down.

Mosaicing involves accurately aligning a set of overlapping images based
on correspondences, normally between automatically-detected salient fea-
tures. While mosaicing does not require full 3D camera motion and scene
structure to be estimated, it can be considered as a reduced SfM problem
since it has the key requirements of simultaneously solving for camera pose
(in this case rotation) and feature locations (in this case directions without
a depth coordinate). Many different approaches to mosaicing have been
published, being the most relevant for this chapter summarized in section
2.2.1. All are based on pair-wise image matching to estimate local camera
motion. Those which aim to operate sequentially and in real-time simply
concatenate multiple motion estimates and are prone to drift as errors accu-
mulate. Those whose goal is globally consistent mosaics have a final off-line
optimization step which re-adjusts the motion estimates to bring them into
consensus.

As a key difference from previous works, image alignment is based here
on a filtering scheme. Under this approach, it is built a persistent, proba-
bilistic representation of the state of the sensor and scene map which evolves
in response to motion and new sensor measurements. Specifically, it is used
an Extended Kalman Filter (EKF) with a state vector consisting of stacked
parameters representing the 3D orientation and angular velocity of the cam-
era and the directions (i.e. viewsphere coordinates, since no depth can be
estimated for the scene points) of a set of automatically acquired features,
none of which need to be known in advance.

As a brief summary of the complete mosaicing algorithm, we take first
the image stream from a rotating camera, build an efficient, persistent SLAM
map of infinite points — directions mapped onto the unit sphere — and use
these as the anchor points of a triangular mesh, built sequentially as the
map eventually covers the whole viewsphere. Every triangle in the mesh
is an elastic tile where scene texture is accumulated to form a mosaic. As
each new image arrives, the probabilistic map of infinite points is updated
in response to new measurements and all the texture tiles are re-warped
accordingly. So, every measurement of a point potentially improves the
whole mosaic, even parts not currently observed by the camera thanks to
probabilistic knowledge of the correlations between estimates of different
features. This attribute is especially valuable when a loop is closed because
the whole map benefits from a large correction, removing drift.

The following chapter is organised as follows: After a literature review
and comparison between off-line and sequential approaches in section 2.2;
section 2.3 covers the essentials of the EKF estimation of infinite points and
camera rotation. Section 2.4 describes how features are added to or removed
from the map. Section 2.5 is devoted to the mesh for the mosaic given a map
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of feature directions. Finally experimental results and a brief discussion are
presented in sections 2.6 and 2.7.

2.2 Related Work

2.2.1 Image Mosaicing

Mosaicing is the process of stitching together data from a number of images,
usually taken from a rotating camera or from a translating camera observing
a plane, in order to create a composite image which covers a larger field of
view than the individual views. While a variety of approaches have been
published for matching up sets of overlapping images with a high degree
of accuracy, all have relied on off-line optimization to achieve global con-
sistency. Other previous methods which operate sequentially in a pair-wise
manner and in real-time suffer from the accumulation of drift.

Mosaic building requires estimates of the relative rotations of the cam-
era when each image was captured. Classically, the computation of such
estimates has been addressed as an off-line computation, using pair-wise
image matching to estimate local alignment and then global optimization to
ensure consistency. The goal has normally been to produce visually pleas-
ing panoramic images and therefore after alignment blending algorithms
are applied to achieve homogeneous intensity distributions across the mo-
saics, smoothing over image joins. We focus here only on the alignment
part of the process, achieving registration results of quality comparable to
off-line approaches but with the advantage of sequential, real-time perfor-
mance. Blending or other algorithms to improve the aesthetic appearance of
mosaics could be added to our approach straightforwardly, potentially also
running in real-time.

[Szeliski & Shum 1997] presented impressive spherical mosaics built from
video sequences, explicitly recognizing the problem of closing a loop when
building full panoramas (from sequences consisting of a single looped pan
movement). However, their method needed manual detection of loop clos-
ing frames. The non-probabilistic approach meant that the misalignment
detected during loop closing was simply evenly distributed around the ori-
entation estimates along the sequence.

[Sawhney et al. 1998] tackled sequences with more complicated zig-zag
pan motions, requiring a more general consideration of matching frames
which were temporally distant as loops of various sizes are encountered.
Having first performed pairwise matching of consecutive images they could
estimate an approximate location for each image in the sequence. This was
followed by an iterative hypotheses verification heuristic, applied to detect
matching among geometrically close but temporally distant images to find
the topology of the camera motion, and then finally global optimization.
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Both [Szeliski & Shum 1997] and [Sawhney et al. 1998] use whole image in-
tensities without feature detection for the optimization.

[Capel & Zisserman 1998] proposed methods based on matching discrete
features; RANSAC is applied to detect outlier-free sets of pairwise matches
among the images. A global bundle adjustment optimization produces the
final mosaic, achieving super-resolution. [de Agapito et al. 2001] also used
robust feature matching to perform self-calibration and produced mosaics
from sequences from a rotating and zooming camera.

[Brown 2003] considered the problem of mosaicing sets of widely sepa-
rated, uncalibrated still images. Their method used SIFT features to per-
form wide-baseline matching among the images, and automatically align
them into a panorama, optimizing over the whole set for global consistency
using bundle adjustment.

The recent work of Steedly et al. [Steedly et al. 2005] is perhaps closest
to the presented approach because it explicitly considers questions of compu-
tational cost in efficiently building mosaics from long video sequences (on the
order of a thousand frames), though not arriving at real-time performance.
The key to efficient processing in their system is the use of automatically as-
signed key-frames throughout the sequence — a set of images which roughly
span the whole mosaic. Each frame in the sequence is matched against
the nearest keyframes as well as against its temporal neighbors. The idea
of building a persistent map of keyframes as the backbone of the mosaic
can be thought of as very similar to the keyframe methods described in
section 1.1 [Klein & Murray 2007, Klein & Murray 2008]. In fact, very re-
cently, keyframe methods have been explicitly applied to mosaicing showing
impressive real-time performance [Lovegrove & Davison 2010].

To our knowledge, up to [Civera et al. 2009a,
Lovegrove & Davison 2010], mosaicing algorithms which truly operate
in real-time have been much more limited in scope. Several authors have
shown that the straightforward approach of real-time frame to frame
image matching can produce mosaics formed by simply concatenating
local alignment estimates. Marks et al. [Marks et al. 1995] presented
a real-time system for mosaicing underwater images using correlation-
based image alignment, and Morimoto and Chellappa a system based on
point feature matching which estimated frame-to-frame rotation at 10Hz
[Morimoto & Chellappa 1997]. It should be noted that while Morimoto and
Chellappa used the EKF in their approach, the state vector contained only
camera orientation parameters and not the locations of feature points as in
our SLAM method.

The clear limitation of such approaches to real-time mosaicing is that
inevitable small errors in frame to frame alignment estimates accumulate
to lead to misalignments which become especially clear when the camera
trajectory loops back on itself — a situation our SLAM approach can cope
with seamlessly.

18



2.2. Related Work

Some recent approaches have attempted to achieve global consistency
in real-time by other means — Kim and Hong [Kim & Hong 2006] demon-
strated sequential real time mosaic building by performing ‘frame to mosaic’
matching and global optimization at each step. However, this approach is
limited to small-scale mosaics because the lack of a probabilistic treatment
means that the cost of optimization will rise over time as the camera con-
tinues to explore. Zhu et al. [Zhu et al. 2006] on the other hand combine
a frame to frame alignment technique with an explicit check on whether
the current image matches to the first image of the sequence, detection of
which leads to the correction of accumulated drift. Again, the method is not
probabilistic and works only in the special case of simple panning motions.

2.2.2 SLAM

The standard approach to SLAM is to use a single Gaussian state vec-
tor to represent the sensor and feature estimates; and to update this
with the Extended Kalman Filter (EKF). This approach was called the
‘stochastic map’ when proposed initially by Smith and Cheeseman in
[Smith & Cheeseman 1986] and has been widely used in mobile robotics
with a range of different sensors; odometry, laser range finders, sonar, and
vision among others (e.g. [Castellanos & Tardós 1999, Feder et al. 1999,
Ort́ın et al. 2003]). This amounts to a rigorous Bayesian solution in the
case that the sensor and motion characteristics of the sensor platform in
question are governed by linear processes with Gaussian uncertainty profiles
— conditions which are closely enough approximated in real-world systems
for this approach to be practical in most cases, and in particular for small-
scale mapping.

Visual sensing has been relatively slow to come to the forefront of
robotic SLAM research. Davison and Murray [Davison & Murray 1998] im-
plemented a real-time system where a 3D map of visual template land-
marks was build and observed using fixating stereo vision. Castellanos et
al. [Castellanos et al. 1994] built a 2D SLAM system combining straight
segments from monocular vision and odometry, and trinocular straight seg-
ments and odometry. In [Davison 2003] Davison demonstrated 3D SLAM
using monocular vision as the only sensor, also using a smooth motion
model for the camera to take the place of odometry this system exhib-
ited unprecedented demonstrable real time performance for general indoors
scenes observed with a low cost hand-held camera. After this seminal work,
many other interesting 3D SLAM systems which rely only on visual sens-
ing started to emerge (e.g. [Kim & Sukkarieh 2003, Jung & Lacroix 2003,
Eustice et al. 2005]).
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2.2.3 Off-line SFM vs. EKF SLAM

In order to directly compare the previous off-line approaches to mosaicing
with our sequential one, we will focus on methods which rely on discrete
feature matching. The off-line approaches generally match features between
images in a pairwise fashion (usually between temporal neighbours) and
then perform a final global bundle adjustment optimization to achieve good
drift-free solutions.

In our sequential approach, scene structure — a set of selected points
we call a map — and the camera motion are estimated by iterating the
following steps:

1. Predict the locations of all the map features in the next image, along
with a gated search region for each. The information from all previous
images is implicitly accumulated in this state-based prediction and this
leads to tight search regions.

2. Use template matching to exhaustively search for the feature match
only within its search region.

3. Update estimates of the locations of all the mapped features and the
current camera location.

4. Map maintenance, adding new features when new scene areas are ex-
plored and marginalizing out features predicted to be visible but per-
sistently not matched.

The resulting sparse set of map features, autonomously selected and matched
has — when compared with ‘first match and then optimize’ approaches —
the following desirable qualities for producing consistent mosaics:

Long tracks — Only features persistently observed when predicted to be
visible are kept in the map, and are allowed to build up immunity to
future deletion. Highly visible and identifiable features tend to live on
in this process of ‘survival of the fittest’.

Loop closing tracks — When the camera revisits an area of the scene pre-
viously observed, it has the natural ability to identify and re-observe
‘old’, loop closing, features seamlessly.

To achieve the highest accuracy in every update of a scene map after
matching image features, the update step should ideally be done using an
iterative non-linear bundle adjustment optimization, but this would be pro-
hibitively expensive. Instead of that, the EKF can serve as a sequential
approximation to bundle adjustment. Update by bundle adjustment after
processing every single image means a non linear optimization for all camera
locations and all scene features, so processing long image sequences results
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in an increasing number of camera locations and hence an increasing dimen-
sion for the bundle adjustment of (3mk + 2nk), where mk is the number of
images, and nk is the number of scene points. Also, calculating search re-
gions requires the inversion of a matrix of dimension 3mk + 2nk to compute
the estimation covariance.

To compare the EKF with bundle adjustment, it should be considered
that, as stated in [Triggs et al. 2000], the EKF is a sequential approximation
to bundle adjustment where:

1. A motion model is included to relate one camera location with the
next.

2. The EKF is just bundle adjustment’s first half-iteration because only
the most recent camera location is computed. The estimated state
is reduced, subsuming all historic camera location estimates in the
feature covariance matrix. The estimated state, dimension (7 + 2nk),
is composed of the last camera pose and all map features. In our model
the camera state vector has dimension 7: an orientation quaternion
and 3D angular velocity.

3. At each step, information about the previous camera pose is marginal-
ized out. In doing so, linearization for previous camera poses is not
computed as in the optimal solution, and hence linearization errors will
remain in the covariance matrix. However, mosaicing with a rotating
camera is a very constrained, highly linear problem, so the results that
can obtain in real-time are highly accurate, only falling a little short
of the result a full optimization would produce.

2.3 Geometrical Modeling

We start the exposition of our method by explaining the mathematical mod-
els used for features, camera motion and the measurement process, before
proceeding in section 2.4 to the EKF formulation.

2.3.1 Feature Model

Feature points are modeled by storing both geometric and photometric in-
formation (see Figure 2.1). Geometrically, the direction for feature i relative
to world frame W is parameterized as an angular azimuth/elevation pair:

yWi =
(
θi φi

)>
. (2.1)

This corresponds to the following cartesian position mW
i of the point on

the unit sphere:

mW
i (yi) =

(
cosφi sin θi − sinφi cosφi cos θi

)>
. (2.2)
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Figure 2.1: Left, An elastic textured triangular mesh is built over a map of scene
directions over the unit sphere. Right a scene feature, yWi , stamped with its texture
patch.

To represent each infinite point photometrically, a texture patch of fixed
size is extracted and stored when the point is imaged for the first time. This
patch is used for correlation-based matching.

2.3.2 Camera Motion Model

It is assumed that the camera translation is small compared with actual
feature depths — true for any camera on a tripod, or well approximated by
a camera rotated in the hand outdoors. The real-world camera dynamics
are modeled as a smooth angular motion: specifically a ‘constant angular
velocity model’, which states that at each time-step an unknown angular ac-
celeration impulse drawn from a zero-mean Gaussian distribution is received
by the camera. The camera state vector is:

xC =
(

qWC

ωC

)
, (2.3)

where ωC is the angular velocity in the camera reference frame and qWC

is a quaternion defining orientation with respect to a world reference frame
W . See Figure 2.1 for further illustration on this model.

At every time-step k, an angular acceleration αC having zero mean and
fixed diagonal ‘process noise’ covariance matrix Pα is assumed to affect
the camera’s motion. Therefore at each processing step of duration ∆t the
camera receives an impulse of angular velocity: ΩC = αC∆t . The state
update equation is then:

xCk+1
=

(
qWC
Ck+1

ωCCk+1

)
= f(xCk ,n)=

(
qWC
Ck
× q

((
ωCCk + ΩC

)
∆t
)

ωCCk + ΩC

)
(2.4)
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2.3.3 Measurement Model

We consider first the projection of infinite points in a standard perspective
camera. The camera orientation qWC in the state vector defines the rotation
matrix RCW . So the coordinates of a point yW =

(
θ φ

)> on the unit
sphere m expressed in frame C are:

mC = RCWmW = RCW
(

cosφ sin θ − sinφ cosφ cos θ
)> (2.5)

The image coordinates where the point is imaged are obtained applying
the pinhole camera model to mC :

(
uu
vu

)
=

 Cx − αxm
C
x

mCz

Cy − αy
mCy
mCz

 =

 Cx − f
dx

mCx
mCz

Cy − f
dy

mCy
mCz

 , (2.6)

where (Cx Cy)
> define the camera’s principal point and αx and αy are

the focal length in the horizontal and vertical image directions in pixel units.
f is the focal length in metric units and dx and dy define the size of a pixel
in metric units.

Finally, a distortion model has to be applied to deal with real camera
lenses. In this work we have used the standard two parameter distortion
model from photogrammetry [Mikhail et al. 2001], which is described next.

To recover the ideal projective undistorted coordinates hu = (uu, vu)>,
from the actually distorted ones gathered by the camera, hd = (ud, vd)

>,
the following is applied:

hu =
(
Cx + (ud − Cx)

(
1 + κ1r

2
d + κ2r

4
d

)
Cy + (vd − Cy)

(
1 + κ1r

2
d + κ2r

4
d

))
rd =

√
(dx (ud − Cx))2 + (dy (vd − Cy))2 (2.7)

Where κ1 and κ2 are the radial distortion coefficients.
To compute the distorted coordinates from the undistorted:

hd =

Cx + (uu−Cx)

(1+κ1r2d+κ2r4d)
Cy + (vu−Cy)

(1+κ1r2d+κ2r4d)

 (2.8)

ru = rd
(
1 + κ1r

2
d + κ2r

4
d

)
(2.9)

ru =
√

(dx (uu − Cx))2 + (dy (vu − Cy))2 (2.10)

ru is readily computed computed from 2.10, but rd has to be numerically
solved from 2.9, e.g using Newton-Raphson, hence 2.8 can be used to com-
pute the distorted point.
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Figure 2.2: New features initialization and patch prediction.

2.4 Simultaneous Localization and Mapping

The algorithm to estimate camera rotation and scene point directions fol-
lows the standard EKF loop [Bar-Shalom & Fortmann 1988] of prediction
based on the motion model (equation 2.4), and measurement (equations
2.5 to 2.10). All the estimated variables (the camera state xC and all
the estimated feature directions yi) are stacked in a single state vector
x =

(
x>C y>1 . . . y>i . . . y>n

)> with corresponding covariance P rep-
resenting Gaussian-distributed uncertainty. Crucial to the method is the
usage of the measurement prediction to actively guide matching. Next we
explain in detail the matching process, the initialization of system state and
feature initialization and deletion.

2.4.1 Matching

Every predicted measurement of a feature in the map, ĥi, and its corre-
sponding innovation covariance, Si, define an gated elliptical acceptance
image region where the feature should lie with high probability. In our ex-
periments, defining acceptance regions at 95% probability typically produce
ellipses of diameter 10–20 pixels.

The first time a feature is observed, we store both a texture patch and the
current camera orientation. When that feature is later selected for measure-
ment after camera movement, its predicted texture patch from the current
camera orientation is synthesized via a warping of the original patch. This
permits an efficient matching of features from any camera orientation with-
out the need for invariant feature descriptors. Figure 2.2 shows an example
of the stored and predicted patches. Further details of the warping algorithm
under general camera motion can be found in section 3.7.1.

Search for a feature during measurement is carried out by calculating a
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normalized correlation score for every possible patch position lying within
the search region. The position with the highest score zi, provided that the
match score is above a threshold, is considered to be feature i correspondence
at this step.

2.4.2 State Initialization

We initialize the state of the camera with zero rotation — its initial pose
defines the world coordinate frame, and therefore we also assign zero uncer-
tainty to initial orientation in the covariance matrix. The angular velocity
estimate is also initialized at zero, but a high value is assigned to σω, in our
case

√
2 rad

sec , in order to deal with an initial unknown velocity. This is a
remarkable system characteristic: the map can be initialized from a cam-
era which is already rotating. In fact in the experiments, the camera was
already rotating when tracking commenced.

2.4.3 Feature Initialization and Deletion

When a new image is obtained, if the number of features predicted to be
visible inside the image goes below a threshold, in our case around 15, a
new feature is initialized. A rectangular area without features is selected
randomly in the image, and searched for a single salient point by applying the
Harris detector [Harris & Stephens 1988]. Figure 2.2 shows an initialization
example.

This simple rule means that at the start of tracking the field of view is
quickly populated with features which tend to be well-spaced and covering
the image. As the camera rotates and some features go out of view, it
will then demand that new features are initialized — but if regions of the
viewsphere are revisited, new features will not be added to the map since
old features (still held in the state vector) are simply re-observed.

When an initial measurement of a new feature is obtained, the state
vector is expanded with the new feature estimate ŷWj . Defining Rj the
image measurement noise covariance, the covariance matrix is expanded as
follows:

Pnew = J
(

P 0
0 Rj

)
J>

J =
(
I 0
J1

)
, J1 =

(
∂h−1

i

∂xv
, 0, . . . ,

∂h−1
i

∂zi

)
Features with a low successes/attempts ratio in matching — in practice

0.5 — are deleted from the map if at least 10 matches have been attempted.
This simple map maintenance mechanism allows deletion of non-trackable
features — for example those detected on moving objects or people. Non
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Input data: Mk−1, Yk, image at step k.

Output data: Mk.

Algorithm:

1.- Dk =
{
Dk
l

}
, Spherical Delaunay triangulation.

2.- Mk is a subset of Dk. Every Dk
l is classified as:

Elastically updated triangle: Dk
l already in Mk−1, but not in Mk . If

visible in current image, the tile texture can be updated.

New and visible: Dk
l not in Mk−1 and the visible in image k. Dk

l is in-
cluded in Mk. Texture is gathered from image k.

New but not visible: Dk
l not in Mk−1 but not fully visible in image k.

It is not added to Mk.

Figure 2.3: Triangular mosaic update algorithm.

persistent static scene features (for instance caused by reflections) are also
removed.

2.5 Meshing and Mosaicing

At any step k we have available a map of infinite points:

Yk =
{
yWi
}
, i = 1 . . . nk . (2.11)

After processing every image, the location estimate of every point in the
map is updated and hence changed. Additionally, on each step some map
points might be deleted or added as new.

The mosaics we build are made up of a set of textured elastic triangular
tiles attached to the map of infinite points. A mesh triangle Tj is defined
as:

Tj = {j1, j2, j3,TXj} , (2.12)

where {j1, j2, j3, } identify the map points to which the triangle is attached
and TXj defines the triangle texture. The triangle is termed as elastic
because the location estimates of the points to which it is attached are
updated at every step, and hence the triangle and texture are deformed
accordingly.

The triangular mesh mosaic at step k is defined as:

Mk =
{
T kj

}
, j = 1 . . .mk . (2.13)

2.5.1 Updating the Mesh

As the map is updated at every step, the mosaic has to be updated sequen-
tially as well. The mosaic update consists of updating the elastic triangles,
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Figure 2.4: Mesh update example. Triangle {456} is elastically updated. {128}
new and visible: created because of new map point 8. {247} new not visible; the
triangle was not in Mk−1, but it is not totally visible in image k. {136} is deleted
as map point 3 is removed. Points 1, 2, 4 and 6 are kept in the map but a significant
change in the estimated position of point 1 has caused the triangulation to ‘flip’,
so, {126} , {246} are deleted, while {124} , {146} are new and visible.

and potential deletion and creation of triangles.
Figure 2.3 summarizes the algorithm to sequentially update the mosaic

Mk−1 into Mk. After processing image k, the map Yk is available. A
spherical Delaunay triangulation Dk for the map Yk points is computed
using Renka’s [Renka 1997] algorithm:

Dk =
{
Dk
l

}
, (2.14)

where every triangle Dk
l = {l1, l2, l3} is defined by the corresponding 3 map

features. The complexity of the triangulation is O(nk log nk) where nk is
the number of map features. The triangles which will be included in Mk

are a subset of the triangles in the full triangulation Dk. Every triangle Dk
l

in Dk is classified to determine its inclusion in Mk mosaic according to the
algorithm described in Figure 2.3: triangles are either carried over from the
previous mosaic or newly created if texture can be immediately captured
from the current image. Notice that triangles in Mk−1 but not in Dk

l (due
to a change in mesh topology) are deleted. Figure 2.4 illustrates with an
example the different cases in the triangular mesh mosaic update.

2.5.2 Tile Texture Mapping

The three points defining a triangular tile are positions on a unit sphere.
The texture to attach to each tile is taken from the region in the image
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Figure 2.5: (a) Triangular tile defined by map points E,F,G, meshed as subtriangles
represented over the unit sphere. (b) Shows the backprojection in the image; notice
how the subtriangles also compensate the radial distortion.

between projections of these three vertices. In a simple approach to mosaic
building, the triangles could be approximated as planar, and the mosaic
surface a rough polyhedral. However better results can be achieved if the
triangular tile is subdivided into smaller triangles that are backprojected
over the spherical mosaic surface. Additionally, the camera radial distor-
tion is better compensated by the subtriangles. Figure 2.5 illustrates the
improvement due to the division of a triangular tile into subtriangles.

2.6 Experimental Results

We present experiments demonstrating sequential mosaic building using im-
ages acquired with a low cost Unibrain IEEE1394 camera with a 90◦ field of
view and 320× 240 monochrome resolution at 30 fps. The first experiment
shows the result from a sequence taken from a hand-held camera perform-
ing a 360◦ pan and cyclotorsion rotation — this early experiment performed
offline in a Matlab implementation. The second experiment shows results
obtained in real-time in a full C++ implementation with the more sophis-
ticated sub-triangle mosaicing method. Both sequences were challenging
because there were pedestrians walking around, and the camera’s automatic
exposure control introduced a great deal of change in the image contrast
and brightness in response to the natural illumination conditions.

2.6.1 360◦ Pan and Cyclotorsion

The hand-held camera was turned right around about 1.5 times about a
vertical axis, so that the originally-viewed part of the scene came back into
view in ‘loop closure’. Care was taken to ensure small translation, but
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2.6. Experimental Results

Figure 2.6: 360◦ pan and cyclotorsion. Top left: first image in sequence. The
first image on the second row is at the loop closure point; notice the challenging
illumination conditions. Third row: unit sphere with feature patches, triangular
mesh and simple texture.

29



Chapter 2. Points at Infinity. Mosaics using the Extended Kalman Filter.

Figure 2.7: Superimposed meshes for 90 frames before loop closure (red) and 90
frames after loop closure (green). The part of the mesh opposite the loop closure
is magnified at the left of the figure. The first features detected in the map are
magnified at the right of the figure. We also show the camera elevation estimation
history along with its standard deviation; notice the uncertainty reduction at loop
closure.
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2.6. Experimental Results

relatively large angular accelerations were permitted and the camera rotated
significantly about both pan and cyclotorsion axes.

Figure 2.6 shows selected frames showing the search region for every
predicted feature and the matched observations. The frames we show are
at the beginning of the sequence, at loop closure and during the camera’s
second lap. At the loop closure, we can see that of the first two re-visited
features, one was not matched immediately and the other was detected very
close to the limit of its search region. However, in the following frames most
of the re-visited features were correctly matched despite the challenging
illumination changes. It should be noticed that the loop is closed seamlessly
by the normal sequential prediction-match-update process, without need
any additional steps — no back-tracking or optimization. The mosaic after
processing all the images is also shown.

We believe that the seamless way that loop closing is achieved is in itself
a very strong indication of the achieved angular estimation accuracy with
this algorithm. The predictions of feature positions just before redetection
at loop closure only differ from their true values by around 6 pixels (cor-
responding to less than 2 degrees) when the camera has moved through a
full 360◦. After loop closing and the correction this forces on the map, this
error is significantly improved. On the second lap, where the rotation of the
camera takes it past parts of the scene already mapped, previously observed
features are effortlessly matched in their predicted positions, the map having
settled into a satisfyingly consistent state.

It is worth noting the effect that loop closing has on the mesh, and
hence on the mosaic. Figure 2.7 displays superimposed all of the meshes
for the 90 steps before the loop closure (we plot one in every five steps in
red), along with meshes for the 90 steps after the loop closure (plotted in
green). Every sequential step improves our estimates of the locations of
all the map features, but in a loop closure step the improvement is much
greater. As the initial camera orientation is chosen to be the base reference,
the first features in the map are very accurately located (with respect to
the first camera frame). These features’ locations are hardly modified by
the loop closure, but all other parts of the mesh are updated significantly.
We particularly draw attention to an area of the mesh 180◦ opposite the
loop closure point, where the feature estimates and therefore the mesh are
noticeably modified in the update corresponding to loop closure thanks to
the correlation information held in covariance matrix, despite the fact that
these features are not observed in any nearby time-step.

Figure 2.7 also shows graphs of the estimate history for the two magnified
features, along with the standard deviation in their elevation angles. The
feature far from the loop close area clearly shows a loop closing correction
and covariance reduction. The feature observed at the start of the sequence
shows almost no loop closing effect because it was observed when the camera
location had low uncertainty.
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Figure 2.8: (a) Feature initalized on a moving object. (b) after 1 and (c) 10
frames, the feature is no longer matched because it is outside its acceptance region.
Eventually this non matching feature is deleted from the map.

2.6.2 Real-Time Mosaic Building

A version of the system has been implemented in C++ achieving real time
performance at 320 × 240 pixels resolution, 30 frames/second. We show
results from a 360◦ pan rotation and map size of around a hundred features.

Figure 2.9 shows the evolution of the mosaic. We focus on the texture
alignment at loop closure. Figures 2.9(g) and 2.9(i) display two magnified
mosaic views close to the loop closure. In each magnified view, the left-hand
part of the mosaic seen got its texture from a frame at the beginning of the
sequence while the right area got texture from a frame after the loop closure
(frames nearly a thousand images apart). The excellent texture alignment
achieved is an indicator of the advantages of our sequential SLAM approach
to mosaic building. No blending technique has been applied to reduce the
seam effects.

Figure 2.8 shows an example of robustness with respect to moving ob-
jects. A feature was intialized on the skirt of a walking pedestrian. As
the feature corresponds to a moving object, after some time it is no longer
matched inside the acceptance region, and finally it is deleted from the
map. It is also important to remark that no outlier rejection technique –
like RANSAC or JCBB– was used here to detect the false match, being its
rejection only due to the restricted search inside the gated 95% probability
region.

2.6.3 Processing Time

Real-time experiments were run on a 1.8 GHz Pentium laptop with OpenGL
accelerated graphics card. In a typical run, we might have: a) 70 map
features, implying a state vector dimension of 7 + 70 × 2 = 147. b) 15
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features measured per frame, implying a measurement vector dimension of
15× 2 = 30. c) 30 fps, so 33.3 ms available for processing. d) Process noise
with standard deviation 4rad s−2 modeling expected angular accelerations.

Under these conditions, an approximate breakdown of typical processing
time 21.5ms per frame is as follows: a)Image acquisition 1 ms. b) EKF
prediction 3 ms. c) Image matching 2 ms. d) EKF update 10 ms. e), f)
Delaunay triangulation 0.5 ms. g) Mosaic update 5ms.

The remaining time processing is used for the graphics functions, sched-
uled at low priority, so a graphics refresh might take place every two or three
processed images.

It should be noticed that the computational complexity of the EKF up-
dates is of order O(N2), where N is the number of map features. The
Delaunay triangulation step has complexity of order O(N logN), while up-
dating the triangles of the mosaic currently has order O(N2) (since each
triangle is compared with every other one, though it should be possible to
improve this). In our algorithm the EKF update dominates the compu-
tational cost. It should be noticed that within the bounds of a spherical
mosaicing problem (where the whole viewsphere can be mapped with on
the order of 100 features) the complexity is well within practical limits for
a standard laptop.

2.7 Discussion

A mosaic built from an elastic triangular mesh sequentially built over a EKF
SLAM map of points at infinity inherits the advantages of the sequential
SLAM approach: probabilistic prior knowledge management through the
sequence, sequential updating, real-time performance and consistent loop
closing.

The experimental results presented using real images from a low cost
camera display the validity of the approach in a challenging real scene with
jittery hand-held camera movement, moving people and changing illumina-
tion conditions. Real-time seamless loop closing is demonstrated, removing
all the drift from rotation estimation and allowing arbitrarily long sequences
of rotations to be stitched into mosaics: the camera could rotate all day and
estimates would not drift from the original coordinate frame as long as the
high-quality features of the persistent map could still be observed. We think
that as well as its direct application to mosaicing, this work shows in general
the power of the SLAM framework for processing image sequences and its
ability, when compared with off-line methods, to efficiently extract impor-
tant information: pure sequential processing, long track matches, and loop
closing matches.

EKF-based mosaicing is intended to offer a contribution when compared
with other mosaicing approaches. Full 3D mosaicing in real-time is still some
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way off, so we have focused on building 2D mosaics from sequences with
homography geometry — in this piece of work, specifically from a purely
rotating camera, though we believe that our method could be straightfor-
wardly modified to also cope with mosaicing a plane observed by a rotating
and translating camera.

We believe that there are many applications which open up with real-
time mosaicing — in any situation where the goal is to build a living
mosaic which is built up instantly in reaction to camera motion our ap-
proach will be useful. This mosaic can find application especially in aug-
mented reality because it provides a real-time link between the camera im-
ages and real scene points. An interesting application that is partly based
in the algorithms described in this and next chapter is the one described
at [Grasa et al. 2009b, Grasa et al. 2009a]. There, texture patches are at-
tached to a backbone of 3D points in order to improve visualization of cav-
ities inside human body, helping the medical team in laparoscopic surgery.

Another interesting possibility real-time mosaicing gives is that a user
could control the rotation of the camera while looking at the growing mosaic
in order to extend and improve it actively. In future work, we intend to look
at such issues as real-time super-resolution, where we envisage a mosaic
sharpening before a user’s eyes thanks to the quality of repeatable rotation
registration.
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2.7. Discussion

Figure 2.9: Real-time mosaicing with loop closure. (a), (b) sequence start; (c)
the frame after the first loop closing match; (d) a few frames after loop closing (e)
the mosaic after almost two full laps. (f) (magnification of (c)) and (g) show two
consecutive steps after loop closing; (g) is a close-up view of two adjacent mosaic
areas. In (g) the left-most mosaic tiles got their texture early in the sequence, while
those on the right obtained texture after loop closing. Notice the high accuracy
in texture alignment; the line highlights the seam. (h) (magnification of (d)) and
(i) show two consecutive steps after several loop closing matches. (i) is a close-up
view of two adjacent mosaic areas with textures taken from early and loop closing
frames; again notice the alignment quality. A line highlights the seam —otherwise
difficult to observe.
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Chapter 3
Inverse Depth Parametrization

3.1 Introduction

A monocular camera is a projective sensor which measures the bearing of
image features. Given an image sequence of a rigid 3D scene taken from a
moving camera, it is now well known that it is possible to compute both the
scene structure and the camera motion up to a scale factor. To infer the
3D position of each feature, the moving camera must observe it repeatedly,
each time capturing a ray of light from the feature to its optic center. The
measured angle between the captured rays from different viewpoints is the
feature’s parallax –this is what allows its depth to be estimated.

In off-line Structure from Motion (SfM) solutions from the computer vi-
sion literature (e.g. [Fitzgibbon & Zisserman 1998, Pollefeys et al. 1999]),
motion and structure are estimated from an image sequence by first ap-
plying robust feature matching between pairs or other short overlapping
sets of images to estimate relative motion. An optimization procedure then
iteratively refines global camera location and scene feature position esti-
mates such that features project as closely as possible to their measured
image positions (bundle adjustment). Recently, work in the spirit of these
methods but with “sliding window” processing and refinement rather than
global optimization has produced impressive real-time Visual Odometry re-
sults when applied to stereo [Nistér et al. 2006] and monocular sequences
[Mouragnon et al. 2009].

An alternative approach to achieving real-time motion and struc-
ture estimation are on-line visual SLAM (Simultaneous Localization And
Mapping) approaches which use a probabilistic filtering approach to se-
quentially update estimates of the positions of features (the map) and
the current location of the camera. These SLAM methods have dif-
ferent strengths and weaknesses than visual odometry, being able to
build consistent and drift-free global maps but with a bounded number
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of mapped features. The core single Extended Kalman Filter (EKF)
SLAM technique, previously proven in multi-sensor robotic applications,
was first applied successfully to real-time monocular camera tracking
[Davison et al. 2007] in a system which built sparse room-sized maps at
30Hz. The sequential approach to the Structure from Motion problem has
been also the subject of intense research in the computer vision community,
being [Ayache & Faugeras 1989, Matthies et al. 1989, Broida et al. 1990,
Azarbayejani & Pentland 1995, Chiuso et al. 2002] some of the most rep-
resentative works.

A significant limitation of these early approaches, however, was that they
could only make use of features which were close to the camera relative to
its distance of translation, and therefore exhibited significant parallax dur-
ing motion. The problem was in initialising uncertain depth estimates for
distant features: in the straightforward Euclidean XYZ feature parametriza-
tion adopted, position uncertainties for low parallax features are not well
represented by the Gaussian distributions implicit in the EKF. The depth
coordinate of such features has a probability density which rises sharply at a
welldefined minimum depth to a peak, but then tails off very slowly towards
infinity –from low parallax measurements it is very difficult to tell whether
a feature has a depth of 10 units rather than 100, 1000 or more.

This chapter describes a new feature parametrization which is able to
cope smoothly with initialization of features at all depths –even up to
“infinity”– within the standard EKF framework. The key concept is di-
rect parametrization of inverse depth relative to the camera position from
which a feature was first observed.

3.1.1 Delayed and Undelayed Initialization

The most obvious approach to dealing with feature initialization within a
monocular SLAM system is to treat newly detected features separately from
the main map, accumulating information in special processing over several
frames to reduce depth uncertainty before insertion into the full filter with
a standard XYZ representation. Such delayed initialization schemes (e.g.
[Davison 2003, Kim & Sukkarieh 2003, Bryson & Sukkarieh 2005]) have the
drawback that new features, held outside the main probabilistic state, are
not able to contribute to the estimation of the camera position until finally
included in the map. Further, features which retain low parallax over many
frames (those very far from the camera, or close to the motion epipole) are
usually rejected completely because they never pass the test for inclusion.
In this case, far features cannot be represented in the main SLAM map and
their valuable information cannot be incorporated to the filter.

In the delayed approach of Bailey [Bailey 2003], initialization is delayed
until the measurement equation is approximately Gaussian and the point
can be safely triangulated; here the problem was posed in 2D and validated
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in simulation. A similar approach for 3D monocular vision with inertial
sensing was proposed in [Bryson & Sukkarieh 2005]. Davison [Davison 2003]
reacted to the detection of a new feature by inserting a 3D semi-infinite
ray into the main map representing everything about the feature except its
depth, and then used an auxiliary particle filter to explicitly refine the depth
estimate over several frames, taking advantage of all the measurements in a
high frame-rate sequence but again with new features held outside the main
state vector until inclusion.

More recently, several undelayed initialization schemes have been pro-
posed, which still treat new features in a special way but are able to benefit
immediately from them to improve camera motion estimates — the key
insight being that while features with highly uncertain depths provide lit-
tle information on camera translation, they are extremely useful as bearing
references for orientation estimation. The undelayed method proposed by
Kwok and Dissanayake [Kwok & Dissanayake 2004] was a multiple hypoth-
esis scheme, initializing features at various depths and pruning those not
reobserved in subsequent images.

[Solà et al. 2005, Solà 2007] described a more rigorous undelayed ap-
proach using a Gaussian Sum Filter approximated by a Federated Informa-
tion Sharing method to keep the computational overhead low. An important
insight was to spread the Gaussian depth hypotheses along the ray accord-
ing to inverse depth, achieving much better representational efficiency in
this way. This method can perhaps be seen as the direct stepping stone be-
tween Davison’s particle method and our new inverse depth scheme; a Gaus-
sian sum is a more efficient representation than particles (efficient enough
that the separate Gaussians can all be put into the main state vector), but
not as efficient as the single Gaussian representation that the inverse depth
parametrization allows. Note that neither [Kwok & Dissanayake 2004] nor
[Solà et al. 2005] consider features at very large ‘infinite’ depths.

3.1.2 Points at Infinity

The homogeneous coordinate systems of visual projective geometry used
normally in SFM allow explicit representation of points at infinity, and they
have proven to play an important role during off-line structure and motion
estimation. In a sequential SLAM system, the difficulty is that we do not
know in advance which features are infinite and which are not. Chapter
2 has shown that in the special case where all features are known to be
infinite –in very large scale outdoor scenes or when the camera rotates on a
tripod– SLAM in pure angular coordinates turns the camera into a realtime
visual compass. In the more general case, let us imagine a camera moving
through a 3D scene with observable features at a range of depths. From the
estimation point of view, we can think of all features starting at infinity and
“coming in” as the camera moves far enough to measure sufficient parallax.
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For nearby indoor features, only a few centimetres of movement will be
sufficient. Distant features may require many meters or even kilometers of
motion before parallax is observed. It is important that these features are
not permanently labelled as infinite –a feature that seems to be at infinity
should always have the chance to prove its finite depth given enough motion,
or there will be the serious risk of systematic errors in the scene map. Our
probabilistic SLAM algorithm must be able to represent the uncertainty in
depth of seemingly infinite features. Observing no parallax for a feature
after 10 units of camera translation does tell us something about its depth
–it gives a reliable lower bound, which depends on the amount of motion
made by the camera (if the feature had been closer than this we would
have observed parallax). This explicit consideration of uncertainty in the
locations of points has not been previously required in off-line computer
vision algorithms, but is very important in the on-line case.

3.1.3 Inverse Depth Representation

Our contribution is to show that in fact there is a unified and straightforward
parametrization for feature locations which can handle both initialisation
and standard tracking of both close and very distant features within the
standard EKF framework. An explicit parametrization of the inverse depth
of a feature along a semi-infinite ray from the position from which it was
first viewed allows a Gaussian distribution to cover uncertainty in depth
which spans a depth range from nearby to infinity, and permits seamless
crossing over to finite depth estimates of features which have been apparently
infinite for long periods of time. The unified representation means that the
EKF requires no special initialisation process for features. They are simply
tracked right from the start, immediately contribute to improved camera
estimates and have their correlations with all other features in the map
correctly modelled. Note that the inverse depth parameterization would be
equally compatible with other variants of Gaussian filtering such as sparse
information filters.

We also introduce in this chapter a linearity index and use it to analyze
and prove the representational capability of the inverse depth parametriza-
tion for both low and high-parallax features. The only drawback of the in-
verse depth scheme is the computational issue of increased state vector size,
since an inverse depth point needs six parameters rather than the three of
XYZ coding. As a solution to this, we show that our linearity index can also
be applied to the XYZ parametrization to signal when a feature can be safely
switched from inverse depth to XYZ; the usage of the inverse depth repre-
sentation can in this way be restricted to low parallax feature cases where
the XYZ encoding departs from Gaussianity. Note that this ‘switching’,
unlike in delayed initialization methods, is purely to reduce computational
load; SLAM accuracy with or without switching is almost the same.
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3.1.4 Inverse Depth in Computer Vision and Tracking

Inverse depth is a concept used widely in computer vision: it appears
in the relation between image disparity and point depth in stereo vision;
it is interpreted as the parallax with respect to the plane at infinity in
[Hartley & Zisserman 2004]. Inverse depth is also used to relate the motion
field induced by scene points with the camera velocity in optical flow anal-
ysis [Heeger & Jepson 1992]. In the tracking community, ‘modified polar
coordinates’ [Aidala & Hammel 1983] also exploit the linearity properties of
the inverse depth representation in the slightly different, but closely related,
problem of target motion analysis (TMA) from measurements gathered by
a bearing-only sensor with known motion.

However, the inverse depth idea has not previously been properly inte-
grated in sequential, probabilistic estimation of motion and structure. It has
been used in EKF based sequential depth estimation from camera known mo-
tion [Matthies et al. 1989] and in multi-baseline stereo Okutomi and Kanade
[Okutomi & Kanade 1993] used the inverse depth to increase matching ro-
bustness for scene symmetries; matching scores coming from multiple stereo
pairs with different baselines were accumulated in a common reference coded
in inverse depth, this paper focusing on matching robustness and not on
probabilistic uncertainty propagation. In [Chowdhury & Chellappa 2003] it
is proposed a sequential EKF process using inverse depth but this was some
way short of full SLAM in its details. Images are first processed pairwise to
obtain a sequence of 3D motions which are then fused with an individual
EKF per feature.

It is our parametrization of inverse depth relative to the positions from
which features were first observed which means that a Gaussian representa-
tion is uniquely well behaved, and this is the reason why a straighforward
parametrization of monocular SLAM in the homogeneous coordinates of
SFM will not give a good result — that representation only meaningfully
represents points which appear to be infinite relative to the coordinate origin.
It could be said in projective terms that our method defines separate but
correlated projective frames for each feature. Another interesting compar-
ison is between this inverse depth representation, where the representation
for each feature includes the camera position from which it was first ob-
served and smoothing/Full SLAM schemes where all historical sensor pose
estimates are maintained in a filter.

There are two works that appeared simultaneously with the one pre-
sented here –first presented in [Montiel et al. 2006, Civera et al. 2007a,
Civera et al. 2008]– that share the underlying idea of the inverse depth
coding. Trawny and Roumeliotis in [Trawny & Roumeliotis 2006] proposed
an undelayed initialization for 2D monocular SLAM which encodes a map
point as the intersection of two projection rays. This representation is over-
parametrized but allows undelayed initialization and encoding of both close
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and distant features, the approach validated with simulation results.
Eade and Drummond presented an inverse depth initialisation scheme

within the context of their FastSLAM-based system for monocular SLAM
[Eade & Drummond 2006], offering some of the same arguments about ad-
vantages in linearity as in this chapter. The position of each new partially
initialised feature added to the map is parametrized with three coordinates
representing its direction and inverse depth relative to the camera pose at
the first observation, and estimates of these coordinates are refined within
a set of Kalman Filters for each particle of the map. Once the inverse
depth estimation has collapsed, the feature is converted to a fully initialised
standard XYZ representation. While retaining the differentiation between
partially and fully-initialised features, they go further and are able to use
measurements of partially initialised features with unknown depth to im-
prove estimates of camera orientation and translation via a special epipolar
update step. Their approach certainly appears appropriate within a Fast-
SLAM implementation. However, it lacks the satisfying unified quality of
the parametrization we present in this chapter, where the transition from
partially to fully initialised need not be explicitly tackled and full use is
automatically made of all of the information available in measurements.

The rest of the chapter is organized as follows: Section 3.2 defines the
state vector, including the camera motion model, XYZ point coding and in-
verse depth point parametrization. The measurement equation is described
in section 3.3. Section 3.4 presents the linearity index we will use for further
insight on the superiority of the inverse depth coding and for conversion to
XYZ parametrization. Feature initialization from a single feature observa-
tion is detailed in section 3.5. In section 3.6 the switch from inverse depth
to XYZ coding is presented. Section 3.7 details of the explotation of the
Bayesian priors in the matching step: the patch warping algorithm in sub-
section 3.7.1 and the active search for correspondences [Davison et al. 2007]
in subsection 3.7.2. In section 3.8 experimental validation over real image se-
quences captured at 30Hz in large scale environments, indoors and outdoors,
including real-time performance and a loop closing experiment is presented.
Finally, section 3.9 is devoted to summarize and discuss the contributions
in the chapter.

3.2 State Vector Definition

3.2.1 Camera Motion

A constant angular and linear velocity model is used to model hand-held
camera motion. The camera state xC is composed of pose terms: rWC

camera optical center position and qWC quaternion defining orientation;
and linear and angular velocity vW and ωC relative to world frame W and
camera frame C.
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We assume that linear and angular accelerations aW and αC affect the
camera, producing at each step an impulse of linear velocity, VW = aW∆t,
and angular velocity ΩC = αC∆t, with zero mean and known Gaussian
distribution. We currently assume a diagonal covariance matrix for the
unknown input linear and angular accelerations.

The state update equation for the camera is:

xCk+1
=


rWC
k+1

qWC
k+1

vWk+1

ωCk+1

 = fv (xCk ,n) =


rWC
k +

(
vWk + VW

k

)
∆t

qWC
k × q

((
ωCk + ΩC

)
∆t
)

vWk + VW

ωCk + ΩC

 .

(3.1)
where q

((
ωCk + ΩC

)
∆t
)

is the quaternion defined by the rotation vector(
ωCk + ΩC

)
∆t.

3.2.2 Euclidean XYZ Point Parametrization

The standard representation for scene points i in terms of Euclidean XYZ
coordinates (see Figure 3.1) is:

yWXYZ,i =
(
Xi Yi Zi

)>
. (3.2)

Along the book, we sometimes refer to the Euclidean XYZ coding simply as
XYZ coding.

3.2.3 Inverse Depth Point Parametrization

In the model presented in this chapter, a 3D point in the scene i is defined
by a state vector with 6 parameters:

yWρ,i =
(
xi yi zi θi φi ρi

)>
, (3.3)

which Cartesian coordinates are (see Figure 3.1):

 Xi

Yi
Zi

 =

 xi
yi
zi

+
1
ρi

m (θi, φi) (3.4)

m = (cosφi sin θi,− sinφi, cosφi cos θi)
> . (3.5)

The yi vector encodes the ray from the first camera position from which
the feature was observed by xi, yi, zi, the camera optical center, and θi, φi
azimuth and elevation (coded in the world frame) defining unit directional
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Figure 3.1: Feature parametrization and measurement equation.

vector m (θi, φi). The point’s depth along the ray di is encoded by its inverse
ρi = 1/di.

It is important to remark here that this chapter represents every geomet-
ric entity with respect to a static world reference frame W . Referring every
camera and feature parameters to a dynamic reference frame Ck attached to
the camera improves results when using the EKF [Castellanos et al. 2004];
so next chapter will also consider this other case.

3.2.4 Full State Vector

As in standard EKF SLAM, we use a single joint state vector containing
camera pose and feature estimates, with the assumption that the camera
moves with respect to a static scene. The whole state vector x is composed
of the camera and all the map features:

x =
(
x>C ,y

>
1 , . . .y

>
i , . . .y

>
n

)>
. (3.6)

3.3 Measurement Equation

Each observed feature imposes a constraint between the camera location
and the corresponding map feature (see Figure 3.1). Observation of a point
yi (xi) defines a ray coded by a directional vector in the camera frame
hC =

(
hx hy hz

)>. For points in XYZ:

hC = hCXYZ = RCW

 Xi

Yi
Zi

− rWC

 . (3.7)
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For points in inverse depth:

hC = hCρ = RCW

ρi
 xi

yi
zi

− rWC

+ m (θi, φi)

 , (3.8)

where the directional vector has been normalized using the inverse depth.
It is worth noting that (3.8) can be safely used even for points at infinity i.e
ρi = 0.

The camera does not directly observe hC but its projection in the image
according to the pinhole model. Projection to a normalized retina and then
camera calibration is applied:

h =
(
u
v

)
=

(
Cx − f

dx
hx
hz

Cy − f
dy

hy
hz

)
, (3.9)

where (Cx Cy)
> is the camera’s principal point, f is the focal length

and (dx dy)
> the pixel size. Finally, a distortion model has to be applied

to deal with real camera lenses. In this work we have used the standard two
parameter distortion model from photogrammetry [Mikhail et al. 2001] (see
Appendix for details.)

It is worth noting that the measurement equation in inverse depth has
a sensitive dependency on the parallax angle α (see Figure 3.1). At low
parallax, Equation (3.8) can be approximated by hC ≈ RCW (m (θi, φi)),
and hence the measurement equation only provides information about the
camera orientation and the directional vector m (θi, φi).

3.4 Measurement Equation Linearity

The higher the degree of linearity of the measurement equation is, the bet-
ter the Kalman Filter performs. This section presents an analysis of the
degree of linearity for both XYZ and inverse depth parametrizations. These
linearity analyses theoretically support the superiority of the inverse depth
coding.

3.4.1 Linearized propagation of a Gaussian

Let x be an uncertain variable with Gaussian distribution x ∼ N
(
µx, σ

2
x

)
.

The transformation of x through the function f is a variable y which can be
approximated with a Gaussian distribution

y ∼ N
(
µy, σ

2
y

)
, µy = f (µx) , σ2

y =
∂f

∂x

∣∣∣∣
µx

σ2
x

∂f

∂x

∣∣∣∣>
µx

, (3.10)
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Figure 3.2: The first derivative variation in [µx − 2σx, µx + 2σx] codes the de-
parture from Gaussianity in the propagation of the uncertain variable through a
function.

if the function f is linear in an interval around µx (Figure 3.2). The
interval size in which the function has to be linear depends on σx; the bigger
σx the wider the interval has to be to cover a significant fraction of the
random variable x values. In this work we fix the linearity interval to the
95% confidence region defined by [µx − 2σx, µx + 2σx].

If a function is linear in an interval, the first derivative is constant in
that interval. To analyze the first derivative variation around the interval
[µx − 2σx, µx + 2σx] consider the Taylor expansion for the first derivative:

∂f

∂x
(µx + ∆x) ≈ ∂f

∂x

∣∣∣∣
µx

+
∂2f

∂x2

∣∣∣∣
µx

∆x . (3.11)

We propose to compare the value of the derivative at the interval center, µx,
with the value at the extremes µx± 2σx, where the deviation from linearity
will be maximal, using the following dimensionless linearity index:

L =

∣∣∣∣∣∣∣
∂2f
∂x2

∣∣∣
µx

2σx

∂f
∂x

∣∣∣
µx

∣∣∣∣∣∣∣ . (3.12)

When L ≈ 0, the function can be considered linear in the interval, and hence
Gaussianity is preserved during transformation.

3.4.2 Linearity of XYZ Parametrization

The linearity of the XYZ representation is analyzed by means of a simplified
model which only estimates the depth of a point with respect to the camera.
In our analysis, a scene point is observed by two cameras (Figure 3.3a), both
of which are oriented towards the point. The first camera detects the ray
on which the point lies. The second camera observes the same point from a
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Figure 3.3: Uncertainty propagation from the scene point to the image. (a) XYZ
coding. (b) Inverse depth coding.

distance d1; the parallax angle α is approximated by the angle between the
cameras’ optic axes.

The point’s location error, d, is encoded as Gaussian in depth:

D = d0 + d, d ∼ N
(
0, σ2

d

)
. (3.13)

This error d is propagated to the image of the point in the second camera,
u as:

u =
x

y
=

d sinα
d1 + d cosα

. (3.14)

The Gaussianity of u is analyzed by means of (3.12), giving linearity
index:

Ld =

∣∣∣∣∣ ∂
2u
∂d2

2σd
∂u
∂d

∣∣∣∣∣ =
4σd
d1
|cosα| (3.15)

3.4.3 Linearity of Inverse Depth Parametrization

The inverse depth parametrization is based on the same scene geometry
as the direct depth coding, but the depth error is encoded as Gaussian in
inverse depth (Figure 3.3b):

D =
1

ρ0 − ρ
, ρ ∼ N

(
0, σ2

ρ

)
(3.16)

d = D − d0 =
ρ

ρ0 (ρ0 − ρ)
, d0 =

1
ρ0

. (3.17)
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So the image of the scene point is computed as:

u =
x

y
=

d sinα
d1 + d cosα

=
ρ sinα

ρ0d1 (ρ0 − ρ) + ρ cosα
, (3.18)

and the linearity index Lρ is now:

Lρ =

∣∣∣∣∣
∂2u
∂ρ2

2σρ
∂u
∂ρ

∣∣∣∣∣ =
4σρ
ρ0

∣∣∣∣1− d0

d1
cosα

∣∣∣∣ . (3.19)

3.4.4 Depth vs. Inverse Depth Comparison

When a feature is initialized, the depth prior has to cover a vast region
in front of the camera. With the inverse depth representation, the 95%
confidence region with parameters ρ0, σρ is:[

1
ρ0 + 2σρ

,
1

ρ0 − 2σρ

]
. (3.20)

This region cannot include zero depth but can easily extend to infinity.
Conversely, with the depth representation the 95% region with param-

eters d0, σd is [d0 − 2σd, d0 + 2σd] . This region can include zero depth but
cannot extend to infinity.

In the first few frames after a new feature has been initialized, little
parallax is likely to have been observed. Therefore d0

d1
≈ 1 and α ≈ 0 =⇒

cosα ≈ 1. In this case the Ld linearity index for depth is high (bad), while
the Lρ linearity index for inverse depth is low (good): during initialization
the inverse depth measurement equation linearity is superior to the XYZ
coding.

As estimation proceeds and α increases, leading to more accurate depth
estimates, the inverse depth representation continues to have a high degree
of linearity. This is because in the expression for Lρ the increase in the

term
∣∣∣1− d0

d1
cosα

∣∣∣ is compensated by the decrease in 4σρ
ρ0

. For inverse depth
features a good linearity index is achieved along the whole estimation history.
So the inverse depth coding is suitable for both low and high parallax cases
if the feature is continuously observed.

The XYZ encoding has low computational cost, but achieves linearity
only at low depth uncertainty and high parallax. In section 3.6 we explain
how the representation of a feature can be switched over such that the inverse
depth parametrization is only used when needed — for features which are
either just initialized or at extreme depths.

3.5 Feature Initialization

From just a single observation no feature depth can be estimated (although
it would be possible in principle to impose a very weak depth prior by
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knowledge of the type of scene observed). What we do is to assign a general
Gaussian prior in inverse depth which encodes probabilistically the fact that
the point has to be in front of the camera. Hence, thanks to the linearity
of inverse depth at low parallax, the filter can be initialized from just one
observation. Experimental tuning has shown that infinity should be included
with reasonable probability within the initialization prior, despite the fact
that this means that depth estimates can become negative. Once initialized,
features are processed with the standard EKF prediction-update loop —
even in the case of negative inverse depth estimates — and immediately
contribute to camera location estimation within SLAM.

It is worth noting that while a feature retains low parallax, it will auto-
matically be used mainly to determine the camera orientation. The feature’s
depth will remain uncertain, with the hypothesis of infinity still under con-
sideration (represented by the probability mass corresponding to negative
inverse depths). If the camera translates to produce enough parallax then
the feature’s depth estimation will be improved and it will begin to con-
tribute more to camera location estimation.

The initial location for a newly observed feature inserted into the state
vector is:

ŷ
(
r̂WC , q̂WC ,h, ρ0

)
=
(
x̂i ŷi ẑi θ̂i φ̂i ρ̂i

)>
, (3.21)

a function of the current camera pose estimate r̂WC , q̂WC , the image obser-
vation h = ( u v )> and the parameters determining the depth prior ρ0,
σρ.

The end-point of the initialization ray (see Figure 3.1) is taken from the
current camera location estimate:(

x̂i ŷi ẑi
)> = r̂WC , (3.22)

and the direction of the ray is computed from the observed point, expressed
in the world coordinate frame:

hW = RWC

(
ˆqWC
) (

υ ν 1
)>

, (3.23)

where υ and ν are normalized retina image coordinates. Despite hW being a
non-unit directional vector, the angles by which we parametrize its direction
can be calculated as:(

θi
φi

)
=

 arctan
(
hWx , h

W
z

)
arctan

(
−hWy ,

√
hWx

2 + hWz
2
)  . (3.24)

The covariance of x̂i, ŷi, ẑi, θ̂i and φ̂i is derived from the image measure-
ment error covariance Ri and the state covariance estimate P̂k|k.
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Chapter 3. Inverse Depth Parametrization

The initial value for ρ0 and its standard deviation are set such that
the 95% confidence region spans a range of depths from a close distance
to the camera up to infinity. In our experiments of this chapter we chose
ρ̂0 = 0.1, σρ = 0.5, which gives an inverse depth confidence region [1.1,−0.9].
Notice that infinity is included in this range. Nevertheless, further exper-
imental validation has shown that the precise values of these parameters
are relatively unimportant to the accurate operation of the filter as long as
infinity is clearly included in the confidence interval.

The state covariance after feature initialization is:

P̂
new
k|k = J

 P̂k|k 0 0
0 Ri 0
0 0 σ2

ρ

J> (3.25)

J =

(
I 0

∂y
∂rWC ,

∂y
∂qWC , 0, . . . , 0,

∂y
∂h ,

∂y
∂ρ

)
. (3.26)

The inherent scale ambiguity in monocular SLAM has usually been
fixed by observing some known initial features that fix the scale (e.g.
[Davison 2003]). A very interesting experimental observation we have made
using the inverse depth scheme is that sequential monocular SLAM can
operate successfully without any known features in the scene, and in fact
the experiments we present in this book do not use an initialization tar-
get. In this case the overall scale of the reconstruction and camera motion
is undetermined, although with the formulation of the current chapter the
estimation will settle on a (meaningless) scale of some value. Appendix B
details an alternative formulation of EKF SfM that illustrates this issue via
a dimensional analysis of the problem and the proposal of a dimensionless
formulation.

3.6 Switching from Inverse Depth to XYZ

While the inverse depth encoding can be used at both low and high parallax,
it is advantageous for reasons of computational efficiency to restrict inverse
depth to cases where the XYZ encoding exhibits non linearity according to
the Ld index. This section details switching from inverse depth to XYZ for
high parallax features.

3.6.1 Conversion from Inverse Depth to XYZ Coding

After each estimation step, the linearity index Ld (Equation 3.15) is com-
puted for every map feature coded in inverse depth:
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Figure 3.4: Percentage of test rejections as a function of the linearity index Ld

hWXYZ = ŷWXYZ,i − r̂WC , σd =
σρ
ρ2
i

, σρ =
√

Pyiyi (6, 6)

di =
∥∥hWXYZ

∥∥ , cosα = m>hWXYZ

∥∥hWXYZ

∥∥−1
. (3.27)

where ŷW
XYZ,i is computed using equation (3.4) and Pyiyi is the submatrix

6× 6 covariance matrix corresponding the considered feature.
If Ld is below a switching threshold, the feature is transformed using

Equation (3.4) and the full state covariance matrix P is transformed with
the corresponding Jacobian:

Pnew = JPJ>, J = diag
(

I,
∂xi
∂yi

, I
)
. (3.28)

3.6.2 Linearity Index Threshold

We propose to use index Ld (3.15) to define a threshold for switching from
inverse depth to XYZ encoding at the point when the latter can be consid-
ered linear. If the XYZ representation is linear, then the measurement u is
Gaussian distributed (Equation 3.10):

u ∼ N
(
µu, σ

2
u

)
, µu = 0, σ2

u =
(

sinα
d1

)2

σ2
d . (3.29)

To determine the threshold in Ld which signals a lack of linearity in
the measurement equation a simulation experiment has been performed.
The goal was to generate samples from the uncertain distribution for vari-
able u and then apply a standard Kolmogorov-Smirnov Gaussianity test
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input: α, d1, σd
output: h, Ld

σu =
∣∣∣ sinαd1 ∣∣∣σd; µu = 0; //(3.29)

αsl = 0.05; // Kolm. test sign. level
Ld = 4σd

d1
|cosα|

n rejected=0 ;
N GENERATED SAMPLES=1000;
SAMPLE SIZE=1000;

for j=1 to N GENERATED SAMPLES repeat
{di}j=random normal(0,σ2

d,SAMPLE SIZE);
//generate a normal sample from N

(
0, σ2

d

)
;

{ui}j=propagate from dept to image({di}j,α,d1);//(3.14)
if rejected==Kolmogorov Smirnov({ui}j , µu, σu, αsl)
n rejected=n rejected+1;

endfor
h=100 [n rejected]

[N GENERATED SAMPLES]
;

Figure 3.5: Simulation algorithm to test the linearity of the measurement equation.

[Canavos 1984] to these samples, counting the percentage of rejected hy-
potheses h. When u is effectively Gaussian, the percentage should match
the test significance level αsl (5% in our experiments); as the number of
rejected hypotheses increases the measurement equation departs from lin-
earity. A plot of the percentage of rejected hypotheses h with respect to the
linearity index Ld is shown in Figure 3.4. It can be clearly seen than when
Ld > 0.2, h sharply departs from 5%. So we propose the Ld < 10% safe
threshold for switching from inverse depth to XYZ encoding.

Notice that the plot in Figure 3.4 is smooth (log scale in Ld), which
indicates that the linearity index effectively represents the departure from
linearity.

The simulation has been performed for a variety of values of α, d1 and
σd; more precisely all triplets resulting from the following parameter values:

α(deg) ∈ {0.1, 1, 3, 5, 7, 10, 20, 30, 40, 50, 60, 70}
d1(m) ∈ {1, 3, 5, 7, 10, 20, 50, 100}
σd(m) ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 5} .

The simulation algorithm detailed in Figure 3.5 is applied to every triplet
{α, d1, σd} to count the percentage of rejected hypotheses h and the corre-
sponding linearity index Ld.
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3.7. Data Association

3.7 Data Association

The information contained in the updated probability distribution that
filtering-based approaches maintain along the image sequence can be ex-
ploited in the matching step, resulting in an increase of robustness at a lower
computational cost. Following the terminology in [Williams et al. 2008],
correspondences are not searched in an image–to–image but in an image–
to–map basis that takes into account the prior knowledge over the structure
of the scene and predicted camera motion.

Using this prior information, the patch which serves as photometric iden-
tifier of the feature can be warped according to the predicted camera mo-
tion facilitating the correspondence search under large projective distortions.
Also, the propagation of the probabilistic density over the state through the
projection model can be used to define small regions of high probability for
finding the match –this is called active search in [Davison et al. 2007].

3.7.1 Patch Warping

The performance of any SfM system relies on its ability to find correct corre-
spondences of a 3D feature in several images. Finding such correspondences
succesfully becomes more difficult as the motion between images increases,
as the appearance of the feature in the image strongly vary. Pairwise SfM
methods, that may take as input widely separated images, usually make
use of descriptors with a high degree of invariance –at the cost of a more
expensive processing– [Lowe 2004, Bay et al. 2008, Mikolajczyk et al. 2005].

The sequential processing of video sequences of this book makes the use
of these invariant descriptors unnecesary. Although sequential SfM from
videos also faces the problem of searching correspondences in widely sep-
arated images, it can benefit from the registration of past images and a
dynamic motion between frames. As a difference from pairwise SfM, the
correspondence search does not have to start “from scratch” without know-
ing the scale or rotation of each match. The appearance of each feature can
be accurately predicted using the relative motion between cameras and the
3D feature.

The use of highly invariant descriptors does not offer any advantages
in sequential SfM or monocular SLAM; and it is advisable to use simple
descriptors and predict their projective distortion using the geometric esti-
mation. In [Chekhlov et al. 2007], patches at different scales are generated
when a feature is first detected and are selected in the matching stage ac-
cording to the predicted scale change. In [Molton et al. 2004], the patch is
warped according to the predicted motion and also the normal to the local
patch is estimated.

In the experiments of this book, the feature patches are warped accord-
ing to the estimation in order to improve the matching. Differently from
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[Molton et al. 2004], we do not estimate the normal of the patch but ap-
proximate it by the bisector of the angle formed by the two projection rays.
We find that this simplification successfully copes with the most problem-
atic motions (e.g., cyclotorsion) and its general performance do not degrade
much compared with more elaborated approaches. The warping or the patch
is computed via the following homography

H = K
(
RCiCk − tCiCkn>/di

)
K−1 , (3.30)

where K stands for the known calibration matrix.

K =

 f/dx 0 Cx
0 f/dy Cy
0 0 1

 . (3.31)

RCiCk and tCiCk are the relative rotation and translation between the
camera Ci where the feature was initialised and the current one Ck. Both
can be computed from the current camera rotation RWCk and translation
tWCk and the ones at the feature initialization RWCi and tWCi di is the
distance from the first camera to the point, that can be extracted easily
from the state vector –it is the inverse of the inverse depth for this feature
ρi. n stands for the normal of the patch, and it is approximated as described
in the previous paragraph.

3.7.2 Active Search

Active search or guided matching is achieved in filtering-based visual esti-
mation by projecting into the image the probabilistic state vector. The 95%
probability region from this distribution results in small elliptical search
regions. Searching the correspondences inside the ellipses reduces the com-
putational cost and also prevents many outliers to appear. Although the
spurious rate reduces drastically by this approach, it is important to remark
that a complete rejection of the outliers cannot be guaranteed and an addi-
tional step that checks the consensus of the data against a global model is
still needed. Next chapter further elaborates on this issue and presents an
efficient matching algorithm based on RANSAC.

The search region is obtained by propagating first the EKF Gaussian
prediction N

(
x̂k|k−1,Pk|k−1

)
through the measurement equation h (x), re-

sulting in a multidimensional Gaussian in the image N
(
ĥk|k−1,Sk|k−1

)
ĥk|k−1 = h(x̂k|k−1) (3.32)

Sk|k−1 = Hk|k−1Pk|k−1H
>
k|k−1 + Rk . (3.33)

Hk|k−1 are the derivatives for the measurement equation in the prediction
and Rk the image noise covariance at step k. The individual search regions
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Figure 3.6: First (a) and last (b) frame in the sequence of the indoor experiment
of section 3.8.1. Features 11,12, 13 are analyzed. These features are initialized in
the same frame but are located at different distances from the camera.

for a feature i are the parameters corresponding to the 2D mean ĥi and
covariance Si extracted from the multivariate distribution.

It can be seen in any of the figures in the experimental results section
where images are displayed –Figures 3.6, 3.8 and 3.10– and other figures
along the book –e.g. Figures 2.9, 4.10 and 6.4– the small ellipses around
feature image predictions where the matches are looked for. Efficiency gain
come across straightforwardly if it is compared the size of these ellipses with
the size of the whole image.

3.8 Experimental Results

The performance of the inverse depth parametrization has been tested on
real image sequences acquired with a hand-held low cost Unibrain IEEE1394
camera, with a 90◦ field of view and 320 × 240 resolution, capturing
monochrome image sequences at 30 fps.

Five experiments has been performed. The first is an indoor sequence
processed offline with a Matlab implementation, the goal being to analyze
initialization of scene features located at different depths. The second ex-
periment shows an outdoor sequence processed in real-time with a C++
implementation. The focus here is on distant features, observed under low
parallax along the whole sequence. The third experiment is a loop closing
sequence, concentrating on camera covariance evolution. Fourth is a simula-
tion experiment to analyze the effect of switching from inverse depth to XYZ
representations. In the last experiment the switching performance is verified
on the real loop closing sequence. The section ends with a computing time
analysis.

3.8.1 Indoor Sequence

This experiment analyzes the performance of the inverse depth scheme as
several features at a range of depths are tracked within SLAM. We discuss
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Figure 3.7: Feature initialization. Each column shows the estimation history for a
feature horizontal components. For each feature, the estimates after 1, 10, 25 and
100 frames since initialization are plotted; the parallax angle α in degrees between
the initial observation and the current frame is displayed. The thick (red) lines show
(calculated by a Monte Carlo numerical simulation) the 95% confidence region when
coded as Gaussian in inverse depth. The thin (black) ellipsoids show the uncertainty
as a Gaussian in XYZ space propagated according to Equation (3.28). Notice how at
low parallax the inverse depth confidence region is very different from the elliptical
Gaussian. However, as the parallax increases, the uncertainty reduces and collapses
to the Gaussian ellipse.
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three features, which are all detected in the same frame but have very dif-
ferent depths. Figure 3.6 shows the image where the analyzed features are
initialized (frame 18 in the sequence) and the last image in the sequence.
Figure 3.7 focuses on the evolution of the estimates corresponding to the
features, with labels 11, 12 and 13, at frames 1, 10, 25 and 100. Confidence
regions derived from the inverse depth representation (thick red line) are
plotted in XYZ space by numerical Monte Carlo propagation from the six-
dimensional multivariate Gaussians representing these features in the SLAM
EKF. For comparison, standard Gaussian XYZ acceptance ellipsoids (thin
black line) are linearly propagated from the six-dimensional representation
by means of the Jacobian of equation (3.28). The parallax α in degrees for
each feature at every step is also displayed.

When initialized, the 95% acceptance region of all the features includes
ρ = 0 so infinite depth is considered as a possibility. The correspond-
ing confidence region in depth is highly asymmetric, excluding low depths
but extending to infinity. It is clear that Gaussianity in inverse depth is
not mapped to Gaussianity in XYZ, so the black ellipsoids produced by
Jacobian transformation are far from representing the true depth uncer-
tainty. As stated in section 3.4.4, it is at low parallax that the inverse depth
parametrization plays a key role.

As rays producing bigger parallax are gathered, the uncertainty in ρ be-
comes smaller but still maps to a non-Gaussian distribution in XYZ. Even-
tually, at high parallax, for all of the features the red confidence regions
become closely Gaussian and well-approximated by the linearly-propagated
black ellipses — but this happens much sooner for nearby feature 11 than
distant feature 13.

3.8.2 Real-Time Outdoor Sequence

This 860 frame experiment was performed with a C++ implementation
which achieves real-time performance at 30 fps with hand-held camera. Here
we highlight the ability of our parametrization to deal with both close and
distant features in an outdoor setting.

Figure 3.8 shows two frames of the sequence along with the estimation re-
sults at those steps. For most of the features, the camera ended up gathering
enough parallax to accurately estimate their depths. However, being out-
doors, there were distant features producing low parallax during the whole
camera motion.

The inverse depth estimation history for two features is highlighted in
Figure 3.9. It is shown that distant, low parallax features are persistently
tracked through the sequence, despite the fact that their depths cannot
be precisely estimated. The large depth uncertainty, represented with the
inverse depth scheme, is successfully managed by the EKF SLAM, allowing
the orientation information supplied by these features to be exploited.
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Figure 3.8: Subfigures (a) and (b) show frames #163 and #807 from the outdoor
experiment of section 3.8.2. This experiment was processed in real time. The focus
was two features: 11 (tree on the left) and 3 (car on the right) at low parallax. Each
of the two subfigures shows the current images, and top-down views illustrating the
horizontal components of the estimation of camera and feature locations at three
different zoom scales for clarity: the top-right plots (maximum zoom) highlight
the estimation of the camera motion; bottom-left (medium zoom) views highlight
nearby features; and bottom-right (minimum zoom) emphasizes distant features.58
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Figure 3.9: Analysis of outdoor experiment of section 3.8.2. (a) Inverse depth
estimation history for feature 3, on the car, and (b) for feature 11, on a distant
tree. Due to the uncertainty reduction during estimation, two plots at different
scales are shown for each feature. It is show the 95% confidence region, and with
a thick line the estimated inverse depth. The thin solid line is the inverse depth
estimated after processing the whole sequence. In (a), for the first 250 steps, zero
inverse depth is included in confidence region, meaning that the feature might be at
infinity. After this, more distant but finite locations are gradually eliminated, and
eventually the feature’s depth is accurately estimated. In (b), the tree is so distant
that the confidence region always includes zero, since little parallax is gathered for
that feature.

Feature 3, on a nearby car, eventually gathers enough parallax to have
an accurate depth estimate after 250 images where infinite depth was still
considered as a possibility. Meanwhile the estimate of feature 11, on a dis-
tant tree and never displaying significant parallax, never collapses in this
way and zero inverse depth remains within its confidence region. Delayed
intialization schemes would have discarded this feature without obtaining
any information from it, while in our system it behaves like a bearing ref-
erence. This ability to deal with distant points in real time is a highly
advantageous quality of our parametrization. Note that what does happen
to the estimate of Feature 11 as translation occurs is that hypotheses of
nearby depths are ruled out — the inverse depth scheme correctly recog-
nizes that measuring little parallax while the camera has translated some
distance allows a minimum depth for the feature to be set.

3.8.3 Loop Closing Sequence

A loop closing sequence offers a challenging benchmark for any SLAM al-
gorithm. In this experiment a hand-held camera was carried by a person
walking in small circles within a very large student laboratory, carrying out
two complete laps.

Figure 3.10 shows a selection of the 737 frames from the sequence, con-
centrating on the beginning, first loop closure and end of the sequence.
Figure 3.11 shows the camera location estimate covariance history, repre-
sented by the 95% confidence regions for the 6 camera d.o.f. and expressed
in a reference local to the camera.
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Figure 3.10: A selection of frames from the loop closing experiment of section 3.8.3.
For each frame, we show the current image and the projection of the estimated map
(left), and a top-down view of the map with 95% confidence regions and camera
trajectory (right). Notice that confidence regions for the map features are far from
being Gaussian ellipses, especially for newly initialized or distant features. The
selected frames are: (a) #11, close to the start of the sequence; (b) #417, where
the first loop closing match, corresponding to a distant feature, is detected; the
loop closing match is signaled with an arrow; (c) #441 where the first loop closing
match corresponding to a close feature is detected; the match is signaled with an
arrow; and (d) #737, the last image, in the sequence, after reobserving most of the
map features during the second lap around the loop.
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Figure 3.11: Camera location estimate covariance along the sequence. The 95%
confidence regions for each of the 6 d.o.f of camera motion are plotted. Note that
errors are expressed in a reference local to the camera. The vertical solid lines
indicate the loop closing frames #417 and #441.

We observe the following properties of the evolution of the estimation,
focussing in particular on the uncertainty in the camera location:

• After processing the first few images, the uncertainty in the features’
depth is still huge, with highly non-elliptical confidence regions in XYZ
space (Figure 3.10(a)).

• In Figure 3.11 the first peak in the X and Z translation uncertainty
corresponds to a camera motion backwards along the optical axis; this
motion produces poor parallax for newly initialized features, and we
therefore see a reduction in orientation uncertainty and an increase in
translation uncertainty. After frame #50 the camera again translates
in the X direction, parallax is gathered and the translation uncertainty
is reduced.

• From frame #240, the camera starts a 360◦ circular motion in the
XZ plane. The camera explores new scene regions, and the covariance
increases steadily as expected (Figure 3.11).
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• In frame #417, the first loop closing feature is re-observed. This is a
feature which is distant from the camera, and causes an abrupt reduc-
tion in orientation and translation uncertainty (Figure 3.11), though a
medium level of uncertainty remains.

• In frame #441, a much closer loop closing feature (mapped with high
parallax) is matched. Another abrupt covariance reduction takes place
(Figure 3.11) with the extra information this provides.

• After frame #441, as the camera goes on a second lap around the
loop, most of the map features are revisited, almost no new features
are initalized, and hence the uncertainty in the map is further reduced.
Comparing the map at frame #441 (the beginning of the second lap)
and at #737, (the end of the second lap), we see a significant reduc-
tion in uncertainty. During the second lap, the camera uncertainty is
low, and as features are reobserved their uncertainties are noticeably
reduced (Figure 3.10(c) and (d)).

Note that these loop closing results with the inverse depth representation
show a marked improvement on the experiments on monocular SLAM with a
humanoid robot presented in [Davison et al. 2007], where a gyro was needed
in order to reduce angular uncertainty enough to close loops with very similar
camera motions.

3.8.4 Simulation Analysis for Inverse Depth to XYZ Switch-
ing

In order to analyze the effect of the parametrization switching proposed in
section 3.6 on the consistency of SLAM estimation, simulation experiments
with different switching thresholds were run. In the simulations, a camera
completed two laps of a circular trajectory of radius 3m in the XZ plane,
looking out radially at a scene composed of points lying on three concen-
tric spheres of radius 4.3m, 10m and 20m. These points at different depths
were intended to produce observations with a range of parallax angles (Fig-
ure 3.12.)

The camera parameters of the simulation correspond with our real im-
age acquisition system: camera 320× 240 pixels, frame rate 30 frames/sec,
image field of view 90◦, measurement uncertainty for a point feature in the
image, Gaussian N

(
0, 1pixel2

)
. The simulated image sequence contained

1000 frames. Features were selected following the randomized map man-
agement algorithm proposed in [Davison 2003] in order to have 15 features
visible in the image at all times. All our simulation experiments work using
the same scene features, in order to homogenize the comparison.

Four simulation experiments for different thresholds for switching each
feature from inverse depth to XYZ parametrization were run, with Ld ∈

62



3.8. Experimental Results

Figure 3.12: Simulation configuration for analysis of parametrization switching in
section 3.8.4, sketching the circular camera trajectory and 3D scene, composed of
three concentric spheres of radius 4.3m, 10m and 20m. The camera completes two
circular laps in the (XZ) plane with radius 3m, and is orientated radially.

{0%, 10%, 40%, 60%}. Figure 3.13 shows the camera trajectory estima-
tion history in 6 d.o.f. (translation in XY Z, and three orientation angles
ψ(Rotx), θ(Roty), φ(Rotz, cyclotorsion)). The following conclusions can be
made:

• The same performance is achieved with no switching (0%) and with
10% switching. So it is clearly advantageous to perform 10% switching
because there is no penalization in accuracy and the state vector size
of each converted feature is halved.

• Switching too early degrades accuracy, especially in the orientation
estimate. Notice how for 40% the orientation estimate is worse and
the orientation error covariance is smaller, showing filter inconsistency.
For 60%, the estimation is totally inconsistent and loop closing fails.

• Since early switching degrades performance, the inverse depth
parametrization is mandatory for initialization of every feature and
over the long-term for low-parallax features.

3.8.5 Parametrization Switching with Real Images

The loop closing sequence of section 3.8.3 was processed without any
parametrization switching, and with switching at Ld = 10%.
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Figure 3.13: Details from the parametrization switching experiment. Camera loca-
tion estimation error history in 6 d.o.f. (translation in XY Z, and three orientation
angles ψθφ) for four switching thresholds: With Ld = 0%, no switching occurs
and the features all remain in the inverse depth parametrization. At, Ld = 10%
although features from the spheres at 4.3m and 10m are eventually converted, no
degradation with respect to the non-switching case is observed. At Ld = 40% some
features are switched before achieving true Gaussianity, and there is noticeable
degradation, especially in θ rotation around the Y axis. At Ld = 60% the map
becomes totally inconsistent and loop closing fails.
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Figure 3.14: Parametrization switching on a real sequence (section 3.8.5): state
vector size history. Top: percentage reduction in state dimension when using
switching compared with keeping all points in inverse depth. Bottom: total num-
ber of points in the map, showing the number of points in inverse depth and the
number of points in XYZ.

Figure 3.15: Parametrization switching seen in image space: points coded in
inverse depth (?) and coded in XYZ (4). (a) First frame, with all features in
inverse depth. (b) Frame #100; nearby features start switching. (c) Frame # 470,
loop closing; most features in XYZ. (d) Last image of the sequence.
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Figure 3.14 shows the history of the state size, the number of map fea-
tures and how their parametrization evolves. At the last estimation step
about half of the features had been switched; at this step the state size had
reduced from 427 to 322 (34 inverse depth features and 35 XYZ), i.e. 75%
of the original vector size. Figure 3.15 shows four frames from the sequence
illustrating feature switching. Up to step 100 the camera has low transla-
tion and all the features are in inverse depth form. As the camera translates
nearby features switch to XYZ. Around step 420, the loop is closed and fea-
tures are reobserved, producing a significant reduction in uncertainty which
allows switching of more reobserved close features. Our method automati-
cally determines which features should be represented in the inverse depth
or XYZ forms, optimizing computational efficiency without sacrificing accu-
racy.

3.8.6 Processing Time

We give some details of the real-time operation of our monocular SLAM
system, running on a 1.8 GHz. Pentium M processor laptop. A typical
EKF iteration would imply:

• A state vector dimension of 300.

• 12 features observed in the image, a measurement dimension of 24.

• 30 fps, so 33.3 ms available for processing.

Typical computing time breaks down as follows: Image acquisition, 1
ms.; EKF prediction, 2 ms.; Image matching, 1 ms.; EKF update, 17 ms.
That adds up to a total of 21ms. The remaining time is used for graphics
functions, using OpenGL on an NVidia card and scheduled at a low priority.

The quoted state vector size 300 corresponds to a map size of 50 if
all features are encoded using inverse depth. In indoor scenes, thanks to
switching maps of up to 60-70 features can be computed in real time. This
size is enough to map many typical scenes robustly.

3.9 Discussion

We have presented a parametrization for monocular SLAM which permits
operation based uniquely on the standard EKF prediction-update procedure
at every step, unifying initialization with the tracking of mapped features.
Our inverse depth parametrization for 3D points allows unified modelling
and processing for any point in the scene, close or distant, or even at ‘infin-
ity’. In fact, close, distant or just-initialized features are processed within
the routine EKF prediction-update loop without making any binary de-
cisions. Thanks to the undelayed initialization and immediate full use of
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infinite points, estimates of camera orientation are significantly improved,
reducing the camera estimation jitter often reported in previous work. The
jitter reduction in turn leads to computational benefits in terms of smaller
search regions and improved image processing speed

The key factor is that due to our parametrization of the direction and
inverse depth of a point relative to the location from which it was first seen,
our measurement equation has low linearization errors at low parallax, and
hence the estimation uncertainty is accurately modeled with a multi-variate
Gaussian. In section 3.4 we presented a model which quantifies linearization
error. This provides a theoretical understanding of the impressive outdoor,
real-time performance of the EKF with our parametrization.

The inverse depth representation requires a six-dimensional state vector
per feature, compared to three for XYZ coding. This doubles the map state
vector size, and hence produces a 4-fold increase in the computational cost
of the EKF. Our experiments show that it is essential to retain the inverse
depth parametrization for intialization and distant features, but that nearby
features can be safely converted to the cheaper XYZ representation meaning
that the long-term computational cost need not significantly increase. We
have given details on when this conversion should be carried out for each
feature, to optimize computational efficiency without sacrificing accuracy.

The experiments presented have validated the method with real imagery,
using a hand-held camera as the only sensor both indoors and outdoors. We
have experimentally verified the key contributions of our work:

• Real-time performance achieving 30 fps real-time processing for maps
up to 60–70 features.

• Real-time loop closing.

• Dealing simultaneously with low and high parallax features.

• Non delayed initialization.

• Low jitter, full 6 DOF monocular SLAM.

The point parametrization detailed in this chapter –first presented in
[Montiel et al. 2006, Civera et al. 2007a, Civera et al. 2008]– has reached
the status of standard and reached an impact in the robotics commu-
nity that is worth summarizing here. The inverse depth parametrization
is used in the most successful implementations of EKF-based monocular
SLAM [Clemente et al. 2007, Williams et al. 2007, Piniés & Tardós 2008,
Paz et al. 2008, Holmes et al. 2008, Castle et al. 2010]. Several modifica-
tions to the approach presented here has been studied [Marzorati et al. 2008,
Solà 2010]. Nevertheless, it has been recently proved in [Solà et al. 2011]
that the one presented here still presents the highest degree of accuracy and
consistency. The inverse depth idea has been also succesfully applied to
line-based monocular SLAM [Solà et al. 2009].
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Chapter 4
1-Point RANSAC

4.1 Introduction

The establishment of reliable correspondences from sensor data is at the
core of most estimation algorithms in robotics. The search for correspon-
dences, or data association, is usually based first stage on comparing local
descriptors of salient features in the measured data. The ambiguity of such
local description usually produces incorrect correspondences at this stage.
Robust methods operate by checking the consistency of the data against the
global model assumed to be generating the data, and discarding as spurious
any that does not fit into it. Among robust estimation methods, Random
Sample Consensus (RANSAC) [Fischler & Bolles 1981] stands out as one
of the most successful and widely used, especially in the Computer Vision
community.

This chapter introduces a novel integration of RANSAC into the Ex-
tended Kalman Filter framework. In order to highlight the requirements
and benefits of this method, the RANSAC algorithm is first briefly exposed
in this introduction for the simple case of 2D line estimation from a set of
points contaminated with spurious data (see Figure 4.1). After that, the
same simple example will be tackled using the proposed 1-Point RANSAC
algorithm (Figure 4.2). It is important to remark here that we use this sim-
ple example only to illustrate in the simplest manner our approach, and will
later on fill in the details which make 1-Point RANSAC into a fully practical
matching algorithm.

Standard RANSAC starts from a set of data, in our simple example 2D
points, and the underlying model that generates the data, a 2D line. In
the first step, RANSAC constructs hypotheses for the model parameters
and selects the one that gathers most support. Hypotheses are randomly
generated from the minimum number of points necessary to compute the
model parameters, which is two in our case of line estimation. Support for

69



Chapter 4. 1-Point RANSAC

⎪
⎪
⎩

⎪
⎪
⎨

⎧

3RD STEP: MODEL 
RE-ESTIMATION 
WITH RESCUED 

INLIERS

DATA 
CONTAMINATED
WITH OUTLIERS

Most 
supported
hypothesis

Outliers??

Inlier

1st STEP: RANDOM 
HYPOTHESIS

10 votes

3 votes

8 votes

2nd STEP: MODEL 
INSTANTIATION WITH 

CLEAR INLIERS

Outliers?? Outliers

Outliers

Figure 4.1: RANSAC steps for the simple 2D line estimation example: First,
random hypotheses are generated from data samples of size two, the mini-
mum to define a line. The most supported one is selected, and data voting
for this hypothesis is considered inlier. Model parameters are estimated
from those clear inliers in a second step. Finally, the remaining data points
consistent with this latest model are rescued and the model is re-estimated
again.
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each hypothesis can be computed in its most simple form by counting the
data points inside a threshold (related to the data noise), although more
sophisticated methods have been used [Torr & Zisserman 2000].

Hypotheses involving one or more outliers are assumed to receive low
support, as is the case in the third hypothesis in Figure 4.1. The num-
ber of hypotheses nhyp necessary to ensure that at least one spurious-free
hypothesis has been tested with probability p can be computed from this
formula:

nhyp =
log (1− p)

log (1− (1− ε)m)
, (4.1)

where ε is the outlier ratio and m the minimum number of data points
necessary to instantiate the model. The usual approach is to adaptively
compute this number of hypotheses at each iteration, assuming the inlier
ratio is the support set by the total number of data points in this iteration
[Hartley & Zisserman 2004].

Data points that voted for the most supported hypothesis are considered
clear inliers. In a second stage, clear inliers are used to estimate the model
parameters. Individual compatibility is checked for each one of the rest of
the points against the estimated model. If any of them is rescued as inlier, as
happens in the example in Figure 4.1, the model parameters are re-estimated
again in a third step.

Figure 4.2 illustrates the idea behind 1-Point RANSAC in the same 2D
line estimation problem. As the first key difference, the starting point is
a data set and its underlying model, but also a prior probability distribu-
tion over the model parameters. RANSAC random hypotheses are then
generated based on this prior information and data points, differently from
standard RANSAC hypothesis solely based on data points. The use of prior
information can reduce the size of the data set that instantiates the model
to the minimum size of one point, and it is here where the computational
benefit of our method with respect to RANSAC arises: according to Equa-
tion 4.1, reducing the sample size m greatly reduces the number of RANSAC
iterations and hence the computational cost.

The order of magnitude of this reduction can be better understood if
we switch from the simple 2D line estimation example to our visual estima-
tion application. According to [Nistér 2004], at least five image points are
necessary to estimate the 6 degrees of freedom camera motion between two
frames (so m = 5). Using formula 4.1, assuming an inlier ratio of 0.5 and
a probability p of 0.99, the number of random hypotheses would be 146.
Using our 1-Point RANSAC scheme, assuming that probabilistic a priori
information is available, the sample size m can be reduced to one point and
the number of hypotheses would be reduced to 7.

Having an a priori probability distribution over the camera parame-
ters is unusual in classical pairwise Structure from Motion which assumes
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Figure 4.2: 1-Point RANSAC steps for the simple 2D line estimation ex-
ample: As a key difference from standard RANSAC, the algorithm assumes
that an a priori probability distribution over the model parameters is known
in advance. This prior knowledge allows us to compute the random hypothe-
ses using only 1 data point, hence reducing the number of hypotheses and
the computational cost. The remaining steps do not vary with respect to
standard RANSAC in Figure 4.1

.
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widely separated views [Hartley & Zisserman 2004], and methods like stan-
dard RANSAC which generate hypotheses from candidate feature matches
are mandatory in this case. But in sequential SfM from video (such as
[Davison 2003, Klein & Murray 2008, Mouragnon et al. 2009]), smooth in-
terframe camera motion can be reasonably assumed and used to generate
a prior distribution (prediction) of the for the image correspondences. For
the specific case of the EKF implementation of sequential SfM, this prior
probability is naturally propagated by the filter and is straightforwardly
available.

The rest of the chapter is organised as follows: first, related work is
described in section 4.2; the proposed algorithm is then described in its
most general form in section 4.3 and the details for the visual application
are given in section 4.4. Experimental results are shown in section 4.5,
including pure visual estimation and the monocular and wheel odometry
combination. Finally, discussion and conclusions are presented in sections
4.6 and 4.7.

4.2 Related Work

4.2.1 Random Sample Consensus (RANSAC)

Although RANSAC is a relatively old method, the literature covering the
topic continues up to the present. RANSAC [Fischler & Bolles 1981] was
introduced early in visual geometric estimation [Torr & Murray 1993] and
has been the preferred outlier rejection tool in the field. Recently, an impor-
tant stream of research has focused on reducing the model verification cost
in standard RANSAC (e.g. [Raguram et al. 2008, Chum & Matas 2008,
Capel 2005, Nistér 2005]) via the early detection and termination of bad
hypotheses. The 1-point RANSAC algorithm proposed here is related to
this stream in the sense that it also reduces the hypothesis generation and
validation cost. Nevertheless, it does so in a different manner: instead of
fast identification of good hypotheses among a large number of them, the
number of hypotheses is greatly reduced from the start by considering the
prior information given by a dynamic model.

Incorporating probabilistic information into RANSAC has rarely been
discussed in the computer vision literature. Only very recently Moreno et
al. [Moreno-Noguer et al. 2008] have explored the case where weak a priori
information is available in the form of probabilistic distribution functions.

More related to our method, the combination of RANSAC and Kalman
filtering was proposed by Vedaldi et al. in [Vedaldi et al. 2005]. Our 1-Point
RANSAC might be considered a specific form of Vedaldi’s quite general
approach. They propose an iterative scheme in which several minimal hy-
potheses are tested; for each such hypothesis all the consistent matches are
iteratively harvested. No statement about the cardinality of the hypothe-

73



Chapter 4. 1-Point RANSAC

ses is made. Here we propose a definite and efficient method, in which the
cardinality of the hypotheses generator size is 1, and the inlier harvesting is
not iterative but in two stages. Finally we describe in reproducible detail
how to deal efficiently with the EKF algorithm in order to reach real-time,
splitting the expensive EKF covariance update in two stages.

RANSAC using 1-point hypotheses has also been very recently proposed
in [Scaramuzza et al. 2009] as the result of constraining the camera motion.
While at least 5 points would be needed to compute monocular Structure
from Motion for a calibrated camera undergoing general six degrees of free-
dom motion [Nistér 2004], fewer are needed if the motion is known to be
less general: as few as 2 points in [Ort́ın & Montiel 2001] for planar motion
and 1 point in [Scaramuzza et al. 2009] for planar and nonholonomic mo-
tion. As a clear limitation of both approaches, any motion performed out of
the model will result in estimation error. In fact, it is shown in real-image
experiments in [Scaramuzza et al. 2009] that although the most constrained
model is enough for RANSAC hypotheses (reaching then 1-point RANSAC),
a less restrictive model offers better results for motion estimation.

In the case of the new 1-point RANSAC presented here, extra informa-
tion for the predicted camera motion comes from the probability distribu-
tion function that the EKF naturally propagates over time. The method
presented is then in principle not restricted to any specific motion, being
suitable for 6 degrees of freedom estimation. The only assumption is the
existence of tight and highly correlated priors, which is reasonable within
the EKF framework since the filter itself only works in such circumstances.

4.2.2 Joint Compatibility Branch and Bound (JCBB)

Joint Compatibility Branch and Bound (JCBB) [Neira & Tardós 2001] has
been the preferred technique for spurious match rejection within the EKF
framework in the robotics community, being successfully used in visual (e.g.
[Clemente et al. 2007], [Williams et al. 2007]) and non-visual SLAM (e.g.
[Fenwick et al. 2002]). Unlike RANSAC, which hypothesizes model param-
eters based on current measurement data, JCBB detects spurious measure-
ments based on a predicted probability distribution over the measurements.
It does so by extracting from all the possible matches the maximum set that
is jointly compatible with the multivariate Gaussian prediction.

In spite of its wide use, JCBB presents two main limitations that 1-
Point RANSAC overcomes. First, JCBB operates over the prediction for
the measurements before fusing them. Such a probabilistic prediction is
coming from the linearization of the dynamic and measurement models and
the assumption of Gaussian noise; so it will presumably not correspond to
the real state of the system. 1-Point and in general any RANSAC operates
over hypotheses after the integration of a data subset, which have corrected
part of the predicted model error with respect to the real system.
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The second limitation of JCBB concerns computational cost: the Branch
and Bound search that JCBB uses for extracting the largest jointly compat-
ible set of matches has exponential complexity in the number of matches.
This complexity does not present a problem for small numbers of matches,
as is the case in the references two paragraphs above, but very large com-
putation times arise when the number of spurious grows, as we will show in
the experimental results section. The computational complexity of 1-Point
RANSAC is linear in the state and measurement size and exhibits low cost
variation with the number of outliers.

Two recent methods are also of interest for this work. First, Active
Matching [Chli & Davison 2008] is a clear inspiration for our method. In
Active Matching, feature measurements are integrated sequentially, with
the choice of measurement at each step driven by expected information
gain, and the results of each measurement in turn used to narrow the search
for subsequent correspondences. 1-Point RANSAC can be seen as lying in
the middle ground between RANSAC and JCBB which obtain point corre-
spondence candidates and then aim to resolve them, and Active Matching
with its fully sequential search for correspondence. The first step of 1-Point
RANSAC is very similar to Active Matching, and confirming that integrat-
ing the first match highly constrains the possible image locations of other
features, but afterwards the methods of the algorithms diverge. A problem
with Active Matching in [Chli & Davison 2008] was the unreasonably high
computational cost of scaling to large numbers of feature correspondences
per frame, and 1-Point RANSAC has much better properties in this regard,
though very recently an improvement to Active Matching has also addressed
this issue in a different way [Handa et al. 2010].

Paz et al. [Paz et al. 2008] describe can approach called Randomized
Joint Compatibility (RJC) which basically randomizes the jointly compati-
ble set search, avoiding the Branch and Bound search and ensuring an initial
small set of jointly compatible inliers at the first step via Branch and Bound
search in random sets. Only afterwards, the joint compatibility of each re-
maining match is checked against the initial set. Although this approach
lowers the computational cost of the JCBB, it still faces the accuracy prob-
lems derived from the use of the predicted measurement function before data
fusion.

4.2.3 Structure from Motion and Visual Odometry

Structure from Motion (SfM) is the generic term for 3D estimation from
the sole input of a set of images of the imaged 3D scene and the corre-
sponding camera locations. SfM from a sparse set of images has been usu-
ally processed by pairwise geometry algorithms [Hartley & Zisserman 2004]
and refined by global optimization procedures [Triggs et al. 2000]. Esti-
mation from a sequence has been carried out either by local optimization
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of keyframes [Klein & Murray 2008, Mouragnon et al. 2009], or by filtering
[Davison et al. 2007, Eade & Drummond 2007].

Visual Odometry, a term coined in [Nistér et al. 2004], refers to egomo-
tion estimation mainly from visual input (monocular or stereo), but some-
times also combined with mechanical odometry and/or inertial sensor mea-
surements. The variety of approaches here makes a complete review difficult;
some visual odometry algorithms have made use of stereo cameras, either
as the only sensor (e.g. [Comport et al. 2007]) or in combination with in-
ertial measurements [Konolige et al. 2007, Cheng et al. 2006]. Among the
monocular approaches, [Mouragnon et al. 2009] uses a non-panoramic cam-
era as the only sensor. Several others have been proposed using an om-
nidirectional camera, e.g. [Scaramuzza et al. 2009, Tardif et al. 2008]. The
experiment presented here, combining a non-panoramic camera plus propri-
oceptive information for estimation of large trajectories, is rarely found in
the literature.

4.2.4 Benchmarking

Carefully designed benchmark datasets and methods have come into
standard use in the vision community, e.g. [Scharstein & Szeliski 2002,
Everingham et al. 2010]. Robotics datasets have only recently reached
such level of detail, presenting either detailed benchmarking procedures
[Kummerle et al. 2009] or datasets with reliable ground truth and open re-
sources for comparison [Smith et al. 2009, Blanco et al. 2009].

The RAWSEEDS dataset [RAWSEEDS 2011], which include monocular
and wheel odometry streams for large scale scenarios, will be used for the Vi-
sual Odometry experiments in the next section of this chapter. While being
suitable to benchmark very large real-image experiments, robotic datasets
face two main inconveniences: First, the robot motion is planar in all the
datasets, thus not allowing to evaluate full six-degrees-of-freedom motion
estimation. And second, GPS only provides translational data and angu-
lar estimation cannot be benchmarked. Simulation environments, like the
one described in [Funke & Pietzsch 2009], can provide the translational and
angular ground truth for any kind of camera motion. Nevertheless, those
simulation environments usually cannot represent full real world complexity.

The benchmarking method proposed and used in this chapter overcomes
all these limitations. It consists of comparing the estimation results against
a Bundle Adjustment solution over high resolution images. Full 6 DOF
motion can be evaluated with low user effort (only the generation of a Bundle
Adjustment solution is required), requirements for hardware are low (a high
resolution camera) and any kind of motion or scene can be evaluated as the
method operates over the real images themselves.

This approach is not entirely new: the use of a global Bundle Adjust-
ment solution to benchmark sequential algorithms has already been used in
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[Eade & Drummond 2007, Mouragnon et al. 2009]. The contribution here is
the validation of the algorithm, effectively showing that the Bundle Adjust-
ment uncertainty is much lower than the sequential methods to benchmark.
As another novelty, global Bundle Adjustment is applied over high resolu-
tion images, further improving accuracy. While it is true that a Bundle
Adjustment solution still may suffer from scale drift, it will be much lower
than that of the sequential algorithms. Also, scale drift can be driven close
to zero by carefully chosing the images over which to apply Bundle Adjust-
ment to form a well-conditioned network [Triggs et al. 2000], so the validity
of the method is not compromised.

4.3 1-Point RANSAC Extended Kalman Filter
Algorithm

Algorithm 1 outlines the proposed combination of 1-Point RANSAC inside
the EKF framework in its most general form, and we describe this in detail
in this section. The language used here is deliberately general in the belief
that the described algorithm may be of application in a large number of
estimation problems. The particular scenarios of the experimental results
section (real-time sequential visual odometry from a monocular sequence,
either with or without additional wheel odometry) are discussed in detail in
section 4.4.

4.3.1 EKF Prediction and Search for Individually Compati-
ble Matches (lines 5–8)

The algorithm begins with standard EKF prediction: the estimation for the
state vector xk−1|k−1 at step k−1, modeled as a multidimensional Gaussian
xk−1|k−1 ∼ N

(
x̂k−1|k−1,Pk−1|k−1

)
, is propagated to step k through the

known dynamic model fk

x̂k|k−1 = fk
(
x̂k−1|k−1,uk

)
(4.2)

Pk|k−1 = FkPk−1|k−1F
>
k + GkQkG>k . (4.3)

In the above equation uk stands for the control inputs to the system at
step k, Fk is the Jacobian of fk with respect to the state vector xk|k−1 at
step k, Qk is the covariance of the zero-mean Gaussian noise assumed for
the dynamic model and Gk is the Jacobian of the state vector xk|k−1 by the
input uk at step k.

The predicted probability distribution for the state xk|k−1 can be used
to ease the correspondence search as described in section 3.7.2. Propagating
this predicted state through the measurement model hi offers a Gaussian
prediction for each measurement:
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Algorithm 1 1-Point RANSAC EKF
1: INPUT: x̂k−1|k−1,Pk−1|k−1 {EKF estimate at step k − 1}
2: th {Threshold for low-innovation points. In this chapter,
th = 2σ pixels}

3: OUTPUT: x̂k|k,Pk|k {EKF estimate at step k}
4:

{A. EKF prediction and individually compatible matches}
5: [x̂k|k−1,Pk|k−1] = EKF prediction(x̂k−1|k−1,Pk−1|k−1,u)
6: [ĥk|k−1,Sk|k−1] = measurement prediction(x̂k|k−1,Pk|k−1)
7: zIC = search IC matches(ĥk|k−1,Sk|k−1)
8:

{B. 1-Point hypotheses generation and evaluation}
9: zli inliers = [ ]

10: nhyp = 1000 {Initial value, will be updated in the loop}
11: for i = 0 to nhyp do
12: zi = select random match(zIC)
13: x̂i = EKF state update(zi, x̂k|k−1) {Notice: only state update; NO

covariance update}
14: ĥi = predict all measurements(x̂i)
15: zthi = find matches below a threshold(zIC , ĥi, th)
16: if size(zthi ) > size(zli inliers) then
17: zli inliers = zthi
18: ε = 1− size(zli inliers)

size(zIC)

19: nhyp = log(1−p)
log(1−(1−ε))

20: end if
21: end for
22:

{C. Partial EKF update using low-innovation inliers}
23: [x̂k|k,Pk|k] = EKF update(zli inliers, x̂k|k−1,Pk|k−1)
24:

{D. Partial EKF update using high-innovation inliers}
25: zhi inliers = [ ]
26: for every match zj above a threshold th do
27: [ĥj ,Sj ] = point j prediction and covariance(x̂k|k,Pk|k, j)
28: νj = zj − ĥj

29: if νj>Sj−1
νj < χ2

2,0.01 then
30: zhi inliers = add match j to inliers(zhi inliers, zj) {If individually

compatible, add to inliers}
31: end if
32: end for
33: if size(zhi inliers) > 0 then
34: [x̂k|k,Pk|k] = EKF update(zhi inliers, x̂k|k,Pk|k)
35: end if
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ĥi = hi
(
x̂k|k−1

)
(4.4)

Si = HiPk|k−1H
>
i + Ri , (4.5)

where Hi is the Jacobian of the measurement hi with respect to the
state vector xk|k−1 and Ri is the covariance of the Gaussian noise assumed
for each individual measurement. The actual measurement zi should be
exhaustively searched for inside the 99% probability region defined by its
predicted Gaussian N

(
ĥi,Si

)
by comparison of the chosen local feature

descriptor.
Active search allows computational savings and also constraints the

matches to be individually compatible with the predicted state xk|k−1. Nev-
ertheless, ensuring geometric compatibility for each separated match zi does
not guarantee the global consensus of the whole set. So, still the joint com-
patibility of the data against a global model has to be checked for the set
individually compatible matches zIC = (z1 . . . zi . . . zn)> previous to the
EKF update.

4.3.2 1-Point Hypotheses Generation and Evaluation (lines
9–22)

Following the principles of RANSAC, random state hypotheses x̂i are gen-
erated and data support is computed by counting measurements inside a
threshold. It is assumed here that the predicted measurements are highly
correlated, such that every hypothesis computed from one match reduces
most of the common uncertainty producing an inlier uncertainty close to
the measurement noise.

As the key difference with respect to standard RANSAC, ran-
dom hypotheses will be generated not only based on the data
zIC = (z1 . . . zi . . . zn)> but also on the predicted state xk|k−1 ∼
N
(
x̂k|k−1,Pk|k−1

)
. Exploiting this prior knowledge allows us to reduce the

sample size necessary to instantiate the model parameters from the minimal
size to define the degrees of freedom of the model to only one data point.
The termination criteria of the RANSAC algorithm in equation 4.1 grows
exponentially with the sample size, so we can achieve a great reduction in
the number of hypotheses.

Another key aspect for the efficiency of the algorithm is that each hy-
pothesis x̂i generation only needs an EKF state update using a single match
zi. A covariance update, which is of quadratic complexity in the size of
the state, is not needed and the cost per hypothesis will be low. Hypothesis
support is calculated by projecting the updated state into the camera, which
can also be performed at very low cost compared with other stages in the
EKF algorithm.
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4.3.3 Partial Update with Low-Innovation Inliers (lines 23–
24)

Data points voting for the most supported hypothesis zli inliers are desig-
nated as low-innovation inliers. They are assumed to be generated by the
true model, as they are at a small distance from the most supported hy-
pothesis. The rest of the points can be outliers but also inliers, even if they
are far from the most supported hypothesis.

A simple example related to this book can illustrate this: it is well known
that distant points are useful for estimating camera rotation while close
points are necessary to estimate translation; as discussed in chapter 3. In
the RANSAC hypotheses generation step, a distant feature would generate
a highly accurate 1-point hypothesis for rotation, while translation would
remain inaccurately estimated. Other distant points would in this case have
low innovation and would vote for this hypothesis. But as translation is
still inaccurately estimated, nearby points would presumably exhibit high
innovation even if they are inliers.

So after having determined the most supported hypothesis and the other
points that vote for it, some inliers still have to be “rescued” from the
high-innovation set. Such inliers will be rescued after a partial state and
covariance update using only the reliable set of low-innovation inliers:

x̂k|k = x̂k|k−1 + K′
(
zli inliers − h′

(
x̂k|k−1

))
(4.6)

Pk|k =
(
I−K′H′

)
Pk|k−1 (4.7)

K′ = Pk|k−1H
′>
(
H′Pk|k−1H

′> + R′
)−1

. (4.8)

H′ = (H′1 . . .H
′
i . . .H

′
n)> stands for the Jacobian of the measurement

equation h′
(
x̂k|k−1

)
that projects the low-innovation inliers into the sensor

space. R′ is the covariance assigned to the sensor noise.

4.3.4 Partial Update with High-Innovation Inliers (lines 25–
35)

After a partial update using low-innovation inliers, most of the correlated er-
ror in the EKF prediction is corrected and the covariance is greatly reduced.
This high reduction will be exploited for the recovery of high-innovation in-
liers: as correlations have weakened, consensus for the set will not be nec-
essary to compute and individual compatibility will suffice to discard inliers
from outliers.

An individual Gaussian prediction hj ∼ N
(
ĥj ,Sj

)
will be computed

for each high innovation for every match zj by propagating the state after
the first partial update xk|k through the projection model. The match will
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be accepted as an inlier if it lies within the 99% probability region of the
predicted Gaussian for the measurement.

After testing all the high-innovation measurements a second partial up-
date will be performed with all the points classified as inliers zhi inliers,
following the usual EKF equations.

It is worth remarking here that splitting the EKF update does not have
a noticeable effect on the computational cost. If n is the state size and
m the measurement vector size, and in the usual SLAM case where the
state is much bigger than the locally measured set n >> m, the main EKF
cost is the covariance update which is O

(
mn2

)
. If the update is divided

into two steps of measurement vector sizes m1 and m2 (m = m1 + m2),
this covariance update cost stays almost the same. Some other minor costs
grow, like the Jacobian computation which has to be done twice. But also
some others are reduced, like the measurement covariance inversion which is
O
(
m3
)
. Nevertheless, the effect of the latter two is negligible and for most

EKF estimation cases the cost is dominated by the covariance update and
remains approximately the same.

4.4 1-Point RANSAC Extended Kalman Filter
from a Monocular Sequence Input

As previously stated, the proposed 1-point RANSAC and EKF combination
is used in this chapter for the particular case of visual estimation from a
monocular camera. In this section, the general method detailed in section
4.3 specializes to this specific application.

4.4.1 State Vector Definition

The state vector at step k is composed of a set of camera parameters xCk
and map parameters y.

x̂k =
(

x̂Ck
x̂M

)
; Pk =

(
PCk PCkM

PMCk PM

)
. (4.9)

The estimated map xM is composed of n point features yi; xM =(
y>1 . . . y>n

)>. Point features are parametrized in inverse depth coordi-
nates yρ,i = (Xi Yi Zi θi φi ρi)

> and converted to Euclidean parametrization
yXY Z,i = (Xi Yi Zi)

> if and when the projection equation becomes linear
enough, as described in chapter 3.

4.4.2 Dynamic Model

The dynamic model applied to the camera depends on the information avail-
able. For the case of pure visual estimation from a monocular sequence, a
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constant velocity model is sufficient for smooth hand-held motion. Details
for the constant velocity model were already discussed in section 3.2.1. The
camera state is then formed by position rCk , orientation qCk , and linear and
angular velocities v and ω:

xCk =


rCk
qCk
v
ω

 . (4.10)

When other sensorial information apart from the monocular sequence is
available, it should be incorporated as input to the dynamic model. In this
chapter, the combination of monocular vision plus wheel odometry is ana-
lyzed. In this case, the camera state only needs to contain position and orien-

tation xCk =
(

rCk
qCk

)
. In the experiments shown at the end of this chapter,

the classical model for a differential drive robot [Borenstein et al. 1996] has
been chosen to model its dynamics.

4.4.3 Camera-Centered Estimation

It is well known that the usual EKF SLAM formulation, referred to a world
reference frame, is only valid for local estimation in the surroundings of a
sensor. Figure 4.3(a) illustrates the problem of this formulation: as the
sensor moves away from the world reference, and if a pure exploratory tra-
jectory is performed, the uncertainty of the estimation will always grow.
Eventually it will reach a point where large linearization errors will cause
inconsistency and filter divergence.

Figure 4.3(b) illustrates an alternative approach that alleviates this prob-
lem, that was first presented for EKF SLAM in [Castellanos et al. 2004]. It
basically consists of referring all geometric parameters to a reference frame
attached to the camera. Uncertainty in the locality of the sensor will al-
ways be kept low, greatly reducing the linearization errors associated with
the measurement model. The camera-centered approach was first used for
visual EKF estimation in [Civera et al. 2009b]; and has been thoroughly
benchmarked in [Williams 2009].

The modifications with respect to world-centered visual SLAM are now
given in detail. First, the state vector is composed of the location of the
world reference frame xCkW and the map of estimated features yCk , both
expressed in the current camera reference frame:

xCkk =
(

xCkW
yCk

)
. (4.11)

The location of the world reference with respect to the current camera
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W

C

High linearization 
error

y1 y2

y3

(a) World-referenced EKF estimation. As the camera moves away
from the World reference and does not revisit known places the un-
certainty grows both in the camera and newly initialized features yi.
The wide uncertainty regions will produce high linearization errors
and filter inconsistency.

W

C

Low linearization 
error

y1 y2

y3

(b) Camera-centered EKF estimation. The camera location uncer-
tainty is close to zero, as the reference is always attached to it. Un-
certainties for features in its vicinity yi will be also kept low, so
measurement model linearization errors will be kept small for the
whole estimation.

Figure 4.3: Camera-centered and World-referenced EKF estimation.
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xCkW =

(
rCkW
qCkW

)
is coded with its position rCkW and quaternion orientation

qCkW . When odometry information is not available and a constant velocity
model is assumed, velocities should also be included in the state xCkk =

xCkW
vCk
ωCk

yCk

.

For the prediction step at time k, the world reference frame and feature
map are kept in the reference frame at time k − 1 and a new feature xCk−1

Ck
that represents the motion of the sensor between k − 1 and k is added:

xCk−1

k|k−1 =

 xCk−1

W

yCk−1

xCk−1

Ck

 (4.12)

The predicted camera motion is represented in terms of position and
orientation, represented via a quaternion:

xCk−1

Ck
=

(
rCk−1

Ck

qCk−1

Ck

)
. (4.13)

The 1-point RANSAC EKF algorithm is applied with minor changes.
The dynamic model of the system is applied over the motion relative to the
previous frame contained in xCk−1

Ck
, either using the constant velocity model

in section 3.2.1 (in which case velocities should be kept then in the state as
described above) or wheel odometry inputs. The pinhole camera model that
serves as measurement model described in chapter 3 remains the same.

The algorithm proceeds then as explained in section 4.3. At the end of
the algorithm, after the second update, a rigid transformation is applied to
change the reference frame from the previous camera to the current one.
The world reference location is updated:

rCkW = RCk
Ck−1

(
qCk−1

Ck

)(
rCk−1

W − rCk−1

Ck

)
(4.14)

qCkW = qCk−1

W × qCkCk−1
, (4.15)

and the parameters representing motion from the previous to the cur-
rent frame xCk−1

Ck
are marginalized out from the state. Inverse depth and

Euclidean map features are also affected by this composition step:
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yCkρ,i =


RCk
Ck−1

(
qCk−1

Ck

)
 x

Ck−1

i

y
Ck−1

i

z
Ck−1

i

− rCk−1

Ck


m−1

(
RCk
Ck−1

(
qCk−1

Ck

)
m
(
θ
Ck−1

i , φ
Ck−1

i

))
ρi

 (4.16)

yCkXY Z,i = RCk
Ck−1

(
qCk−1

Ck

)(
yCk−1

XY Z,i − rCk−1

Ck

)
. (4.17)

The covariance is updated using the Jacobians of this composition func-
tion JCk−1→Ck

PCk
k = JCk−1→CkP

Ck−1

k J>Ck−1→Ck . (4.18)

4.5 Experimental Results

4.5.1 Benchmark Method for 6 DOF Camera Motion Esti-
mation.

The first step of the method takes an image sequence of the highest resolu-
tion, in order to achieve the highest accuracy. In this chapter, a 1224×1026
pixels sequence was taken at 22 frames per second. A sparse subset of n
camera locations xC1

BA are estimated by Levenberg-Marquardt Bundle Ad-
justment with robust likelihood model [Triggs et al. 2000] over the corre-
spongding n images in the sequence {I1, . . . In}. Images are manually se-
lected to ensure they form a strong network. The reference frame is attached
to the camera C1, corresponding to the first frame of the sequence I1. For
the experiments in sections 4.5.2 and 4.5.3, 62 overlapping camera locations
were reconstructed by manually matching 74 points spread over the images.
15− 20 points are visible in each image.

xC1
BA =

 xC1
1,BA
...

xC1
n,BA

 , (4.19)

xC1
i,BA =

(
XC1
i,BA Y

C1
i,BA Z

C1
i,BA φ

C1
i,BA θ

C1
i,BA ψ

C1
i,BA

)>
. (4.20)

Each camera location is represented by its position
(
XC1
i,BA Y

C1
i,BA Z

C1
i,BA

)>
and Euler angles

(
φC1
i,BA θ

C1
i,BA ψ

C1
i,BA

)>
. The covariance of the solution is

computed by back-propagation of reprojection errors PC1
BA =

(
J>R−1J

)−1,
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where J is the Jacobian of the projection model and R is the covariance of
the Gaussian noise assumed in the model.

The input sequence is then reduced by dividing its width and height by
four. The algorithm to benchmark is applied over the subsampled sequence.
The reference frame is also attached to the first camera C1, which is taken to
be the same first one as in Bundle Adjustment. Images for which a Bundle
Adjustment estimation is available are selected and stored xC1

i,MS , each along
with its individual covariance PC1

i,MS directly extracted from the EKF at each
step.

As the reference has been set to the same first image of the sequence,
the Bundle Adjustment and sequential estimation solutions only differ in the
scale of the reconstruction. So, in order to compare them, the relative scale
s is estimated first by minimizing the error between the two trajectories.
The Bundle Adjustment trajectory is then scaled xC1

BA = fscale

(
xC1
BA

)
and

also its covariance PC1
BA = JscaleP

C1
BAJ

>
scale.

Finally, the error is computed as the relative transformation between the
two solutions:

e = ⊕xC1
BA 	 xC1

MS ; (4.21)

and the corresponding covariance of the error is computed by propagat-
ing the covariances of the global optimization and sequential estimate:

Pe = JeBAP
C1
BAJ

>
eBA + JeMSP

C1
MSJ

>
eMS . (4.22)

It was checked in the experiments in the chapter that the covariance
term from Bundle Adjustment, JeBAPC1

BAJ
>
eBA, was negligible with respect

to the summed covariance Pe. Since this is the case, it is our opinion that
the Bundle Adjustment results can be considered as a reliable ground truth
to evaluate sequential approaches. In the following figures, only uncertainty
regions coming from filtering, JeMSP

C1
MSJ

>
eMS are shown.

The same subsampled sequence was used for all the experiments in the
following sections 4.5.2 and 4.5.3. The camera moves freely in six degrees
of freedom in a computer lab, with the maximum distances between camera
locations around 5 metres. Filter tuning parameters were equal for all the
experiments: motion dynamic and measurement model noise were kept the
same, the number of measured features in the image was limited to 30 and
all the thresholds (e.g. for feature deletion, cross-correlation, inverse depth
to Euclidean conversion and initialization) were also kept the same. The
reader should be aware that despite all of care taken, the experiments are
not exactly the same: One of the reasons is that the outlier rate is different
for each method; some methods need to initialize more features in order to
keep measuring 30. Nevertheless, in the opinion of the authors, this is the
fairest comparison as the algorithms try always to measure always the same
number of points and hence gather an equivalent amount of sensor data.
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(a) Sample images from the sequence
used for benchmarking.
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Blue triangles: Cameras from Bundle Adjustment

Red stars: 3D points from Bundle Adjustment

(b) Reference solution computed by the
proposed method.

Figure 4.4: Images extracted from the sequence used in the experiments and
reference camera positions extracted.

Figure 4.4 shows example images from the sequence used in the following
two sections for 1-point RANSAC and JCBB benchmarking. The 62 camera
locations from the 2796 images long sequence are also displayed. Results for
different experiments using this benchmarking method have been grouped
for better visualization and comparison: Figures 4.5 and 4.7 show estimation
errors for different tunings of 1-point RANSAC and JCBB; and 4.9 details
their computational cost. All the experiments in the chapter were run on
an Intel(R) Core(TM) i7 processor at 2.67GHz.

4.5.2 1-Point RANSAC

First, the performance of 5-point and 1-point RANSAC is compared, in order
to ensure that there is no degradation of performance when the sample size
is reduced. Figures 4.5(a) and 4.5(b) show the errors of both algorithms with
respect to the reference camera motion, along with their 99% uncertainty
regions. It can be observed that reducing the sample size from 5 to 1 does
not have a significant effect either on the accuracy or the consistency of the
estimation. On the contrary, the figure even shows 1-point outperforming 5-
point RANSAC. We attribute this to the fact that the theoretical number of
hypotheses given by equation 4.1 was not inflated in our experiments, unlike
in classical SfM algorithms [Raguram et al. 2008]. By increasing the number
of iterations, 5-point RANSAC results comes close to 1-point; but we find it
remarkable that without this augmentation 1-point RANSAC already shows
good behaviour. The standard deviation of image noise was chosen to be
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0.5 for the experiments, as subpixel matching is used.
While the accuracy and consistency remains similar, the computational

cost is much higher for the usual 5-point RANSAC than the proposed 1-
point. The detail of the computational cost of both algorithms can be seen
in Figures 4.9(a) and 4.9(b). The cost of RANSAC is low compared with
the rest of the EKF computations for the 1-point case, but it is several
orders of magnitude higher and is the main cost in the 5-point case. This
is caused by the increase in the number of random hypotheses in frames
with a large number of spurious matches. Figures 4.6(a) and 4.6(b) show
the number of hypotheses in both cases, revealing that in 5-point RANSAC
this is two orders of magnitude. The five higher green pikes appearing in
all the figures are caused by dropped frames in the sequence where there is
a jump in camera location. The correspondence search cost is increased at
these frames, but notice that the cost of RANSAC is not increased at all.

Hypothesis generation from a single point opens the possibility of ex-
haustive rather than random hypotheses generation: while an exhaustive
generation of all the possible combinations of 5 points in the measurement
subset would be impractical, an exhaustive generation of 1-point hypothe-
ses implies only as many hypotheses as measurements. Figure 4.5(c) details
the errors for the 1-point exhaustive hypotheses generation case. Compared
with 1-point random hypotheses generation in Figure 4.6(b), we observe
similar accuracy and consistency. Figure 4.6(c) shows the number of itera-
tions needed for comparison with the random adaptive case (Figure 4.6(b)).
The computational cost is increased but, as shown in Figure 4.9(c), it is still
dominated by the EKF update cost. Both options are then suitable for real-
time implementation, with the cheaper adaptive random 1-point RANSAC
algorithm being preferable as performance is not degraded significantly.

From analyzing the computational cost in Figure 4.9(b) it can be con-
cluded that the cost for 1-point RANSAC is always low compared with EKF
computation even when the spurious match rate is high (the spurious match
rate is shown in Figure 4.8(b)). As will be shown later, the latter becomes
an important advantage over JCBB whose cost grows exponentially with the
rate of spurious matches. This efficiency opens the possibility of making the
RANSAC algorithm stricter by reducing the measurement noise standard
deviation and hence discarding high noise points in the EKF. Such analysis
can be done by reducing the standard deviation from 0.5 to 0.2 pixels: high
noise points were discarded as outliers, as can be seen in Figures 4.8(b) and
4.8(d). The computational cost increases, as shown in Figure 4.9(e), but still
remains small enough to reach real-time performance at 22 Hz. The benefit
of discarding high noise points can be observed in Figure 4.5(d): errors and
their uncertainty were reduced (but still kept mostly consistent) as a result
of measuring more accurate points.
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(a) 5-point RANSAC, σz = 0.5 pixels
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(b) 1-point RANSAC, σz = 0.5 pixels
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(c) 1-point exhaustive hypothesis, σz = 0.5 pixels
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(d) 1-point RANSAC, σz = 0.2 pixels

Figure 4.5: Camera location error (in thick blue) and uncertainty (in thin
red) for different RANSAC configurations. Similar error and consistency is
shown for 5-point and 1-point RANSAC in Figures 4.5(a) and 4.5(b) respec-
tively. Figure 4.5(c) also reports similar results for exhaustive hypothesis
testing. Figure 4.5(d) shows smaller errors as a result of making 1-point
RANSAC stricter by reducing the standard deviation of measurement noise.
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(a) Number of iterations along the se-
quence for 5-point RANSAC.
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(b) Number of iterations along the se-
quence for 1-point RANSAC.
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(c) Number of iterations along the se-
quence for exhaustive hypotheses gen-
eration.

Figure 4.6: Number of iterations for 5-points and 1-point RANSAC. Notice
the several orders of magnitude increse for the 5-point case, causing a large
cost overhead when compared with 1-point RANSAC (Figures 4.9(a), 4.9(b)
and 4.9(c) detail the computational cost for the three cases respectively).
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4.5.3 Joint Compatibility Branch and Bound (JCBB)

RANSAC and JCBB tuning is a thorny issue when benchmarking both algo-
rithms. As both cases assume Gaussian distributions for the measurement
and decide based on probability, we considered it fairest to choose equal
significance levels for the probabilistic tests of both algorithms. The signif-
icance level was chosen to be 0.05 in the χ2 test that JCBB performs to
ensure joint compatibility for the matches. Consistently, the probabilistic
threshold for RANSAC was set to 95% for voting (line 15 in the algorithm
in section 4.3) and for the rescue of high-innovation matches (line 29 in the
algorithm in section 4.3).

The results of benchmarking JCBB are shown in the following figures.
First, figure 4.7(a) details the errors and uncertainty regions for the EKF
using JCBB. It can be observed that the estimation in Figure 4.7(a) show
larger errors and inconsistency than the 1-point RANSAC one in Figure
4.7(b), repeated here for visualization purposes. The reason can be observed
in Figure 4.8, where the outlier rates for 1-point RANSAC and JCBB are
shown: the number of matches considered outliers by 1-point RANSAC is
greater than by JCBB. The points accepted as inliers by JCBB are the ones
that spoil the estimation.

A stricter version of JCBB has been benchmarked by reducing the stan-
dard deviation of uncorrelated measurement noise to 0.2 pixels, as was done
with 1-point RANSAC. The spurious match rate for both algorithms, shown
in Figure 4.8(c) and 4.8(d), shows that 1-point RANSAC remains more dis-
criminative and hence produces more accurate estimation than JCBB (Fig-
ure 4.7(c)). 1-point RANSAC errors for the same tuning are repeated in
4.7(d) for comparison purposes. Also, as previously noted, the computa-
tional cost of JCBB grows exponentially when made stricter: Figure 4.9(f)
shows peaks over a second in the worst cases.

JCBB can also be made stricter by increasing the significance level α of
the χ2 test it performs to check the joint compatibility of the data. Several
experiments were run varying this parameter. The lowest estimation errors,
shown in Figure 4.7(e), were reached for α = 0.5 instead of the usual α =
0.05. Estimation errors for this best JCBB tuning are still larger than in
any of the 1-point RANSAC experiments.

4.5.4 Trajectory Benchmarking against GPS.

The following sections benchmark the presented filtering scheme for the
estimation of long camera trajectories. The benchmarking method of the
previous section becomes difficult to apply here, so camera translation only
is benchmarked against GPS data. This section describes the benchmarking
procedure.

Similarly to the previous section, our EKF estimation takes the first
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(a) JCBB, σz = 0.5 pixels
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(b) 1-point RANSAC, σz = 0.5 pixels
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(c) JCBB, σz = 0.2 pixels
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(d) 1-point RANSAC, σz = 0.2 pixels
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(e) JCBB, σz = 0.2 pixels, α = 0.5

Figure 4.7: Camera location errors when using JCBB is shown in Figures
4.7(a) and 4.7(c), for standard deviations of 0.5 and 0.2 pixels respectively.
Figures 4.7(b) and 4.7(d) showing 1-point RANSAC results for the same
filter tuning are repeated here for comparison. It can be seen that 1-point
RANSAC outperforms JCBB in both cases. Figure 4.7(e) shows the best
JCBB tuning found by the authors, which still gives worse results than
1-point RANSAC.
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(a) JCBB, σz = 0.5 pixels.
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(b) 1-point RANSAC, σz = 0.5 pixels
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(c) JCBB, σz = 0.2 pixels
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(d) 1-point RANSAC, σz = 0.2 pixels.

Figure 4.8: Spurious match rate for JCBB and RANSAC when measurement
noise standard deviation σz is reduced to 0.2 pixels. It can be observed that
reducing the measurement noise makes both techniques stricter, but 1-point
RANSAC remains more discriminative.
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(a) 5-point RANSAC, σz = 0.5 pixels
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(b) 1-point RANSAC, σz = 0.5 pixels
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(c) 1-point exhaustive hypothesis,
σz = 0.5 pixels
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(d) JCBB, σz = 0.5 pixels
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(e) 1-point RANSAC, σz = 0.2 pixels
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(f) JCBB, σz = 0.2 pixels

Figure 4.9: Detail of times and map sizes for different RANSAC and JCBB
configurations in double y-axis figures: times are shown as areas and mea-
sured in seconds on the left y-axis; the map size is displayed as a a red line
and is measured on the right y-axis. 1-point RANSAC exhibits much lower
computational cost than 5-point RANSAC and JCBB. 1-point RANSAC
also shows only a small increase when made exhaustive or stricter, making
it suitable for real-time implementation at 22 Hz for the map size detailed
in the figures.
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camera frame C1 as the frame of reference. A similarity transformation
(rotation RW

C1
, translation tWC1

and scale s) has to be applied which aligns

every point of the trajectory rC1
Ck

=
[
xC1
Ck

yC1
Ck

zC1
Ck

]>
with the GPS data

rWGPSk , whose frame of reference we will denote by W :

[
rWCk
1

]
=


xWCk
yWCk
zWCk
1

 =
[
sRW

C1
tWC1

0 1

]
xC1
Ck

yC1
Ck

zC1
Ck
1

 . (4.23)

The value of tWC1
is taken from the GPS data in the first camera frame.

Trajectory estimation from pure monocular vision will not be able to recover
the scale s, which will remain unknown. For the combination of a monocular
camera and wheel odometry input, the overall scale of the estimation is
observed by odometry readings and then s = 1 in Equation 4.23. The
rotation between GPS and the first camera position RW

C1
will be unknown

in every case, as it is non-observable from GPS readings.
The unknown parameters of the alignment (s and RW

C1
for pure monoc-

ular, and only RW
C1

for monocular plus wheel odometry) are obtained via a
non-linear optimization that minimizes the error between the aligned tra-
jectory rWCk and the GPS trajectory rWGPSk .

For the sake of simplicity, the assumption that the position of the camera
sensor and the GPS antenna coincide on the robot has been made in the
above reasoning, which is reasonable as the position of the sensors differ by
only a few centimetres and robot paths cover hundreds of metres.

Finally, the error of each camera position in the reconstructed path is
computed as the Euclidean distance between each point of the estimated
camera path and GPS path, both in the W reference:

ek =

√(
rWCk − rWGPSk

)> (
rWCk − rWGPSk

)
. (4.24)

4.5.5 Pure Monocular EKF-Based Estimation for Long Se-
quences

Three different sequences from the RAWSEEDS dataset have been used to
test the validity of the 1-point RANSAC EKF for long-term camera motion
estimation. All sequences were recorded by a 320 × 240 Unibrain camera
with a wide-angle lens capturing at 30 fps.

In the first sequence, consisting of 6000 images, the robot translates for
about 146 metres. The second sequence has 5400 images and the robot
describes a similar trajectory length, about 153 metres. Finally, a very
long and challenging sequence is evaluated that consists of 24180 frames
(13.5 minutes of video) in which the robot describes a trajectory of 650
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Figure 4.10: Image from the 650 metres sequence, showing the high number
of tracked features.

metres. In this latter sequence, although the accumulated drift makes the
error noticeable when plotted with the GPS trajectory, the relative error
with respect to the trajectory keeps the same low value as the other two
shorter sequences (1% of the trajectory length).

Figure 4.10 shows an image from the 650 metres experiment, along with
the tracked features. It can be observed that around a hundred features
per frame had to be measured in order to reduce scale drift error. This
high number will increase the computational cost of the EKF beyond real-
time bounds for the pure monocular case. In the particular experiments
presented, the algorithm runs at about 1 Hz. Nevertheless, it will be shown
in next subsection how introducing extra information about the scale will
reduce the number of measurements, enabling real-time performance for the
combination of visual tracking plus wheel odometry.

Figure 4.11 shows the estimated (in black) and the GPS (in red) tra-
jectories over a top view extracted from Google Maps for each one of the
sequences. The accuracy of the estimated trajectories is clear from visual
inspection. Table 4.1 details the maximum and mean errors obtained in
these experiments and also for the experiment in the next section combining
monocular vision and wheel odometry inputs. Figure 4.12 shows histograms
of the errors for the three sequences.

Subfigures 4.12(c) and 4.12(d) in this latter figure show histograms of
the errors for the 650 metres experiment in two different versions of the 1-
point RANSAC algorithm: the first one of them using the algorithm 1 and
the second one replacing the random hypotheses generation with exhaus-
tive hypotheses generation as evaluated in Figure 4.5(c). The conclusion
from section 4.5.2 is confirmed here: exhaustive hypothesis generation only

96



4.5. Experimental Results

(a) 146 metres trajectory (b) 156 metres trajectory

(c) 650 metres trajectory

Figure 4.11: Estimated trajectories from pure monocular data and GPS
data
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Table 4.1: EKF-based visual estimation error for long camera trajectories.

Trajectory
length [m]

Sensor
used

Mean
error [m]

Maximum
error [m]

% mean error over
the trajectory

146 monocular 1.3 4.2 0.9%
153 monocular 1.9 3.3 1.1%
650 monocular 6.4 11.1 1.0%
1310 monocular and

wheel odometry
9.8 23.6 0.7%

very slightly improves the estimation errors; so adaptive random 1-point
RANSAC should be preferred.

4.5.6 Visual Odometry from a Monocular Sequence plus
Wheel Odometry

Figure 4.13 shows the trajectory obtained by the visual odometry algo-
rithm over a GoogleMaps plot and compared against GPS data. The length
of the estimated trajectory is about 1310 metres and was covered by the
RAWSEEDS mobile robot in 30 minutes, capturing 54000 frames. The
maximum and mean error were 23.6 and 9.8 metres respectively. Adding
wheel odometry information allowed us to reduce the number of tracked
features to 25, enabling real-time operation at 30 frames per second.

The processing time per frame for this sequence using 1-point RANSAC
can be observed in Figure 4.14 in the form of a histogram. It can be noticed
that the total computational cost per step is under 33 milliseconds in 98% of
the frames, suggesting that the algorithm is suitable for real-time implemen-
tation. It can be observed in the right-hand figure that for the same number
of image measurements JCBB’s computational cost far exceeds real-time
constraints in a large number of frames. JCBB’s exponential complexity
arises in this experiment in frames where a significant proportion of outliers
are present, expanding the tail of the histograms of the figure. For this par-
ticular experiment, JCBB’s histogram expands to 2.4 seconds while 1-Point
RANSAC’s maximum time only reaches 0.44 seconds.

Figure 4.14 also shows two histograms representing the computational
cost of both algorithms when the number of features in the image is increased
to 50. It can be observed that the cost of 1-Point RANSAC grows, but still
the processing cost is always on the order of tenths of a second. JCBB’s cost
reaches maximum values of several hours, and processing times of several
seconds per frame are not unusual

Figure 4.15(b) shows raw odometry as a red thin line and GPS with a
blue thick line for comparison. It can be observed that early drift appears
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Figure 4.12: Histograms of the errors for the three experiments using only
monocular information
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Figure 4.13: Visual odometry results compared against RTK GPS over a
Google Maps plot.
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(c) 1-point RANSAC; 50 measured fea-
tures per frame
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Figure 4.14: Histograms showing the computational cost for RANSAC and
JCBB for the cases of 25 and 50 image points per frame. Experiment 4.14(d)
had to be early terminated at frame 1533, as JCBB computational cost rises
in some frames up to 1544 seconds
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and the plotted trajectory is rather far from the GPS locations. Figure
4.15(a) shows pure monocular estimation in thin red and GPS measurements
in thick green. Observing this plot carefully, it can be observed that a
monocular camera is able to very accurately estimate orientation, but the
unobservability of the scale produces drift in this parameter for the number
of tracked features (25) considered in this experiment.

Finally, Figure 4.15(c) details the estimated trajectory that can be
achieved from the combination of the two sensors. Accurate estimation is
achieved for a trajectory of 1.3 kilometres, which can be compared with state
of the art in monocular visual odometry, e. g. [Scaramuzza et al. 2009].

4.6 Discussion

While the relevance of algorithms like JCBB or the recent Active Matching
(AM) reside on their generality, the main advantage in the presented ap-
proach is its efficiency. 1-point RANSAC is directed to the particular case
of a rigid scene. The rich variety of correlation patterns that a covariance
matrix can encode is manageable by general methods like JCBB or AM. Our
1-point RANSAC exploits the very simple pattern where all the correlations
are mainly explained by sensor motion, and hence small size data subsets
are enough to constraint the rest of the measurements. For more complex
models, like non-rigid scenes or multi-object tracking, 1-point RANSAC may
not offer such a satisfactory result.

Nevertheless, it is also true that estimation from a moving sensor’s data
stream in an almost rigid scene covers a great percentage of SLAM problems;
and a specific method more efficient than general methods can be of impor-
tance. In this sense, 1-point RANSAC outperforms existing approaches by
presenting lower cost and scaling well with the state vector and measure-
ment size, and also with the outlier rate. The computational overhead it
introduces is always smaller than 10% of standard EKF’s computational
cost. Visual EKF SfM, already proven to run in real-time, still keep real-
time performance and provides the benefit in accuracy of spurious match
rejection when 1-point RANSAC is used.

Besides its efficiency, 1-point RANSAC also has some advantages in deal-
ing with non-linearities as a result of checking rigidity after data fusion where
some of the inaccuracies introduced by non-linearities have been compen-
sated. This advantage is shared with Active Matching. On the contrary
JCBB checks rigidity before data fusion, which is a serious drawback of the
algorithm.

Since 1-point RANSAC is able to deal with large outlier rates at low
computational overhead, we find it interesting to force the EKF into a low
measurement error operation mode. For a small cost increase, the EKF is
fed only very accurate measurements (selected by “a survival of the fittest”
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(a) Pure monocular estimation (thin
red) tracking 25 features and GPS tra-
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pear caused by scale drift, which is un-
observable by a monocular camera.
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(b) Raw odometry measurements (thin
red) and GPS trajectory (thick blue).
Errors in raw odometry are caused by
early drift typical from proprioceptive
sensors.
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(c) Visual Odometry estimation from the combination of monocular
camera plus wheel odometry (thin red) and GPS trajectory (thick
blue). The combination of both sensors overcomes their deficiencies
when used alone. Real-time performance at 30 Hz can be achieved,
and error is 0.7% of the trajectory.

Figure 4.15: Pure monocular estimation showing scale drift in Figure
4.15(a), raw odometry input showing drift in Figure 4.15(b) and visual
odometry results combining the two in Figure 4.15(c); all are compared
against GPS trajectory (thick blue line).
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process, where the fittest features are those producing the lowest error mea-
surements) and hence the accuracy of the estimation is improved as seen
in Figure 4.5(d). This particular operation mode can only be achieved due
to the efficiency of the presented algorithm, being impractical if spurious
match rejection is expensive.

It is also worth remarking that although this book is focused on the par-
ticular case of EKF monocular SLAM, the new 1-point RANSAC method
presented here is independent of the type of sensor used. The only re-
quirement is the availability of highly correlated prior information, which
is typical of EKF SLAM for any kind of sensor used — and also in the
multisensor case. Also, as highly correlated priors are not exclusive to
EKF SLAM, the applicability of 1-point RANSAC could be even broader.
As an example, we think that camera pose tracking in keyframe schemes
[Klein & Murray 2008, Mouragnon et al. 2009] would benefit from our 1-
point RANSAC cost reduction if a dynamic model were added to predict
camera motion between frames.

4.7 Conclusions

A novel RANSAC algorithm is presented in this chapter which, for the first
time and differently from standard purely data-driven RANSAC, incorpo-
rates a priori probabilistic information into the hypothesis generation stage.
As a consequence of using this prior information, the sample size for the hy-
pothesis generation loop can be reduced to the minimum size of 1 point data.
1-point RANSAC has two main strengths worth summing up here. First, as
in standard RANSAC, model constraints are checked after hypothesis data
has been fused with the a priori model, an advantage over JCBB. Second,
using 1-point plus prior knowledge hypotheses greatly reduces the number
of hypotheses to construct and hence the computational cost compared with
usual RANSAC based solely on data. Its linear cost in the state size also
outperforms JCBB’s exponential complexity in the number of outliers. In a
practical sense, its linear complexity means an overhead of less than 10% of
the standard EKF cost, making it suitable for real-time implementation in
local visual SLAM or SfM.

This chapter also presents a method for benchmarking six degrees of
freedom camera motion estimation results. The method presents three clear
advantages: First, it is intended for real image sequences and includes ef-
fects difficult to reproduce by simulation (like non-Gaussian image noise,
shaking handy motion, image blur or complex scenes). Second, it is eas-
ily reproducible as the only hardware required is a high resolution camera.
And third, the effort required by the user is low. The uncertainty of the
estimated solution also comes as an output of the method and the appro-
priateness of Bundle Adjustment estimation as reference can be validated.
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The method has been used to prove the claimed superiority of the 1-point
RANSAC method described in the chapter.

The general EKF plus 1-point RANSAC algorithm has been experimen-
tally tested for the case of large camera trajectories in outdoor scenarios.
Sensor-centered filtering instead of the traditional world-centered method
has been used in order to reduce the uncertainty in the area local to the
current camera and reduce linearization errors. For the pure monocular
case, errors around 1% of the trajectory have been obtained for trajectories
up to 650 metres from a publicly available dataset. The number of tracked
features in the image has to be increased to two hundreds in order to avoid
scale drift. This high number makes this case currently moves us away from
real-time performance, and the method runs at 1 frame per second.

The combination of monocular vision and wheel odometry has also been
benchmarked for the visual odometry application. The extra odometric
information makes scale observable; the number of tracked features can be
reduced and real-time performance can be achieved for this case. A 1300
metre long trajectory has been estimated in the chapter, with the mean
error against GPS coming out at 0.7% of the trajectory.
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Chapter 5
Degenerate Camera Motions and
Model Selection

5.1 Introduction

Image sequence processing relies on camera motion models to actively iden-
tify potential point matches. Off-line methods rely on geometrical models re-
lating two or three images to robustly compute matches. In [Torr et al. 1999]
it is shown how different models should to be used at different parts of a
general sequence to avoid degenerate geometries. This geometrical model
selection has been extended to segment different motion models between
image pairs or triplets [Schindler & Suter 2006, Kanatani 2004, Torr 2002].

In contrast to these two or three-view geometrical models, the proba-
bilistic motion models used in SLAM are well suited to modelling long se-
quences of close images instead of discrete sets of images. However a single
probabilistic model can similarly only deal with sequences which follow the
prescribed model or processing will fail. In this chapter, the monocular EKF
SLAM is extended to deal with more than one probabilistic motion model,
expanding the range of sequences compatible with the priors represented by
a set of tuning parameters. We use a sequential Bayesian approach to model
selection.

Thanks to Bayesian probability propagation, monocular SLAM with a
general translating camera can deal with low parallax motions — such as
rotations — provided that the camera re-observes map features whose lo-
cations are well-estimated as a result of parallax observed previously in the
sequence, and so model switching is not a must in some cases where it would
be in the off-line approaches. However, when monocular SLAM is initialised
on-the-fly without a known scene pattern, model selection is an issue. If the
camera initially undergoes a low parallax motion, no reliable estimation is
possible. Any measurement noise may be considered parallax by the filter
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producing inconsistent depth estimates. We tackle this problem with model
selection.

Multiple model methods are well known in maneuvering target tracking.
An excellent and recent survey of this can be found in [Li & Jilkov 2005]. In
this chapter, we adapt to the SLAM problem the most widespread of those
methods, Interacting Multiple Models (IMM), initially proposed by Blom
in [Blom & Bar-Shalom 1988]. The IMM estimator is a suboptimal hybrid
filter — that is, it estimates the continuous values of a proccess, and the
discrete probabilities of a set of models — whose main features are: 1) It
assumes that the system can jump between the members of a set of models,
which is the case of our monocular SLAM estimation, and 2) It offers the
best compromise between complexity and performance.

Thanks to the use of multiple models, the range of images that can be
processed with a single system tuning is enlarged. We work with a bank
of 7 models: one model of a stationary camera, three models of pure rota-
tion motion (constant angular velocity) with different angular acceleration
covariances, and three general translation + rotation models (constant ve-
locity, constant angular velocity) with different angular and linear acceler-
ation covariances. Via the Bayesian model selection of IMM, the system
prefers simpler (less general) models where they fit the data. As a result,
the search regions for the predicted image features are smaller than with a
single model EKF. These reduced search regions increase mismatch rejection
and reduce the processing cost of image search. Additionally, the computed
probabilities per model allow the segmentation of a sequence into different
models.

Section 5.2 discusses and formulates the sequential Bayesian model selec-
tion. The Interacting Multiple Model approach to Bayesian model selection
is detailed in 5.3. Some details about the use of IMM in the SLAM problem
are given in section 5.4. Section 5.5 verifies the method using real imagery
and shows how it deals with sequence bootstrap. Finally section 5.6 sum-
marises the paper’s conclusions.

5.2 Bayesian Model Selection for Sequences

In standard single-model monocular SLAM algorithms, Bayes’ rule combines
at every step past estimation information with current image data. Given
the background information I and the image data at current step D, the
posterior probability density function for the set of parameters θ defining
our model M is updated via Bayes’ formula:

p(θ|DMI) = p(θ|MI)
p(D|θMI)
p(D|MI)

. (5.1)

In this chapter we consider cases where a single model M is not sufficient
to cover all of the sequences we would like to track. Taking full advantage
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of the fully probabilistic estimation that our SLAM approach is performing,
we formulate our multiple model problem in a Bayesian framework.

Consider, as Jaynes does in Chapter 20 of his book [Jaynes 2003], a dis-
crete set of modelsM = {M1, . . . ,M r}— rather than a single one — which
might feasibly describe the assumptions of a sequential SfM process. We
start by assigning initial scalar probabilities P (M1|I), . . . , P (M r|I) which
represent prior belief about the different models based on background infor-
mation I, and which are normalised to add up to one. If no prior information
exists, these probabilities may well be assigned initially equal.

At each new image, where we acquire image measurements data D, we
update the probability of each model according to Bayes’ rule:

P (M j |DI) = P (M j |I)
P (D|M jI)
P (D|I)

(5.2)

In this expression, the first term is the probability of the model being correct
given only the prior information. In the fraction, the numerator is the likeli-
hood of obtaining the data given that the model is correct. The denominator
is the normalizing constant, computation of which can be avoided when the
posterior probabilities of a mutually-exclusive set of models are all com-
puted, or alternatively cancels out when the ratio of posterior probabilities
of different models is calculated.

So, what is the likelihood P (D|M jI) of the data given a model in a
monocular SLAM system? It is simply the joint likelihood of all of the
feature measurements in an image:

P (D|MI) =
1√

2π
∣∣Sk|k−1

∣∣exp
(
−1

2
ν>S−1

k|k−1ν

)
, (5.3)

where

ν = z− h(x̂k|k−1) , (5.4)

Sk|k−1 = Hk|k−1

(
FPk|k−1F

> + GQG>
)

H>k|k−1 + R . (5.5)

F = ∂f
∂x and G = ∂h

∂u are the Jacobians of the dynamic model f
with respect to the state vector x and the process noise w respectively.
Hk|k−1 = ∂h

∂xk|k−1
is the Jacobian of the measurement equation h with re-

spect to the state vector xk|k−1. Sk|k−1 is the covariance of the predicted
image measurements, which is computed by adding the linear propagation
the state vector uncertainty Pk|k−1 and the image noise covariance R.

We should note, as Jaynes explains with great clarity, that in this cor-
rectly formulated Bayesian approach to model selection there is no need
for ad-hoc terms like Minimum Description Length which penalise ‘com-
plex’ models and favour simple ones. The ‘Occam principle’ of select-
ing the simplest model which is able to capture the detail of the data
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and avoiding overfitting is taken care of automatically by correctly nor-
malising our comparison of different models. The big difference between
our approach and the common two-view model selection methods (e.g.
[Kanatani 2004, Torr 2002, Schindler & Suter 2006]) which require penalty
terms is that our concept of a model is probabilistic at its core, not just geo-
metric (like homography, affine, . . . ). For our use in sequential probabilistic
tracking, a model must actually define a probability distribution during a
transition. This is what makes it possible to calculate proper likelihoods for
the models themselves, independent of parameters.

The formulation above allows us to obtain posterior probabilities for our
models in one frame, but we are interested in propagating these probabil-
ities through a sequence. This is achieved by defining a vector of model
probabilities — a ‘state vector’ for models or set of mixing weights:

µk|k =
(
µ1

k|k . . . µ
r
k|k

)>
. (5.6)

We fill µk|k with the prior model probabilities P (M1|I), . . . , P (M r|I)
before processing the first image, and after processing use the values of µk|k
as the priors for each model in Equation 5.2 and then replace these values
with the posterior values calculated.

A final step is needed in between processing images, which is to apply a
mixing operator to account for possible transitions between models. With a
homogeneous Markov assumption that the probability of transition from one
model to any other is constant at any inter-frame interval, this is achieved
by:

µk|k−1 = πµk−1|k−1 , (5.7)

where π is a square matrix of transition probabilities where each row must
be normalised. In the typical case that the dominant tendancy is sustained
periods of motion with one model, this matrix will have large terms on the
diagonal. If the models are ordered with some sense of proximity, the matrix
will tend to have large values close to the diagonal and small ones far away.

The sequential process of calculating model probabilities therefore
evolves as a loop of mixing and update steps and at motion transitions
in the sequence evidence will accrue over several frames.

5.3 Interacting Multiple Model

IMM is presented in the tracking literature as a hybrid estimation scheme,
well suited to estimating the continuous state of a system that can switch
between several behaviour modes. This hybrid system is then composed of a
continuous part (the state) and a discrete part (the behaviour modes). The
continuous part of such a system is defined by its state and measurement
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Figure 5.1: Interacting Multiple Model algorithm scheme

equations:

ẋ (t) = f (x (t) ,M (t) ,w (t) , t) (5.8)
z (t) = h (x (t) ,M (t) ,v (t) , t) (5.9)

where the dynamics of the process and the measurements depend not only
on the state x (t) and the process and measurement noise w (t) and v (t) at
time t, but also on the model M (t) that governs the system at time t. The
probability of each of those models being effective at time t is coded in the
discrete probability vector µk−1|k−1, as explained in section 5.2.

Figure 5.1 shows graphically the structure of the IMM estimator. The
whole algorithm is detailed in Figure 5.2. The central part of the algorithm
consists of a bank of r filters running in parallel, each one under a different
model. An overall estimation for the state can be obtained as a sum of the
a posteriori estimation of every filter weighted with the discrete a posteriori
model probabilities.

A key aspect of the IMM algorithm is the reinitialisation of the filter
before the parallel computation of the filter bank at every step. This mixing
of the estimations allows individual poor estimates caused by model mis-
match to recombine with estimates from better models, so that the whole
filter bank benefits from the better estimates.
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1. Filter reinitialization (for i = 1, 2, ..., r):
Predicted model probability:

µik|k−1 = P{M i
k|zk−1} =

∑
j πjiµ

j
k−1

Mixing weight:

µ
j|i
k−1 = P{M j

k−1|M i
k, z

k−1} = πjiµ
j
k−1/µ

i
k|k−1

Mixing estimate:

x̄ik−1|k−1 = E[xk−1|mi
k, z

k−1] =
∑
j xjk−1|k−1µ

j|i
k−1

Mixing covariance:

P̄i
k−1|k−1 =

∑
j(P

j
k−1|k−1+

+(x̄ik−1|k−1 − x̂jk−1|k−1)(x̄ik−1|k−1 − x̂jk−1|k−1)>)µj|ik−1

2. EKF bank filtering (for i = 1, 2, ..., r):
Prediction: x̂ik|k−1,P

i
k|k−1,h(xik|k−1),Sik|k−1

Measurement: zk
Update: x̂ik|k,P

i
k|k

3. Model probability update (for i = 1, 2, ..., r):
Model likelihood: Lik = N (νik; 0, Sik)

Model probability: µik =
µi

k|k−1L
i
kP

j µ
j
k|k−1L

j
k

4. Estimate fusion
Overall state:
x̂k|k =

∑
i x̂

i
k|kµ

i
k

Overall covariance:

Pk|k =
∑
i

(
Pi
k|k + (x̂k|k − x̂ik|k)(x̂k|k − x̂ik|k)>

)
µik

Figure 5.2: Interacting Multiple Model algorithm
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5.4 Interacting Multiple Model Monocular SLAM

Given the tracking-oriented IMM algorithm, some aspects have to be taken
into account before applying it to our particular monocular SLAM problem.

1. Active search and 1-point RANSAC: In the multiple model
tracking literature, little attention is given to the matching (data as-
sociation) proccess, which is crucial in SLAM algorithms. If matching
is mentioned, as in [Kirubarajan et al. 1998], it is said that the most
general model, that is, the model with the largest covariance, is used
to compute the measurement covariance for gating correspondences
—the implication is ‘always to expect the worst’.

In monocular SLAM, most of the time this weakest search region is
unnecesary large, increasing both the computational cost and the risk
of obtaining a false match. A more realistic search region can be
defined by the combination of the individual filters weighted by their
discrete probabilities. The only assumption that has to be made is that
motion changes are smooth, a reasonable assumption when dealing
with image sequences at high frame rate. The form of the image
search regions is therefore determined by the following equations:

ĥk|k−1 =
∑
i

ĥik|k−1µ
i
k|k−1 (5.10)

Sk|k−1 =
∑
i

(Sik|k−1 + (ĥk|k−1 − ĥik|k−1) (5.11)

(ĥk|k−1 − ĥik|k−1)>)µik|k−1 (5.12)

Spurious rejection is not mentioned in the multiple model literature
either. In our monocular SLAM case, the 1-point RANSAC developed
in the chapter 4 can be easily adapted to the Interacting Multiple
Model framework.

2. Map management: As detailed in section 2.4.3, map management
strategies for deleting bad features and adding new ones are convenient
in monocular SLAM. We are also using inverse depth to cartesian
conversion in order to reduce the computational cost of the algorithm
as detailed in section 3.6.

5.5 Experimental Results

A 1374 frame sequence was recorded with a 320× 240 wide-angle camera at
30fps. The camera makes a motion consisting of the following sequence of
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essential movements: stationary → pure rotation → general motion (trans-
lation and rotation) → pure rotation → stationary. The sequence has been
processed using the dimensionless inverse depth formulation in the appendix
B and two different types of motion modelling. Firstly, IMM EKF formula-
tion with a bank of seven models: stationary camera, rotating camera (three
angular acceleration levels with standard deviation 0.1, 0.5 and 1 pixels),
and general motion (with 3 acceleration levels for both linear and angular
components with standard deviations of 0.1, 0.5 and 1 pixels). Secondly, as
a base reference, a single model for general motion with acceleration noise
standard deviation of 1 pixel, both angular and linear. Both formulations
are fed the same starting image feature detections. On analysing the results
the advantages of the IMM over single model monocular SLAM become
clear.

5.5.1 Consistent start up even with rotation

As was said in section 5.1, single model EKF SLAM leads to inconsistent
mapping if the camera initially undergoes low parallax motion. In the anal-
ysed sequence, we have an extreme case of this as the camera is either
stationary or rotating for more than 600 frames. Figure 5.3 compares the
estimation results with a single model EKF and our IMM algorithm at step
600, when the camera has performed non-translational motion. Features
are plotted as arrows if (as should be the case) no finite depth has been
estimated after the no parallax motion. It can be observed that, for the sin-
gle model case, all features have collapsed to narrow, false, depth estimates
while in the IMM case all of the features have no depth estimation.

5.5.2 Low risk of spurious matches due to small search re-
gions

It can be noticed in Figure 5.4 that although high process noise models
are necessary in order to retain tracking features during high accelerations,
these models are scarcely used for any length of time. In hand-held camera
sequences, constant velocity motions are much more common than accel-
erated ones. This is reflected by the model probabilities, as we see that
the highest probabilities are given to the lower acceleration noise models on
most frames.

When using a single model estimation, we are forced to choose the most
general model in order to maintain tracking under high acceleration. As
process noise directly influences search region size, we are forced to maintain
large search regions, unnecessary most of the time. As a consequence, the
risk of obtaining false matches grows. As IMM selects at any time the
most probable motion model, preferring simpler models, it adjust the search
region to the real motion at any time, resulting in considerably reduced
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Figure 5.3: (a, left) frame 600 and (a, right) 3D top view of the IMM
estimation at this frame. The camera has been either stationary or ro-
tating until this frame. It can be seen in Figure 5.4 that rotation and
still camera models have high probability throughout this early part of the
sequence. IMM, correctly, has not estimated any feature depth –features
whose depths have not been estimated (their depth uncertainties, stored in
inverse depth formulation, encompass infinity) are plotted as arrows–. (b),
frame and top-viewed estimation with single-model monocular SLAM. The
overparametrized model has led to narrow, false depth estimates. When the
camera translates this inconsistent map leads to false matches that cause
the estimation to fail, as seen in (d) at frame 927 of the sequence. On the
other hand, (c) shows the correct map estimation performed by the IMM
algorithm.
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Figure 5.4: Posterior model probabilities along the sequence. Each model
is represented by its acceleration noise standard deviation[σa, σα] expressed
in pixels, following the notation in [Civera et al. 2007b]. Notice that the
probability for the most general model (σa = 1pxl, σα = 1pxl) is always
under 0.01. The stationary camera model (a) and low acceleration noise
models (b) and (c) are assigned the highest probabilities in most of the
frames. In spite of being rarely selected, the high acceleration noise models
are important to keep the features track at the frames where motion change
occurs (small spikes are visible at these points).
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ellipses and lowering the risk of mismatches.
In Figure 5.5 the large factor of reduction in the size of search ellipses

can be observed. Subfigure (a) shows a detail of a feature search region at
frame 100, at the top using IMM and at the bottom using a single model.
Search regions in subfigure (b) correspond to the same feature at frame 656,
when camera starts translating and high acceleration is detected. Notice
that the IMM ellipse slightly enlarges in adapting to this motion change,
but continues to be smaller than the single-model one. Finally, (c) exhibits
the consequences of having unnecessary big search regions: false correspon-
dences happen. Due to mismatches like this one, the estimation in this
experiment fails catastrophically.

Figure 5.5: (a), IMM (top) and single-model (bottom) feature search ellipse
when the camera is rotating. (b), the same feature IMM and single-model
search regions when the camera begins to translate. (c), mismatch in the
single-model case caused by an unnecesary large ellipse that does not occur
in the IMM estimation. Several mismatches like this one in the highly
repetitive texture of the brick wall eventually may cause full tracking failure.
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5.5.3 Camera motion model identification

The IMM not only achieves better performance in processing the sequence,
but also provides a tool to segment the sequence according to the dominant
motion model. It is worth noting that this segmentation is based on se-
quence criteria as opposed to a classical pairwise motion model selection in
geometrical vision.

In Figure 5.4 and in the accompanying video, it can be seen that when
there is a predominant model (stationary, rotating or general motion), the
corresponding probability µi reaches a value close to 1, while the other model
probabilities goes down close to zero — the IMM acts as a discrete selector
here rather than a mixer. Only when there is a change between motion
models are there periods with no clear dominant model and this is where
the IMM proves its worth.

It has to be noted that models with lower acceleration noise are preferred
unless the camera really undergoes a high acceleration motion. In fact the
model with the highest acceleration has negligible probability indicating that
it is not necessary for processing the current sequence. Although this unused
model does require a computational overhead, its presence does not affect
the accuracy of the solution nor jeopardize the matching by the size of the
search regions for the predicted features — since its weight is always close
to zero it is simply weighted out of all the calculations.

5.5.4 Computational cost considerations

Although the main advantage of the algorithm is its good tracking per-
formance, clearly outperforming standard single model SLAM on complex
sequences, it is also remarkable that the computational cost does not grow
excessively. The cost of the IMM algorithm is essentially linear with the
number of models since all filtering operations must be duplicated for each
model. This is offset somewhat, as shown in section 5.5.2, by the fact that
the search region ellipses are reduced in size in the IMM formulation and
this makes the image processing work of feature matching cheaper.

5.6 Discussion

We have shown experimentally the advantages of the IMM filter when ap-
plied to EKF-based Structure from Motion. We are able to track sequences
containing periods with no movement, and pure rotation and general motion
at various dynamic levels, the system adapting automatically. In particu-
lar, while single model monocular SLAM is weak when bootstrapped with
low parallax motions (still or rotating camera), the IMM formulation copes
admirably by recognising the motion type.
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5.6. Discussion

The IMM formulation requires a computational overhead, but has extra
benefits in producing smaller acceptance regions for the predicted measure-
ments, improving outlier rejection, and being able to act as an automatic
segmentation and labelling tool by identifying motion boundaries.

119





Chapter 6
Self-calibration

6.1 Introduction

Camera self-calibration (or auto-calibration) is the process of estimating the
internal parameters of a camera from a set of arbitrary images of a general
scene. Self-calibration has several practical advantages over calibration with
a special target. First, it avoids the onerous task of taking pictures of the
calibration object; a task that may be difficult or even impossible if the
camera is attached to a robot. Second, internal parameters of a camera
may change either unintentionally (e.g. due to vibrations, thermical or me-
chanical shocks) or even intentionally in the case of a zooming camera. 3D
estimation in this latter case could only be performed via self-calibration.
Finally, inaccurate calibration (coming either from a poor calibration pro-
cess or from changed calibration parameters) produces the undesirable effect
of introducing bias in the estimation.

Although computer vision researchers have demonstrated the feasibil-
ity of self-calibration and despite all the advantages mentioned before, all
of the recent sequential approaches to visual localisation and mapping –
Visual Odometry and Visual SLAM– rely on a pre-calibrated camera. In
this chapter, it is proposed a sequential SLAM-based algorithm that is able
to sequentially estimate the structure of a scene, the trajectory of a camera
and also its full calibration — including two coefficients of radial distortion.
The only assumption made about the fixed camera calibration is that the
skew is zero and the pixel aspect ratio is 1, a reasonable assumption in
today’s digital cameras.

Apart from all the advantages mentioned, self-calibration can also be
considered essential for the development of practical systems. Vision systems
in vacuum cleaners, autonomous vehicles or mobile phones cannot rely on
end users to perform an accurate camera calibration for the system to work.
Instead, it would be desirable that the visual estimation worked as soon
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as you install the software in your mobile phone or the engine of your car
is started. For example, [Grasa et al. 2011], uses the real-time EKF SfM
system described in this book to enhance visual perception in laparoscopic
surgery. Calibrating the endoscope before every operation by medical staff
would be impractical, being desirable that the system selfcalibrates in order
to produce minimum interference and disturbances to the medical team.

The rest of the chapter is organised as follows: section 6.2 surveys prior
work related to the approach presented here. section 6.3 introduces the Sum
of Gaussians (SOG) filter. In section 6.4 we detail our self-calibration algo-
rithm using SOG. Section 6.5 presents real-image experiments that validate
our approach. The conclusions and discussions about this chapter can be
found in section 6.6.

6.2 Related Work

Traditionally, photogrammetric bundle adjustment has included camera cal-
ibration parameters — projective camera parameters and also distortion
parameters — in order to refine a tight initial calibration guess and hence
improve reconstruction accuracy.

Self-calibration allows the computation from scratch of projective cali-
bration parameters: focal length, principal point, and skew; the computed
calibration is readily usable or might be used as an initial guess for bun-
dle adjustment refinement, and the refinement might include estimation
of distortion parameters. The standard off-line self-calibration process is
summarized as follows: first, matches along an uncalibrated sequence with
possibly varying parameters are determined. Note that here, no assump-
tions about camera calibration — except that non-projective distortions are
negligible — are applied. Then a projective reconstruction is computed; a
potentially warped version of the ideal Euclidean reconstruction. If no more
information about the camera taking the images is available then projective
reconstruction is the best result that can be computed. However if some
knowledge about calibration parameters is available — that they are con-
stant, that there is zero skew, a known principal point or known aspect ratio
— then this can be exploited to compute the rest of the unknown calibration
parameters. Maybank and Faugeras demonstrated auto-calibration for the
first time in 1992 [Maybank & Faugeras 1992, Faugeras et al. 1992]. Since
then different methods for upgrading projective reconstruction to metric us-
ing partial knowledge about the camera calibration have been developed. A
summary of all theses results is found in [Hartley & Zisserman 2004].

In spite of the vast amount of work related to autocalibration, approaches
to these problem under a sequential Bayesian estimation framework are
surprisingly few, and none of them performs a complete calibration. In
[Azarbayejani & Pentland 1995] the authors propose for the first time the
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use of an EKF for sequential Bayesian estimation of unknown focal length.
This is relevant seminal work but the 3D point parametrization is basic and
this makes it difficult to deal with occlusion and feature addition and dele-
tion. The approach of [Qian & Chellappa 2004] estimates a varying focal
length assuming that the rest of the calibration parameters are known, and
using a particle filter to deal with non-linearities.

In the context of visual SLAM, self-calibration of the internal parameters
of a camera has not been previously discussed. [Solà et al. 2008] may be the
closest related work, where a self-calibration algorithm for extrinsic camera
parameters in large baseline stereo SLAM is proposed –relative locations
of cameras in a stereo rig are easily decalibrated as baseline is increased.
External self-calibration has also been tackled for multisensor systems, like
[Scaramuzza et al. 2007] for a 3D laser and a camera. In this latest work,
no artificial landmarks are needed but correspondences have to be manually
identified. [Bryson et al. 2009] describes a multisensor system composed of
GPS, IMU and monocular camera that autocalibrates IMU biases, IMU-
camera relative angles and refines an initial guess of the intrinsic camera
calibration. A general framework for self-calibration of non-visual sensor
internal parameters –biases, gains, etc.– has also been addressed, e.g. in
[Foxlin 2002].

Regarding the estimation techniques used in this work, the nonlin-
earity of the self-calibration problem has forced us to abandon the Ex-
tended Kalman Filter and adopt an approach more suitable for nonlinear
systems: the Sum of Gaussians (SOG) filter [Alspach & Sorenson 1972].
This type of filter has already been used in SLAM [Piniés et al. 2006,
Durrant-Whyte et al. 2003]. [Kwok et al. 2005] is of particular interest, as
the combination of the Sum of Gaussians filter plus Sequential Probability
Ratio Test they use to deal with the point initialization problem in monocu-
lar SLAM is the same it is used in this chapter for self-calibration purposes.

6.3 Sum of Gaussians (SOG) Filter

Within the SOG approach [Alspach & Sorenson 1972], the probability den-
sity function of the estimated parameters p (x) is approximated by a
weighted sum of multivariate Gaussians:

p (x) =
ng∑
i=1

α(i)N
(
x̂(i),P(i)

)
, (6.1)

where ng stands for the number of Gaussians, x̂(i) and P(i) are the mean
and covariance matrix for each Gaussian and α(i) represents the weighting
factors, which should obey

∑ng
i=1 α

(i) = 1 and α(i) ≥ 0.
This Sum of Gaussians probability density function evolves as follows:

at every step, when new measurements arrive, each one of the Gaussians
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is updated with the standard prediction-update Extended Kalman Filter
equations. The central part of the SOG algorithm is, then, a bank of EKF
filters running in parallel. This bank of EKF filters is illustrated in Figure
6.1.

Figure 6.1: Scheme of the Sum of Gaussians (SOG) filter

Weighting factors α(i) are also updated at every step k using this formula:

α
(i)
k =

α
(i)
k−1N

(
ν

(i)
k ,S(i)

k

)
∑ng

j=1 α
(j)
k−1N

(
ν

(j)
k ,S(j)

k

) ; (6.2)

where ν
(i)
k and S(i)

k are the EKF innovation vector and its covariance
matrix respectively. The innovation vector for each EKF is computed as
the difference between the actual measurements zk and the predicted mea-
surements h(i)

k . The predicted measurements h(i)
k result from applying the

measurement model equations to the state vector x̂(i)
k

ν
(i)
k = zk − h(i)

k , h(i)
k = h

(
x̂(i)
k

)
. (6.3)

The innovation covariance is obtained propagating each EKF covariance
P(i)
k through the measurement equations and adding the covariance of the

zero-mean image noise R(i)
k
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S(i)
k = H(i)

k P(i)
k H(i)

k

>
+ R(i)

k , H(i)
k =

∂h
∂x

∣∣∣∣
x̂

(i)
k

. (6.4)

Finally, an overall mean and covariance for the whole filter can be com-
puted as follows:

x̂k =
ng∑
i=1

α
(i)
k x̂(i)

k

Pk =
ng∑
i=1

α
(i)
k

(
P(i)
k +

(
x̂(i)
k − x̂k

)(
x̂(i)
k − x̂k

)>)
.

(6.5)

These latest overal mean and covariance are used for visualization pur-
poses in our experiments. Nevertheless, notice (graphically in Figure 6.1)
that this is the only purpose of the overall mean and covariance as they are
not involved either in the filter bank or in the evolution of the weighting
factors.

From this brief introduction, the two fundamental advantages of the SOG
filter over the EKF can be intuitively introduced. First, notice that any
probability density function can be reasonably approximated by a weighted
Sum of Gaussians if we make the number of Gaussians ng high enough. So,
the usual EKF assumption of Gaussian PDF does not need to hold for the
SOG filter. Second, and more importantly for this work, as we increase
the number of Gaussians the uncertainty P(i) for each Gaussian becomes
smaller, favoring linearity.

6.4 Self-Calibration Using SOG Filtering

6.4.1 State vector definition

In order to estimate 3D scene structure and camera location and calibration
the SOG state vector x, –and hence every EKF state vector x(i) that com-
poses the filter bank– will contain a set of camera parameters xcam and a
set of parameters xmap representing each estimated point yj .

x =
(
x>C,x

>
M

)>
, xM =

(
y>1 , . . . ,y

>
n

)>
(6.6)

Mapped points yj are first coded in inverse depth coordinates and con-
verted into Cartesian (XYZ) coordinates if and when their measurement
equation becomes linear, as detailed in chapter 3.

yρ = (Xc, Yc, Zc, θ, φ, ρ)> , yXYZ = (X,Y, Z)> (6.7)
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The camera part of the state vector xC , as the key difference from previ-
ous work, now includes the internal calibration parameters to estimate: the
focal length f , the principal point coordinates Cx and Cy and the parameters
modelling radial distortion κ1 and κ2.

xC =
(
x>K ,x

>
v

)>
; xK = (f, Cx, Cy, κ1, κ2)> ,

xv =


rWC

qWC

vW

ωC

 . (6.8)

The camera motion model is described in section 3.2.1; and the projec-
tion model is the one in section 3.3. Nevertheless, it is important to remark
that calibration parameters in this model that were assumed to be known
up to this chapter are now taken from the state vector.

6.4.2 Pruning of Gaussians with Low Weight

As it can be assumed that the final estimation result will be unimodal,
Gaussians that repeteadly obtain low weighting factors can be pruned re-
ducing the computational cost. To do this, it is adopted the proposal in
[Kwok et al. 2005], which makes use of the Sequential Probability Ratio Test
(SPRT) [Wald 1945]. Experiments have shown that SPRT achieves a high
reduction rate while maintaining similar performance.

For each Gaussian i in the SOG filter, the null hypothesis H0 is that such
Gaussian correctly represents the true state and the alternative hypothesis
H1 that the Gaussian does not represent the true state. At every step k,
the null hypothesis is accepted if

k∏
t=1

L(i)
t (H0)

L(i)
t (H1)

> A , (6.9)

and the alternative hypothesis is accepted (meaning that Gaussian i can
be pruned) if

k∏
t=1

L(i)
t (H0)

L(i)
t (H1)

< B , (6.10)

where L(i)
t (H0) and L(i)

t (H1) are the likelihoods of the data under hy-
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Figure 6.2: Probability density function considered for the focal length.

pothesis H0 and H1 at frame t. These likelihoods are computed as follows:

L(i)
t (H0) = N

(
ν

(i)
t ,S(i)

t

)
(6.11)

L(i)
t (H1) =

ng∑
j=1;j 6=i

α(j)′N
(
ν

(j)
t ,S(j)

t

)
(6.12)

α(j)′ =
α(j)∑ng

k=1;k 6=i α
(k)

. (6.13)

Thresholds A and B are approximated by the so-called Wald Boundaries
[Wald 1945] A = 1−αb

αa
and B = αb

1−αa , where αa and αb are the probabilities
of type I and type II errors.

6.5 Experimental Results

Two experiments have been carried to test the performance of the algorithm.
The design of the SOG filter, which is the same for both experiments, it is
explained here previous to the experimental results.

An interval for the focal length f from around 100 pixels to around 600
pixels is considered to be the usual range for cameras used in robotics. It has
been experimentally found that the projection measurement equation from
section 3.3 is fairly linear in intervals of 30 pixels. So, in order to estimate
the focal length, the full range of possible focal length values is divided into
18 Gaussians with standard deviations of 7.5 pixels and separation between
means of 30 pixels. Figure 6.2 shows the resulting probability distribution
function.

A similar procedure applies for κ1 and κ2. It is considered that usual
values for these parameters go from 0 (no radial distortion) to 0.08mm−2

and 0.018mm−4 respectively. The projection model is approximately linear
if these two variation ranges are divided into 2 intervals for κ1 and 3 for κ2.
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Figure 6.3: Probability density function for distortion parameters κ1 and
κ2.

The resulting probability density functions for radial distortion parameters
can be seen in Figure 6.3.

The final SOG filter will be composed of all possible combinations of
the above divisions, that is 18× 2× 3 = 108 filters. It is worth mentioning
here that the naive approach of considering all combinations of parameters
is used here only to demonstrate the performance of the algorithm in the
most general case. In a practical setting, it is known that a camera with
large focal length will have negligible radial distortion and that small focal
lengths corresponds to high radial distortion lenses. Hence, the number of
the filters could be greatly reduced by observing the most usual combinations
of calibration parameters.

Finally, regarding the optical centre coordinates Cx and Cy; as the mea-
surement equation is linear for those parameters, they are coded with one
single Gaussian. The optical centre is assumed to be a maximum of 10 pixels
from the centre of the image. For a 320× 240 image, this results in a bidi-
mensional Gaussian whose mean is [160, 120] and whose standard deviations
are 3.3 pixels in each coordinate.

6.5.1 Indoor Sequence

The first sequence used to test the self-calibration algorithm is an indoor
sequence taken with a hand-held 320×240 IEEE1394 camera in a computer
room. The purpose of this experiment is to test the accuracy of the proposed
algorithm, comparing its results with an offline calibration.

Figure 6.4 shows three frames of the sequence, one at the beginning,
the second in the middle and the last frame of the sequence, and with the
3D estimation at each instant. The evolution of the calibration parameters
estimation over the sequence can be observed in Figure 6.5. The same figure
also shows the number of Gaussians in the SOG filter at each step. Notice the
steep decrease in the first steps of the estimation, and how after image 120 of
the sequence the SOG filter is composed of only one filter, becoming an EKF.
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(a)

(b)

(c)

Image and tracked features Top view of the estimated 3D scene
and camera motion

Figure 6.4: Images and top-down view 3D estimation for frames #20 (a),
#80 (b) #260 (c), which is the last frame of the sequence.

Table 6.1 details the initial and final values of the estimation with a 99%
confidence interval and the offline calibration values for a better visualization
of the accuracy of our self-calibration results. Notice that although initial
values cover a wide range of variation for the parameters, the SOG ends up
with a tight and consistent estimation for all of them.

6.5.2 Loop-Closing Sequence

Loop-Closing is a standard benchmark in SLAM to test the validity of an
estimation algorithm: when a sensor revisits known areas, the estimation
error should be small enough for the algorithm to recognize previous mapped
landmarks.

A challenging indoor loop-closing sequence available as multimedia ma-
terial in [Civera et al. 2008] –previously used to test inverse depth EKF
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Table 6.1: Calibration results for indoor sequence

Initial SOG
Interval

Final SOG
Estimation

Offline
Calibration

f [pixels] [100, 610] 193.0± 1.9 194.1
Cx[pixels] [150, 170] 161.6± 2.3 160.2
Cy[pixels] [110, 130] 127.0± 2.4 128.9
κ1[mm−2] [0, 0.08] 0.0639± 0.0032 0.0633
κ2[mm−4] [0, 0.018] 0.0139± 0.0009 0.0139
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Figure 6.5: Estimated calibration parameters over the computer room se-
quence. Thick blue line is the estimated value, the horizontal black line is the
offline calibration value and the red thin lines represent the 99% uncertainty
region.
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(a)

(b)

(c)

Loop closing feature

Image and tracked features Top view of the estimated 3D scene
and camera motion

Figure 6.6: (a) Image and 3D estimation at frame 60. (b) Image and 3D
estimation at frame 330 of the sequence, when first loop-closure feature
(signaled in the image) is detected. (c) Image and 3D estimation at frame
670, the last one of the sequence.

monocular SLAM with a calibrated camera in section 3.8.3– has been used
in this experiment. The estimated calibration values are accurate enough to
close the loop. Figure 6.6 shows three representative frames of the sequence
and their estimated scene, including the loop closing frame.

As we show in Table 6.2 and in Figure 6.7, the estimated calibration
is close to the offline calibration, but in a slightly over-confident manner.
When compared with the previous one, this experiment presents more dif-
ficult linearization issues because uncertainty increases when the camera
explores new areas, and increases in uncertainty imply more non-linear ef-
fects. Besides, the fixed model for the calibration parameters implies a
monotonic uncertainty reduction that becomes unrealistic after processing
several hundred of images.
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Table 6.2: Calibration results for the loop closing sequence.

Initial SOG
Interval

Final SOG
Estimation

Offline
Calibration

f [pixels] [100, 610] 195.0± 0.4 196.9
Cx[pixels] [150, 170] 159.6± 1.0 153.5
Cy[pixels] [110, 130] 133.9± 1.0 130.8
κ1[mm−2] [0, 0.08] 0.0652± 0.0019 0.0693
κ2[mm−4] [0, 0.018] 0.0132± 0.0005 0.0109
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Figure 6.7: Estimated calibration parameters over the loop closing sequence.
Thick blue line is the estimated value, the horizontal black line is the offline
calibration value and the red thin lines represent the 99% uncertainty region.
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6.6 Discussion

This chapter presents an algorithm that fully auto-calibrates a camera within
a filtering framework, the only input being a sequence of images from a
moving uncalibrated camera. Due to non-linearities introduced by the esti-
mation of calibration parameters, a Sum of Gaussian filter is used to divide
the whole non-linear range of variation into small almost-linear pieces. The
SOG approach uses several filters in the first steps of the estimation to cover
all of these almost-linear hypothesis. A pruning algorithm has been added
that cuts Gaussians whose weighting factors are low and reduces the SOG
filter to a simple EKF in a few steps so complexity is reduced after an ini-
tial computation overhead. As the multiple Gaussians have to be kept only
at initial stages when the map size is small, we expect the computational
complexity to be low enough to achieve real time performance.

Experimental results with real-images show that an accurate and con-
sistent camera calibration is achieved for a waggling motion in an indoor
sequence. A loop closure has been successfully performed, achieving cali-
bration values close to offline calibration, what is a remarkable achievement,
though the estimation is somewhat inconsistent due to non-linearities and
to the unrealistic monotonic uncertainty reduction that EKF produces when
dealing with static parameters.

Regarding future lines of work, an interesting one would be to ana-
lyze how this self-calibration algorithm behaves with respect to degenerate
camera motion. Also, being already demonstrated that sequential camera
self-calibration is feasible for a camera with fixed unknown parameters, next
natural step is to deal with varying calibration parameters.
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Conclusions

This final chapter aims to summarize and further discuss the contents pre-
sented in the book. In a few words, the main aim of the book has been to
provide filtering-based visual estimation algorithms with models and meth-
ods that are appropriate to the projective nature of the camera as a sensor.
As an added value, every algorithm presented in the book has been proven
to run in real-time at 30 frames per second in a standard laptop. This fact
situates our research into the recent stream aiming to real-time sequential
SfM; that has a great potential for applications in the robotics or augmented
graphics domains among others.

Next sections of this chapter are devoted to summarize and discuss in
more detail the main topics that have appeared in the book.

7.1 Low Parallax Points and Mosaicing

Imaging very distant points in a scene –potentially even points at infinity–
is one of the most remarkable capabilities of the visual sensing. The most
illustrative example, already used in chapter 1, are the heavenly bodies: we
are able to image galaxies that are thousands of millions years light away
from our visual sensors. Low-parallax features are introduced in chapter 2;
specifically the case of zero parallax. The chapter presents a formulation
for camera rotation estimation from the information of these low parallax
features. This geometric configuration corresponds to the cases of a pure
camera rotation or very distant features.

The experiments presented in this chapter show an accurate and consis-
tent rotation estimation in real-time at 30 frames per second. This accurate
estimation serves as the backbone for a mosaicing algorithm, which is de-
scribed from section 2.5. This mosaicing algorithm is the first one that
adapts SLAM techniques for such purposes; an approach that is also fol-
lowed in [Lovegrove & Davison 2010]. The mosaics built in this manner

135



Chapter 7. Conclusions

naturally inherits all the advantages of SLAM; that is sequential processing,
consistent drift-free performance and real-time capabilities.

7.2 Inverse Depth Parametrization

The tridimesional estimation of a scene and the camera motion from
the sequential processing of a video sequence poses an interesting
problem that has been referred in the robotics literature as the ini-
tialization problem [Davison 2003, Bailey 2003, Kim & Sukkarieh 2003,
Kwok & Dissanayake 2004, Bryson & Sukkarieh 2005, Solà et al. 2005].
Being the camera a bearing-only sensor, there are certain dimensions that
are unobservable from a single measurement. Specifically, in the case
of a point feature, its projection ray can be very accurately estimated
from a single image but not the depth along this ray. It is necessary at
least another observation taken with enough camera translation for this
magnitude to become observable. Notice that this problem never appears
in a batch processing, where geometric constraints between at least two
images [Hartley & Zisserman 2004] are used as the starting point.

The so-called initialization problem can be addressed in a more general
manner as the management of low-parallax features. The näıve solution of
delaying the insertion of low-parallax features until they show enough par-
allax angle has two major inconvenients: first, there is a loss of information
from the image where a feature is first seen until it is fully initialized in the
estimation. And second, there may be features that remain in a low-parallax
stage for a long number of frames or even for ever as it is discussed in section
7.1. These features carry a highly valuable orientation information, as it has
been shown in chapter 2.

Chapter 3 presents an elegant model that for the first time represents
points for any parallax angle in a unified manner for filtering-based SfM. This
model is based on two novel contributions: First, the explicit modeling of
the inverse depth along the projection ray of the feature, that allows to pro-
jectively represent infinite depths without numerical problems. This inverse
depth concepts is strongly related with the homogeneous coordinates used in
pairwise geometry [Hartley & Zisserman 2004]. Differently from the latest
and as its second contribution, the inverse depth parametrization presented
in this chapter adds the camera position where the feature was initialized to
the feature state vector. With this addition the projection equation at each
step “resets” the uncertainty in the camera position where the feature was
initialized. This reduction of the uncertainty implies that the linearization
is more accurate in the uncertainty region and hence the performance of the
EKF is improved.

Chapter 3 details a linearity index that serves for further understand-
ing of the superiority of the inverse depth parametrization. This linearity
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index is also used to show how the Euclidean parametrization offers a good
performance and at a lower cost only in the case of high-parallax features.
Switching to a Euclidean parametrization when the parallax is high enough
has then computational advantages, and chapter 3 details a conversion cri-
teria.

7.3 1-Point RANSAC for EKF Monocular SLAM

One of the major issues in monocular SLAM and SfM is the reliable and
efficient computation of feature correspondences. The description of the
image area surrounding an interest point do not provide enough robust-
ness; being necessary an additional step where a set of correspondences
based on local similarity is checked against a global model. Those matches
that are not in consensus with the global model are discarded as spurious.
RANSAC [Fischler & Bolles 1981] is the standard approach in SfM, while
JCBB [Neira & Tardós 2001] is most commonly used in EKF-based SLAM.

Chapter 4 presents an efficient RANSAC algorithm suited to the EKF
framework. The efficiency in cost is achieved by a great reduction in the
number of RANSAC random hypothesis. This comes as a consequence of
exploiting the probabilistic dynamic model relating one frame to the next
one. Specifically, this probabilistic prior on the camera motion allows to
reduce the number of data points necessary to compute a camera motion
hypothesis: from the usual 5 points when no other information is available
[Nistér 2004] to the minimum number of 1. Section 4.5 proves that this
reduction does not imply a degradation of the performance.

The 1-point RANSAC presented in this book is also shown to outperform
JCBB in 4.5, both in performance and computational cost. We believe that
the root of this improvement is that the consensus with a global model is
computed after partial integration in our 1-point RANSAC, while JCBB
computes it before integrating the measurements.

This chapter also introduces two important issues regarding monoc-
ular SLAM: First, the robocentric formulation of EKF SLAM
[Castellanos et al. 2004] is adapted to the monocular sensorial input for the
first time, resulting in an enhanced performance compared with the world-
centered case. The combination of 1-point RANSAC and the robocentric
formulation allow to greatly increase the usual accuracy of monocular SLAM
systems. The experiments in section 4.5 include trajectories of around 1000
metres and errors around 1% of the trajectory. These are the largest exper-
iments performed by a local monocular SLAM algorithm without submap-
ping.

Finally, the last contribution of this chapter deals with the benchmarking
of monocular SLAM systems. Section 4.5.1 details a procedure to construct
a ground truth solution for the 6 degrees-of-freedom camera motion in a
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natural image sequence without artificial markers; and also a method to
evaluate the output of the SLAM algorithms. The method is used in sec-
tions 4.5.2 and 4.5.3 to evaluate the performance of the 1-point RANSAC
algorithm.

7.4 Degenerate Motion and Model Selection

The 6 degrees-of-freedom constant velocity motion used in chapters 3 and
4 cannot successfully deal with the cases when the camera is undergoing a
pure rotational motion or no motion at all. In these degenerate cases, the
overparametrization of the general model causes that part of the noise in
the measurements artificially fits the extra degrees of freedom and produces
inconsistent estimations. The need for a model selection between differ-
ent geometric configurations is a well known problem in pairwise Structure
from Motion, and several algorithms have been proposed to cope with it
[Torr et al. 1999, Torr 2002, Kanatani 2004, Schindler & Suter 2006].

In a filtering framework the selection between different geometric mod-
els is replaced by the selection between motion models from image k to
k + 1. Chapter 5 introduces this issue and propose a model selection algo-
rithm able to cope with degenerate motions in a filtering framework. Differ-
ently from model selection schemes in Structure from Motion, the proposed
model selection is based on probabilistic information instead of geometric
error. The Interacting Multiple Model scheme, taken from the tracking com-
munity [Blom & Bar-Shalom 1988], naturally penalizes simplistic and over-
parametrized methods based on the likelihood of the measurements without
the need for extra penalty terms based on the complexity of the model.

7.5 Self-Calibration

Although it is a topic scarcely treated in the SLAM literature, we believe
that the self-calibration of the camera sensor would be a desirable capabil-
ity in a monocular SLAM algorithm operating in real environments. The
calibration of a camera may be a non-straightforward and tedious process
that have an influence over the accuracy of a SLAM estimation, and hence
should not be performed by a final user. A clear example can be the system
in [Grasa et al. 2011], that aims to perform SLAM over images from endo-
scopic surgery to help surgeons. Such system should produce a minimum
interference with the work of the medical staff and the system should work
with the highest degree of automony, being self-calibration a must.

Chapter 6 presents a self-calibrated SLAM algorithm; where the scene
structure, the camera motion and also the camera internal calibration are
jointly estimated from an image sequence. The algorithm proposed is shown
to be accurate enough to successfully perform a loop closure in a room-sized
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scenario; and the estimated calibration shows a small error from an offline
calibration with a pattern. In our approach we estimate the projective
parameters (focal length and principal point) and also the lens distortions
(specifically a two parameter radial distortion model is used).
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Appendix A
Implementation Details

A Extended Kalman Filter

The Kalman Filter –and its version for non-linear systems, the Extended
Kalman Filter– are probably the best studied implementation of Bayesian
filtering and the first filtering solution to be succesfully applied to the online
SLAM estimation problem [Smith et al. 1987].

The Kalman filter recursively estimates a probability distribution func-
tion over the unknown parameters of a state vector x from measurements
gathered by a sensor and the dynamical model of such state. The estima-
tion process follows two steps. In the first one, the probability distribution
function p (xk−1) from step k − 1 is updated to step k based on the proba-
bilistic dynamic model of the system p

(
xk|k−1|xk−1|k−1,uk

)
in the so-called

prediction step

p
(
xk|k−1

)
=
∫
p
(
xk|k−1|xk−1|k−1,uk

)
p (xk−1) dxk−1 . (A1)

After measurements zk are collected, they are fused with the probability
distribution function from the prediction step using Bayes’ rule in the update
step

p
(
xk|k

)
= ηp

(
zk|xk|k−1

)
p
(
xk|k−1

)
, (A2)

where p
(
zk|xk|k−1

)
stands for the probabilistic measurement model of

the system, that has be known in advance; and η is the normalization con-
stant that converts p

(
xk|k

)
into a probability distribution function. The

algorithm require the state probability distribution at the initial step p (x0)
to be known.

The Kalman Filter, initially proposed in [Kalman 1960], makes three
assumptions: linear dynamic and measurement model with Gaussianly dis-
tributed noise; and Gaussian initial probability distribution at time k = 0.
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Under these assumptions, the a posteriori distribution over the estimated
parameters is also a multivariate Gaussian x ∼ N (x̂,P).

Most of the systems in the real world show a certain degree of non-
linearity. The Extended Kalman Filter (EKF) relaxes the linearity assump-
tion by linearizing the dynamic and measurement model in the mean value
at every step of the estimation. The Extended Kalman Filter does not give
us then the real a posteriori probability distribution function, but only a
Gaussian approximation of it. The higher the degree of linearity in the dy-
namic and measurement models and the more Gaussian the noise, the better
the EKF will perform.

The prediction step using the dynamic model of the system, described
in its more general form in equation A1, makes the mean x̂ and covariance
P of the Gaussian probability in the EKF evolve in the following manner

x̂k|k−1 = f
(
x̂k|k−1,uk

)
, (A3)

Pk|k−1 = FkPk|k−1F
>
k + GkQkG>k ; (A4)

where f
(
x̂k|k−1, ûk

)
is the nonlinear equation modeling the dynamic evo-

lution of the system, uk the input given to the system, Fk the derivatives of
the dynamic model by the state vector, Qk the input noise covariance and
Gk the derivatives of such input noise by the state vector parameters.

The update step via Bayes’ rule in equation A2 is, in the EKF case

x̂k|k = x̂k|k−1 + Kk|k−1

(
zk − h

(
x̂k|k−1

))
(A5)

Pk|k =
(
I−KHk|k−1

)
Pk|k−1 (A6)

Kk|k−1 = Pk|k−1H
>
k|k−1

(
Hk|k−1Pk|k−1H

>
k|k−1 + Rk

)−1
; (A7)

where zk are measurements gathered at step k, h
(
x̂k|k−1

)
the function

that defines the sensor measurement model, Hk|k−1 the derivatives of the
measurement function by the state vector and Rk the covariance of the
measurement noise. The matrix Kk|k−1 is called the filter gain and weights
the information from the prior knowledge and the measurements according
to their respective covariances.

For the practical implementation of an EKF filter, it is then required to
know: first, wich parameters are included in the state vector and its prob-
abilistic dynamic model. Second, which sensor we are using, what are our
measurements and the probabilistic measurement model. Based on that,
derivatives of both models can be computed and the EKF steps described in
this section can be coded. The next sections detail the models and deriva-
tives for the particular implementation of the monocular EKF SLAM system
used along this book.
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B Calibrated EKF-Based SfM

B1 Dynamic Model and Derivatives

The camera motion is considered smooth and modeled with a constant veloc-
ity model with an zero-mean Gaussian acceleration noise n =

(
aW αC

)>.
As described in previous chapters, the camera state vector is composed of
its position rWC with respect to a world reference frame W , the quaternion
representing its orientation qWC and the linear and angular velocities vW

and ωC –this latest one in the camera frame C.

xC =


rWC

qWC

vW

ωC

 (B1)

In this model, the camera states are modified at every step by impulses
of linear VW = aW∆t and angular velocities ΩC = αC∆t produced by
acceleration noise

xCk+1
=


rWC
k+1

qWC
k+1

vWk+1

ωCk+1

 = fv (xCk ,n) =


rWC
k +

(
vWk + VW

k

)
∆t

qWC
k × q

((
ωCk + ΩC

)
∆t
)

vWk + VW

ωCk + ΩC

 .

(B2)
q
((
ωCk + ΩC

)
∆t
)

stands for the quaternion corresponding to the rota-
tion given by

(
ωCk + ΩC

)
∆t. The derivatives of this dynamic model function

by the state F = ∂f v
∂xC and by the Gaussian noise G = ∂f v

∂n are computed as
follows:

∂fv
∂xC

=


I 0 ∆tI 0

0
∂qWC

k+1

∂qWC
k

0
∂qWC

k+1

∂ωCk+1

0 0 I 0
0 0 0 I

 (B3)

∂fv
∂n

=


∆tI 0

0
∂qWC

k+1

∂ΩC

I 0
0 I

 (B4)

Let the quaternions in the previous formula be renamed as q3 = qWC
k+1,

q2 = qWC
k and q1 = q

((
ωCk + ΩC

)
∆t
)

for simplicity. The partial derivative
∂qWC

k+1

∂qWC
k

is computed from the quaternion product formula
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∂qWC
k+1

∂qWC
k

=
∂q3

∂q2
=


q1

0 −q1
1 −q1

2 −q1
3

q1
1 q1

0 q1
3 −q1

2

q1
2 −q1

3 q1
0 q1

1

q1
3 q1

2 −q1
1 q1

0

 . (B5)

And the partial derivative
∂qWC

k+1

∂ωCk+1

can be computed via the chain rule as

∂qWC
k+1

∂ωCk+1

=
∂qWC

k+1

∂q
((
ωCk + ΩC

)
∆t
) ∂q

((
ωCk + ΩC

)
∆t
)

∂ωCk+1

; (B6)

where
∂qWC

k+1

∂q((ωCk +ΩC)∆t) comes again from the quaternion product formula

∂qWC
k+1

∂q
((
ωCk + ΩC

)
∆t
) =

∂q3

∂q1
=


q2

0 −q2
1 −q2

2 −q2
3

q2
1 q2

0 −q2
3 q2

2

q2
2 q2

3 q2
0 −q2

1

q2
3 −q2

2 q2
1 q2

0

 (B7)

and
∂q((ωCk +ΩC)∆t)

∂ωCk+1

can be computed from the conversion formula from

a rotation vector to a quaternion representation. This conversion formula is

q (ω) =
(

cos
θ

2
sin

θ

2
ω>

θ

)>
(B8)

θ = ||ω|| ; (B9)

and the derivatives can be separated by components

∂q
((
ωCk + ΩC

)
∆t
)

∂ωCk+1

=


∂q0(ω∆t)
∂ωx

∂q0(ω∆t)
∂ωy

∂q0(ω∆t)
∂ωz

∂q1(ω∆t)
∂ωx

∂q1(ω∆t)
∂ωy

∂q1(ω∆t)
∂ωz

∂q2(ω∆t)
∂ωx

∂q2(ω∆t)
∂ωy

∂q2(ω∆t)
∂ωz

∂q3(ω∆t)
∂ωx

∂q3(ω∆t)
∂ωy

∂q3(ω∆t)
∂ωz

 , (B10)

where each component is computed as follows

∂q0 (ω∆t)
∂ωi

= −∆t
2
ωi
θ

sin
(
θ

∆t
2

)
(B11)

∂qi (ω∆t)
∂ωi

∣∣∣∣
i 6=0

=
∆t
2

(ωi
θ

)2
cos
(
θ

∆t
2

)
+

1
θ

(
1−

(ωi
θ

)2
)

sin
(
θ

∆t
2

)
(B12)

∂qi (ω∆t)
∂ωj

∣∣∣∣
i 6=0,i 6=j

=
∆t
2
ωiωj
θ2

cos
(
θ

∆t
2

)
− 1
θ

sin
(
θ

∆t
2

)
. (B13)
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B2 Measurement Model and Derivatives

We will summarize again here the measurement model for completitude
before going into its derivatives. For a more elaborated description of this
model the reader is referred to section 3.2.

The measurement model can be divided in three steps. In the first of
them, features referred to the world reference frame W are converted into
Euclidean ones referred to the camera reference frame C. In the case of an
inverse depth feature yρ = (x y z θ φ ρ)>

hCρ = RCW

ρ
 x

y
z

− rWC

+ m (θ, φ)

 ; (B14)

and for a feature coded in Euclidean form yXYZ = (X Y Z)>

hCXYZ = RCW

 X
Y
Z

− rWC

 . (B15)

A pinhole camera model is then applied

hu =
(
uu
vu

)
=

 Cx − f
dx

hCx
hCz

Cy − f
dy

hCy
hCz

 , (B16)

that gives us the 2D image coordinates hu assuming a pure projective
model. In order to cope with the distortions coming from real lenses, we
add a radial distortion model to the ideal undistorted coordinates. In this
book we have used the standard two parameter distortion model from pho-
togrammetry [Mikhail et al. 2001], which is described next.

The ideal projective undistorted coordinates hu = (uu, vu)> are recov-
ered from the real distorted ones hd = (ud, vd)

> as follows,

hu =
(
Cx + (ud − Cx)

(
1 + κ1r

2
d + κ2r

4
d

)
Cy + (vd − Cy)

(
1 + κ1r

2
d + κ2r

4
d

))
rd =

√
(dx (ud − Cx))2 + (dy (vd − Cy))2 (B17)

Where (Cx Cy)
> are the principal point coordinates; and κ1 and κ2 the

radial distortion coefficients.
To compute the distorted coordinates from the undistorted:
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hd =

Cx + (uu−Cx)

(1+κ1r2d+κ2r4d)
Cy + (vu−Cy)

(1+κ1r2d+κ2r4d)

 (B18)

ru = rd
(
1 + κ1r

2
d + κ2r

4
d

)
(B19)

ru =
√

(dx (uu − Cx))2 + (dy (vu − Cy))2 (B20)

ru is readily computed computed from (B20), but rd has to be numer-
ically solved from (B19), e.g using Newton-Raphson, hence (B18) can be
used to compute the distorted point.

The Jacobian of this measurement equation by the state vector is ex-
tracted from the model defined above. The full Jacobian H is divided into
rows, each one corresponding to a point measurement

H =



∂h1
∂x
...

∂hi
∂x
...

∂hm
∂x


. (B21)

The derivative of each measurement ∂hi
∂x can be separated into derivatives

by the camera states ∂hi
∂xC and derivatives by the map features ∂hi

∂xM

∂hi
∂x

=
(
∂hi
∂xC

∂hi
∂xM

)
. (B22)

As the camera state vector is composed by its location rWC , orientation
qWC and linear and angular velocities v and ω (equation B1); the partial
derivative ∂hi

∂xC can also be further divided

∂hi
∂xC

=

 ∂hi
∂rWC

∂hi
∂qWC

�
�
�7

0
∂hi
∂v �

�
�7

0
∂hi
∂ω

 (B23)

As camera velocities are not involved in the measurement model, the
derivatives involving velocities ∂hi

∂v and ∂hi
∂ω cancel out to zero. The chain

rule will be used to compute the rest of the partial derivatives. Starting by
∂hi
∂rWC ,
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∂hi
∂rWC

=
∂hd
∂hu

∂hu
∂hC

∂hC

∂rWC
(B24)

We have to compute first the partial derivative ∂hd
∂hu from equation B18.

As this equation is not in explicit form, we will calculate first the Jacobian
for the undistortion ∂hu

∂hd
from formula B50:

∂hu
∂hd

=



(
1 + κ1r

2
d + κ2r

4
d

)
+

2 ((ud − Cx) dx)2×(
κi + 2κ2r

2
d

) 2d2
y (ud − Cx) (vd − Cy)×(

κ1 + 2κ2r
2
d

)
2d2

x (vd − Cy) (ud − Cx)×(
κ1 + 2κ2r

2
d

)
(
1 + κ1r

2
d + κ2r

4
d

)
+

2 ((vd − Cy) dy)2×(
κi + 2κ2r

2
d

)

 (B25)

The Jacobian for the distortion is computed by inverting the previous
matrix ∂hu

∂hd
(B25):

∂hd
∂hu

=
(
∂hu
∂hd

)−1

(B26)

The derivatives for the pinhole camera model are easily extracted from
B16

∂hu
∂hC

=

 f
dxhCz

0 −hCx f
dxhCz

2

0 f
dyhCz

−hCy f
dyhCz

2

 (B27)

And finally, the partial derivative ∂hC
∂rWC is

∂hCρ
∂rWC

= −ρRCW (B28)

∂hCXYZ

∂rWC
= −RCW ; (B29)

for the cases of an inverse depth feature and a Euclidean XYZ one re-
spectively.

The partial derivative of the measurement function hi by the quaternion
rotation qWC is again computed using the chain rule

∂hi
∂qWC

=
∂hd
∂hu

∂hu
∂hC

∂hC

∂qWC
(B30)
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Partial derivatives ∂hd
∂hu and ∂hu

∂hC
have already been detailed in formulas

B26 and B27 respectively. The only calculation left is ∂hC
∂qWC . Such compu-

tation can be done dividing first the jacobian into two pieces

∂hC

∂qWC
=

∂hC

∂qCW
∂qCW

∂qWC
; (B31)

where

∂qCW

∂qWC
=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (B32)

Partial derivatives ∂hC
∂qCW can be computed dividing them as the deriva-

tive with respect to each one of the components of the quaternion qCW =(
qCW0 qCW1 qCW2 qCW3

)>,

∂hC

∂qCW
=
(

∂hC
∂qCW0

∂hC
∂qCW1

∂hC
∂qCW2

∂hC
∂qCW3

)
; (B33)

where the derivative with respect to the quaternion components only
affects to the rotation matrix

∂hC

∂qCW0

=
∂RCW

∂qCW0

ρi
 xi

yi
zi

− rWC

+ m (θi, φi)

 (B34)

∂hC

∂qCW1

=
∂RCW

∂qCW1

ρi
 xi

yi
zi

− rWC

+ m (θi, φi)

 (B35)

∂hC

∂qCW2

=
∂RCW

∂qCW2

ρi
 xi

yi
zi

− rWC

+ m (θi, φi)

 (B36)

∂hC

∂qCW3

=
∂RCW

∂qCW3

ρi
 xi

yi
zi

− rWC

+ m (θi, φi)

 . (B37)

From the conversion formula from quaternion to rotation matrix orien-
tation representation,

R =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q3q1 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q3q1 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 . (B38)
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The derivatives of rotation matrix RCW with respect to each component
of the quaternion are easily computed

∂RCW

∂qCW0

=

 2qCW0 −2qCW3 2qCW2

2qCW3 2qCW0 −2qCW1

−2qCW2 2qCW1 2qCW0

 (B39)

∂RCW

∂qCW1

=

 2qCW1 2qCW2 2qCW3

2qCW2 −2qCW1 −2qCW0

2qCW3 2qCW0 −2qCW1

 (B40)

∂RCW

∂qCW2

=

 −2qCW2 2qCW1 2qCW0

2qCW1 2qCW2 2qCW3

−2qCW0 2qCW3 −2qCW2

 (B41)

∂RCW

∂qCW3

=

 −2qCW3 −2qCW0 2qCW1

2qCW0 −2qCW3 2qCW2

2qCW1 2qCW2 2qCW3

 (B42)

In the derivative of each measurement by the map ∂hi
∂xM

appearing in
equation B22 only feature i is in the measurement equation, so

∂hi
∂xM

=
(

0 . . . 0
∂hi
∂yi

0 . . . 0
)

(B43)

The artial derivative ∂hi
∂yi is as follows

∂hi
∂yi

=
∂hd
∂hu

∂hu
∂hC

∂hC

∂yi
; (B44)

where ∂hd
∂hu and ∂hu

∂hC
are detailed in B26 and B27. The partial derivative

∂hC
∂yi in the above product is, for the inverse depth case

∂hCρ
∂yi

=

 ρRCW | RCW ∂m
∂θ | RCW ∂m

∂φ | RCW

 xi
yi
zi

− rWC

  .

(B45)
Here m = (cosφsinθ − sinφ cosφcosθ)> is the unit vector defined by

the azimuth-elevation pair (θφ), derivatives ∂m
∂θ and ∂m

∂φ come straightfor-
wardly as

∂m
∂θ

= (cosφcosθ 0 − cosφsinθ)> (B46)

∂m
∂φ

= (−sinφsinθ − cosφ − sinφcosθ)> . (B47)

151



Appendix A. Implementation Details

For a XYZ feature, this latest partial derivative is

∂hCXYZ

∂yi
= RCW . (B48)

B3 Inverse Depth Point Feature Initialization and Deriva-
tives

The initialization function defines a new point feature yNEW from an image
point h, the current state vector x and and initial value for the inverse depth
ρ0

yNEW = y(x,h, ρ0) (B49)

The initialization function follows the same three steps than the mea-
surement equation but in reverse order. First, the image point has to be
undistorted

hu =
(
Cx + (ud − Cx)

(
1 + κ1r

2
d + κ2r

4
d

)
Cy + (vd − Cy)

(
1 + κ1r

2
d + κ2r

4
d

))
rd =

√
(dx (ud − Cx))2 + (dy (vd − Cy))2 (B50)

The 3D ray –in the camera reference frame– where the point feature lies
can be extracted from the line joining the optical centre and the undistorted
image coordinates

hC =


(uu−Cx)dx

f
(vu−Cy)dy

f

1

 . (B51)

Using the current camera orientation estimation from the state vector,
this ray can be transformed to the world reference frame and the azimuth
and elevation angles extracted;

hW = RWC
(
qWC

)
hC , (B52)

θ = arctan
(
hWx , h

W
z

)
, (B53)

φ = arctan

(
−hWy ,

√
hWx

2 + hWz
2
)
. (B54)

The position of the optical centre is directly extracted from the current
camera position,  xi

yi
zi

 = rWC . (B55)
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The initial value for the inverse depth ρ0 is chosen to cover in its 95%
acceptance region a range of possible depths covering from a minimum close
distance dmin to infinity. A typical value in our experiments is ρ0 = 1 and
σρ0 = 1; covering a range from dmin = 0.33 to infinite (and beyond) with a
probability of 0.95.

The newly initialized feature yNEW = (xi yi zi θ φ ρ0)> is added to
the state vector

xNEW =
(

xOLD

yNEW

)
, (B56)

And the state covariance is updated in the following manner

PNEW = J

 POLD 0 0
0 R 0
0 0 σρ0

J> ; (B57)

being R the image noise covariance associated with our feature detector.
The matrix J is the Jacobian of this initialization function

J =

 I

0
...
0

∂y
∂xC 0 . . . 0 ∂y

∂h

 . (B58)

As it happened in previous section, point un-projection does not depend
either on the camera velocities, so the partial derivatives by the camera
parameters has non-zero terms in camera position and orientation

∂y
∂xC

=

 ∂y
∂rWC

∂y
∂qWC

�
�
�7

0
∂y
∂v�

�
�7

0
∂y
∂ω

 . (B59)

The Jacobian by the camera position is

∂y
∂rWC

=
(

I
0

)
. (B60)

The derivatives by the orientation quaternion have non-zero terms in the
azimuth and elevation angles’ positions:

∂y
∂qWC

=


0
∂θ

∂qWC

∂φ
∂qWC

0

c

 ; (B61)

where both derivatives ∂θ
∂qWC and ∂φ

∂qWC are as follows
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∂θ

∂qWC
=

∂θ

∂hW
∂hW

∂qWC
(B62)

∂φ

∂qWC
=

∂φ

∂hW
∂hW

∂qWC
; (B63)

∂θ

∂hW
=

(
hWz

hWx
2

+ hWz
2 0− hWx

hWx
2

+ hWz
2

)
(B64)

∂φ

∂hW
=



hWx hWy
(hWx

2
+hWy

2
+hWz

2
)

q
hWx

2
+hWz

2

−
q

hWx
2
+hWz

2

hWx
2
+hWy

2
+hWz

2

hWz hWy
(hWx

2
+hWy

2
+hWz

2
)

q
hWx

2
+hWz

2



>

(B65)

∂hW

∂qWC
=

(
∂hW

∂qWC
0

∂hW

∂qWC
1

∂hW

∂qWC
2

∂hW

∂qWC
3

)
(B66)

∂hW

∂qWC
i

= hC
∂RWC

∂qWC
i

. (B67)

The derivatives of the rotation matrix RWC by each quaternion compo-
nent qWC

i have been detailed in equations B39 to B42.
Finally, the derivatives by the salient image point h

∂y
∂h

=

(
∂y′
∂h 0
0 1

)
, (B68)

where y′ = (xi yi zi θi φi) stands for the feature parameters com-
puted from the salient image point h. That is, all of them except the inverse
depth one ρ0. The derivative ∂y′

∂h is computed as

∂y′

∂h
=

∂y′

∂hW
∂hW

∂hC
∂hC

∂hu

∂hu
∂hd

; (B69)

where

∂y′

∂hW
=
(

0
∂θ

∂hW
∂φ

∂hW

)
(B70)

with ∂θ

∂hW
and ∂φ

∂hW
being already computed in equations B64 and B65;

and
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∂hW

∂hC
= RWC ; (B71)

∂hC

∂hu
=

(
dx
f 0 0
0 dx

f 0

)
. (B72)

(B73)

The Jacobian of the undistortion is detailed in equation B25.

C Uncalibrated EKF-Based SfM

C1 Dynamic Model and Derivatives

In the uncalibrated case, the camera state vector xC is augmented with the
projective parameters –focal length f and principal point coordinates Cx
and Cy– and the parameters modeling the lens distortion –in our case, κ1

and κ2 for the radial distortion

xC =



f
Cx
Cy
κ1

κ2

rWC

qWC

vW

ωC


(C1)

The motion model assumed for the camera is the same as detailed in
section B1. The calibration parameters are assumed to remain constant
in the experiments of the book as we did not deal with zooming cameras.
Nevertheless, the addition of a dynamic model for the camera calibration
parameters would be straightforward. The dynamic model for the camera
state vector is
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xCk+1
=



fk+1

Cxk+1

Cyk+1

κ1k+1

κ2k+1

rWC
k+1

qWC
k+1

vWk+1

ωCk+1


= fv (xCk ,n) =



fk
Cxk
Cyk
κ1k

κ2k

rWC
k +

(
vWk + VW

k

)
∆t

qWC
k × q

((
ωCk + ΩC

)
∆t
)

vWk + VW

ωCk + ΩC


.

(C2)
And the derivatives for the uncalibrated case can be easily extracted

from the ones in section B1

∂fv
∂xv

=


I 0 0 0 0
0 I 0 ∆tI 0

0 0
∂qWC

k+1

∂qWC
k

0
∂qWC

k+1

∂ωCk+1

0 0 0 I 0
0 0 0 0 I

 (C3)

∂fv
∂n

=


0 0

∆tI 0

0
∂qWC

k+1

∂ΩC

I 0
0 I

 (C4)

C2 Measurement Model and Derivatives

The pinhole camera model plus a two parameter radial distortion model for
the lens is still used in the uncalibrated case, so equations B14 to B20 in
section B2 keep describing the measurement model. The key difference is
that, in this case, the calibration parameters are not considered constant
but estimated in a joint state vector. Then, the Jacobians are modified with
respect to the calibrated case.

The whole Jacobian H is as follows
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H =



∂h1
∂x
...

∂hi
∂x
...

∂hm
∂x


(C5)

∂hi
∂x

=
(
∂hi
∂xC

∂hi
∂xM

)
, (C6)

the derivative by the camera state ∂hi
∂xC is the one that changes with

respect to the calibrated case, as now we have to include the derivatives by
the calibration parameters

∂hi
∂xC

=

∂hi
∂f

∂hi
∂Cx

∂hi
∂Cy

∂hi
∂κ1

∂hi
∂κ2

∂hi
∂rWC

∂hi
∂qWC

�
�
�7

0
∂hi
∂v �

�
�7

0
∂hi
∂ω

 . (C7)

The computation of the aboves derivatives can be simplified by slightly
modifying the pinhole camera model equations in section B2. The trans-
formation from the world frame to the camera frame in equations B14 and
B15 is the same, but from there we introduce the intermediate variables h∗u
and h∗d, that represents the image projection of the 3D point in a reference
frame anchored in the principal point

h∗u =
(
u∗u
v∗u

)
=

 f
dx

hCx
hCz

f
dy

hCy
hCz

 (C8)

h∗u =
(
u∗u
v∗u

)
= h∗d

(
1 + κ1r

2
d + κ2r

4
d

)
(C9)

rd =
√(

dxu∗d
)2 +

(
dyv∗d

)2
. (C10)

The image reference can be moved by adding the optical center coordi-
nates to the “starred” image coordinates

hu = h∗u +
(
Cx
Cy

)
(C11)

hd = h∗d +
(
Cx
Cy

)
. (C12)
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The derivatives with respect to the projective parameters ∂hi
∂f , ∂hi

∂Cx
and

∂hi
∂Cy

can be straightforwardly extracted from equations C8 to C12:

∂hd
∂f

=
∂hd
∂h∗d

∂h∗d
∂h∗u

∂h∗u
∂f

(C13)

∂hd
∂h∗d

= I (C14)

∂h∗u
∂f

=

 hCx
dxhCz
hCy
dyhCz

 (C15)

∂hd
∂Cx

=
(

1
0

)
(C16)

∂hd
∂Cy

=
(

0
1

)
. (C17)

The derivatives by the radial distortion parameters ∂hd
∂κ1

and ∂hd
∂κ2

are a bit
more involved. Starting from equation C9, the derivatives of the undistorted
image coordinates h∗u can be easily computed:

∂u∗u
∂κ1

= u∗dr
2
d (C18)

∂v∗u
∂κ1

= v∗dr
2
d (C19)

∂u∗u
∂κ2

= u∗dr
4
d (C20)

∂v∗u
∂κ2

= v∗dr
4
d . (C21)

Doing implicit differentiation on equation C9, we have the following

∂h∗u
∂κ1

=
∂h∗d
∂κ1

(
1 + κ1r

2
d + κ2r

4
d

)
+ h∗d

∂
(
1 + κ1r

2
d + κ2r

4
d

)
∂κ1

. (C22)

Being rd =
√
u∗d

2 + v∗d
2, we can expand

∂(1+κ1r2d+κ2r4d)
∂κ1

as follows

∂
(
1 + κ1r

2
d + κ2r

4
d

)
∂κ1

= r2
d + 2κ1

(
∂u∗d
κ1

+
∂v∗d
κ1

)
+ 4κ2

(
∂u∗d
κ1

+
∂v∗d
κ1

)
(C23)

Doing the same with the derivative by κ2

∂h∗u
∂κ2

=
∂h∗d
∂κ2

(
1 + κ1r

2
d + κ2r

4
d

)
+ h∗d

∂
(
1 + κ1r

2
d + κ2r

4
d

)
∂κ2

(C24)
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∂
(
1 + κ1r

2
d + κ2r

4
d

)
∂κ2

= r4
d + 2κ1

(
∂u∗d
κ2

+
∂v∗d
κ2

)
+ 4κ2

(
∂u∗d
κ2

+
∂v∗d
κ2

)
.(C25)

From C22 and C24 we can extract 4 equations, where there are 4 partial
derivatives that are known (∂u

∗
u

∂κ1
, ∂v∗u
∂κ1

, ∂u∗u
∂κ2

and ∂v∗u
∂κ2

); and 4 unknown partial

derivatives that are ∂u∗d
∂κ1

, ∂v∗d
∂κ1

, ∂u∗d
∂κ2

and ∂v∗d
∂κ2

. Solving for them we have ∂h∗d
∂κ1

and ∂h∗d
∂κ2

, that we can use to compute the entire derivative of the image
measurements with respect to the radial distortion

∂hd
∂κ1

=
∂hd
∂h∗d

∂h∗d
∂κ1

(C26)

∂hd
∂κ2

=
∂hd
∂h∗d

∂h∗d
∂κ2

(C27)

. (C28)

C3 Inverse Depth Point Feature Initialization and Deriva-
tives

As it happened in the previous section, point initialization function is exactly
the same as in the calibrated case (equations B49 to B55). It is not the same
for the derivatives, that accounts for the fact that calibration is included now
in the state vector. The Jacobian of the initialization function is in this case

J =

 I

0
...
0

∂y
∂xC 0 . . . 0 ∂y

∂h

 , (C29)

where the derivatives by the camera ∂y
∂xC now include the internal cali-

bration variables

∂y
∂xC

=

∂y
∂f

∂y
∂Cx

∂y
∂Cy

∂y
∂κ1

∂y
∂κ2

∂y
∂rWC

∂y
∂qWC

�
�
�7

0
∂y
∂v�
�
�7

0
∂y
∂ω

 . (C30)

From the six parameters defining an inverse depth feature, only the
azimuth-elevation angles defining the ray are the ones depending on the
calibration in the initialization step. The derivative by the calibration is
then
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∂y
∂f

=
(

0 0 0
∂θ

∂f

∂φ

∂f
0
)>

(C31)

∂y
∂Cx

=
(

0 0 0
∂θ

∂Cx

∂φ

∂Cx
0
)>

(C32)

∂y
∂Cy

=
(

0 0 0
∂θ

∂Cy

∂φ

∂Cy
0
)>

(C33)

∂y
∂κ1

=
(

0 0 0
∂θ

∂κ1

∂φ

∂κ1
0
)>

(C34)

∂y
∂κ2

=
(

0 0 0
∂θ

∂κ2

∂φ

∂κ2
0
)>

. (C35)

The above derivatives of azimuth-elevation angle pair by calibration can
be computed via the chain rule. The derivatives by the focal length are as
follows,

∂θ

∂f
=

∂θ

∂hW
∂hW

∂hC
∂hC

∂f
(C36)

∂θ

∂hW
=

(
hWz

hWx
2 + hWz

2 0
−hWx

hWx
2 + hWz

2

)
(C37)

∂hW

∂hC
= RWC (C38)

∂hC

∂f
=


−(uu−Cx)dx

f2

−(vu−Cy)dy
f2

0

c

 (C39)

∂φ

∂f
=

∂φ

∂hW
∂hW

∂hC
∂hC

∂f
(C40)

∂φ

∂hW
=


hWx hWy

(hWx 2+hWy
2+hWz

2)
√
hWx

2+hWz
2

−
√
hWx

2+hWz
2hWx hWy

(hWx 2+hWy
2+hWz

2)
hWy hWz

(hWx 2+hWy
2+hWz

2)
√
hWx

2+hWz
2


>

. (C41)

The derivatives by the radial distortion parameters are easily extracted
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∂θ

∂κ1
=

∂θ

∂hW
∂hW

∂hC
∂hC

∂κ1
(C42)

∂hC

∂κ1
=

(
(ud − Cx) r2

d (ud − Cx) r2
d 0

)> (C43)

∂φ

∂κ1
=

∂φ

∂hW
∂hW

∂hC
∂hC

∂κ1
(C44)

∂θ

∂κ2
=

∂θ

∂hW
∂hW

∂hC
∂hC

∂κ2
(C45)

∂hC

∂κ2
=

(
(ud − Cx) r4

d (ud − Cx) r4
d 0

)> (C46)

∂φ

∂κ2
=

∂φ

∂hW
∂hW

∂hC
∂hC

∂κ2
. (C47)

And finally, the derivatives by the principal point

h∗u =
(
u∗u
v∗u

)
=
(
uu − Cx
vu − Cy

)
(C48)

∂θ

∂Cx
=

∂θ

∂hW
∂hW

∂hC
∂hC

∂h∗u

∂h∗u
∂Cx

(C49)

∂hC

∂h∗u
=


dx
f 0
0 dy

f

0 0

 (C50)

∂h∗u
∂Cx

=

(
∂u∗u
∂Cx
∂v∗u
∂Cx

)
(C51)

∂u∗u
∂Cx

= −
(

1 + κ1r
2
d + κ2r

4
d + (ud − Cx)2 d2

x

(
2κ1 + 4κ2r

2
d

))
(C52)

∂v∗u
∂Cx

= −
(
(vd − Cy) (ud − Cx) d2

x

(
2κ1 + 4κ2r

2
d

))
(C53)

∂φ

∂Cx
=

∂φ

∂hW
∂hW

∂hC
∂hC

∂h∗u

∂h∗u
∂Cx

(C54)

∂θ

∂Cy
=

∂θ

∂hW
∂hW

∂hC
∂hC

∂h∗u

∂h∗u
∂Cy

(C55)

∂h∗u
∂Cy

=

(
∂u∗u
∂Cy
∂v∗u
∂Cy

)
(C56)

∂u∗u
∂Cy

= −
(
(ud − Cx) (vd − Cy) d2

y

(
2κ1 + 4κ2r

2
d

))
(C57)

∂v∗u
∂Cy

= −
(

1 + κ1r
2
d + κ2r

4
d + (vd − Cy)2 d2

y

(
2κ1 + 4κ2r

2
d

))
(C58)
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D Quaternion Normalization

Quaternion normalization must be performed after each update step of the
Extended Kalman Filter in order to ensure that its norm equals one, i.e.
q2

0 + q2
1 + q2

2 + q2
3 = 1. The state vector is then modified as follows

xnorm =


rWC

qWC

|qWC |
vW

ωC

xmap

 , (D1)

and the covariance should be updated with the Jacobian of the transfor-
mation

Pnorm = JnormPJ>norm , (D2)

Jnorm =

 I 0 0
0 ∂qnorm

∂q 0
0 0 I

 , (D3)

∂qnorm

∂q
=

(
q2

0 + q2
1 + q2

2 + q2
3

)− 3
2 × (D4)

×


q2

1 + q2
2 + q2

3 −q0q1 −q0q2 −q0q3

−q1q0 q2
0 + q2

2 + q2
3 −q1q2 −q1q3

−q2q0 −q2q1 q2
0 + q2

1 + q2
3 −q2q3

−q3q0 −q3q1 −q3q2 q2
0 + q2

1 + q2
2

(D5)

E Inverse Depth to Cartesian Parameterization
Conversion

As detailed in section 3.2.3, each inverse depth feature yρ,i represents a
Euclidean point (Xi, Yi, Zi)

> that can be computed as follows

yXY Z,i =

 Xi

Yi
Zi

 = gi (yρ,i) =

 xi
yi
zi

+
1
ρi

m (θi, φi) , (E1)

being m = (cosφi sin θi,− sinφi, cosφi cos θi)
>.

In the algorithms described in the book, when an inverse depth feature
yρ,i holds the conversion criteria detailed in section 3.6, it can be safely con-
verted to a Cartesian –XYZ– feature yXY Z,i without degrading the EKF

performance. The state vector x =
(
xC ,y>1 , . . . ,y

>
ρ,i, . . . ,y

>
n

)>
is then
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transformed into xNEW =
(
xC ,y>1 , . . . ,y

>
XY Z,i, . . . ,y

>
n

)>
, where y>XY Z,i

comes from the conversion described before in equation E1.
The state vector covariance is transformed by using the Jacobian of

the transformation Jgi , being the new covariance PNEW = JgiPJ>gi . The
relevant terms of the Jacobian Jgi are in the position of feature i

Jgi =

 I 0 0
0 ∂yXY Z,i

∂yρ,i
0

0 0 I

 . (E2)

The derivative ∂yXY Z,i
∂yρ,i

can be divided into the following parts

∂yXY Z,i
∂yρ,i

=
(
∂yXY Z,i
∂ri

∂yXY Z,i
∂θi

∂yXY Z,i
∂φi

∂yXY Z,i
∂ρi

)
; (E3)

where each of those is as follows

∂yXY Z,i
∂ri

= I (E4)

∂yXY Z,i
∂θi

=
∂yXY Z,i
∂m

∂m
∂θi

(E5)

∂yXY Z,i
∂φi

=
∂yXY Z,i
∂m

∂m
∂φi

(E6)

∂yXY Z,i
∂ρi

=
−m
ρ2

. (E7)

Here ∂yXY Z,i
∂m = 1

ρI, and ∂m
∂θi

and ∂m
∂φi

were already detailed in B47 and
B47.

163





Appendix B
Filter Tuning Understanding via
Dimensional Analysis

A Introduction

It is a well known fact in SfM that a moving calibrated camera ob-
serving a scene can recover scene geometry and camera motion only
up to a scale factor — scene scale is an non-observable magnitude if
only bearing measurements are made. Unlike SfM, previous SLAM work
[Davison 2003, Montiel et al. 2006] have used extra information in the form
of a known initialisation object to fix scene scale.

In this appendix it is given insight on how this non-visual information
is in fact not essential for solving the tracking problem and that no known
target object needs to be added to the scene. While this means that overall
scene scale cannot be recovered, real-time tracking can still proceed. And if
at any time extra information concerning the real scale does become avail-
able, it can be incorporated into the estimation.

In particular, a novel understanding of the EKF-based SfM problem in
terms of dimensionless parameters is derived using Buckingham’s Π theorem
[Buckingham 1914]. Π theorem relies on the requirement for dimensional
correctness in any formula and hence also any estimation process. Our EKF
SfM algorithm therefore recovers dimensionless, up-to-scale geometry, and
also provides benefits by allowing previous tuning parameters to be rolled
up into a canonical set which give an important new understanding of the
uncertainties in the system now in pixel units. These parameters in the im-
age provide a natural way of understanding image sequences, irrespectively
of the frame rate, actual scene and camera motion.

Further, it is also shown that jointly with the main dimensionless part of
the SLAM state vector an extra parameter representing metric scale could
be added. During tracking, vision-only measurements would not reduce
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the uncertainty in the scale parameter but only in the dimensionless scene
geometry. However, any measurement containing metric information such
as odometry, a feature at a known depth or the distance between two fea-
tures can be added when available and will correct both the scale and the
dimensionless scene geometry.

B Monocular SLAM Estimation Process

As in the previous chapters of the book, the state vector is divided into the
camera parameters xC and the parameters corresponding to the n features
in the map yi.

x =
(
x>C y>1 . . . y>i . . . y>n

)>
. (B1)

The camera state vector includes camera position, quaternion orienta-
tion, and linear and angular velocities:

xC =
(
rWC> qWC> vW

>
ωC
>)>

. (B2)

Points are coded in inverse depth parameterization; as proposed in chap-
ter 3 (see section 3.2.3 for details)

yi =
(
r>i θi φi ρi

)>
= (xi yi zi θi φi ρi)

> . (B3)

From here, we will split the state vector into a metric parameter d –
unobservable from image measurements– and a dimensionless state repre-
senting the scene and camera parameters. Doing this, the state vector is
partitioned according to observability with a monocular camera. Camera
measurements will reduce the scene geometric uncertainty on the dimen-
sionless parameters; but not the uncertainty in the metric parameter d.

x =
(
d Π>r qWC> Π>v Π>ω Π>y1 . . . Π>yi . . . Π>yn

)>
. (B4)

Notice that the orientation parameters in qWC are already dimensionless,
and hence remains the same in this dimensionless formulation.

The mapping from this dimensionless state vector to a metric one in-
volves a non-linear computation using the dimensionless geometry and the
metric parameter d:
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r = d Πr (B5)
v = d Πv (B6)
ω = Πω (B7)

yi =



d Πxi

d Πyi

d Πzi

θi
φi

Πρi/d

 . (B8)

C Buckingham’s Π Theorem Applied to Monocu-
lar SLAM

Buckingham’s Π Theorem [Buckingham 1914] is a key theorem in Dimen-
sional Analysis. It basically states that the physical laws hold indepen-
dently of the specific system of units that is chosen. Hence, given a
dimensionally correct equation involving n quantities of different kinds
f(X1, X2, X3, ..., Xn) = 0, the existing relationship between the variables
can also be expressed as
F (Π1,Π2,Π3, ...,Πn−k) = 0 where Πi is a reduced set of n − k indepen-
dent dimensionless groups of variables, and k the number of independent
dimensions appearing in the problem.

The monocular estimation process can be expressed as the following
function:(

r> q> v> ω> y>1 . . . y>n
)>

= f(σa, σα, z, σz,∆t, ρ0, σρ0 , σv0, σω0) , (C1)

where vector z stacks all the image measurements along the image sequence.
Table C1 summarizes all the variables involved in monocular SLAM estima-
tion and and their units.

r, ri q v, σv0 ω, σω0 σa σα θi, φi ρi, ρ0, σρ0 z,σz ∆t
l 1 lt−1 t−1 lt−2 t−2 1 l−1 1 t

Table C1: Variables involved in the monocular SLAM estimation and their
dimensions

Based on table C1, the dimensionless groups must be chosen. It can be
seen that the dimensions involved in the SLAM estimation are space and
time, so two variables containing these dimensions should be chosen to form
the dimensionless groups. We have chosen the parameters ρ0 and ∆t; and
the corresponding dimensionless variables can be seen in (Table C2).
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Πr Πri Πq Πv Πσv0 Πω Πσω0 Πσa Πσα Πρi Πσρ0 Πz Πσz

rρ0 riρ0 q vρ0∆t σv0ρ0∆t ω∆t σω0∆t σaρ0∆t2 σα∆t2 ρi
ρ0

σρ0
ρ0

z σz

Table C2: Dimensionless numbers and the corresponding involved variables

D Dimensionless Monocular SLAM Model

Using the dimensionless magnitudes, our new monocular SLAM model can
be defined as follows. The state vector is composed of the dimensionless
parameters defining the camera location, rotation and velocities; and the
parameters related with the map features:

ΠxC =
(

Πr
>,q>,Πv

>,Πω
>
)>

Πyi =
(

Πri
>, θi, φi,Πρi

)>
(D1)

The dynamic model for the camera motion in this dimensionless formu-
lation is

The dimensionless state update equation is:

fv =


Πrk+1

qk+1

Πvk+1

Πωk+1

 =


Πrk + Πvk + Πak

qk × q(Πωk + Παk)
Πvk + Πak

Πωk + Παk

 . (D2)

The insight about the geometrical meaning of the parameters in this
equation will be given in next sections. In the measurement model, the
features coded in inverse depth must be converted to 3D points in the world
reference first:

ΠW
h = Πri +

1
Πρi

m(θi, φi) , (D3)

where m(θi, φi) is the unit vector defined by the azimuth-elevation pair.
The 3D points in the world reference are then converted to the camera frame:

ΠC
h = RCW (q) (ΠW

h −Πr) (D4)

and projected into the camera using the pinhole model:

υ =
ΠC
h |x

ΠC
h |z

ν =
ΠC
h |y

ΠC
h |z

(D5)

It is worth remarking that the measurement equation do not involve
the actual size of the scene, coded in the metric parameter d. Visual mea-
surements from a monocular camera would not reduce then the initial un-
certainty in the size of the scene. If the metric size had to be estimated,
other measurements should be made. For example, if a distance between
two points is known, it can be used for reducing the uncertainty over d:
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1/ ρ0 1/ ρ0

∆ tσa
2

Π a Π r
zΠα σ z

r

(b)(a) (c) (d)

Figure E1: Geometric interpretation of the dimensionless monocular SLAM
parameters.

D(P1,P2) = d
√

(Πy2 |x −Πy1 |x)2 + (Πy2 |y −Πy1 |y)2 + (Πy2 |z −Πy1 |z)2 .

(D6)

E Geometric Interpretation of the Dimensionless
Parameters

Figure E1 details the geometrical interpretation of the main dimensionless
parameters that are involved in the estimation. The dimensionless param-
eters obtained in sections C and D actually represent image quantities in
pixel units, allowing an understanding of the filter tuning parameters as
image motion quantities instead of parameters in the 3D world.

As the input to a monocular SLAM system is an image sequence, the
motion between two images can be easily extracted from the sequence but
it may be hard to guess in terms of 3D quantities. And in addition to
that, it is the ratios of the 3D parameters the numbers that are important
for the estimation. For example, the image motion is the same for a certain
scene and camera translation than for a scene with double size and a camera
that also translates double. The image motion also would be the same if
the frame rate is double but the camera moves twice faster. Each one of
these four configurations should use different filter tuning parameters in a
standard formulation of monocular SLAM; but they are nicely represented
by a unique tuning in our dimensionless formulation as they imply the same
image motion.
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Figure E1(a) illustrates the geometric meaning ot the dimensionless pa-
rameter Πσa . The product σa∆t2 represents the effect of the acceleration
noise on the camera location. This value divided by 1/ρ0 gives the angle
represented in the figure. This angle can be seen as the parallax allowed to
a feature at depth 1/ρ0 due to camera acceleration.

The camera angular acceleration covariance in Figure E1(b) can clearly
be interpreted as an angle between frames and can be measured –as cali-
bration is known– in image pixels. Image measurements and image noise,
in Figure E1(c) are directly measured in the image, so they are already
equivalent to dimensionless angles.

The translation estimate, Πr (in fig E1(d)), can also be seen as the angle
defined by the translation between frames and the initial inverse depth.

As a result of the analysis given in this section, and with minimum
changes in the structure of the EKF estimation scheme, all estimated pa-
rameters and filter tuning can be seen as dimensionless angles and conse-
quently transformed to pixels in a calibrated camera. We believe that this
approach simplifies the filter tuning: 3D acceleration values, that cannot
be directly extracted from the visualization of the sequence to be processed
are no longer required. Instead of that, quantities measured in pixels in the
image are the only numbers necessary for the tuning –easier to extract from
the sequence.

F Real Image Results

We have performed several real-image experiments in order to show the main
advantages of this new interpretation of the monocular SLAM problem under
a dimensionless optic. The first one illustrates how the scale of the scene
in usual monocular SLAM depends on the prior knowledge added to scene,
even if this knowledge is very weak –in the case where no known target is
added, scale depends on prior inverse depth values and acceleration noise.
The second experiment shows the use of image tuning and the reduction
in the number of tuning parameters that comes as consequence from the
proposed scheme. In the third experiment, the same image tuning is used in
two different sequences which have different metric qualities but lead to the
same image motion. All of the sequences have been recorded with a IEEE
1394 320×240 monochrome camera at 30 fps.

F1 Dependence of scene scale on a priori parameters

The same sequence was processed with the dimensional EKF SLAM al-
gorithm varying the ρ0 parameter. Figure F1 shows the estimation for
ρ0 = 0.5m−1 and ρ0 = 0.1m−1. Notice that the estimated depth of the scene
(the distance between the camera and the points in the bookcase) tends to be
at the depth prior (2m and 10m). The two estimated scenes have the same
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Figure F1: Left: sample. Centre: EKF SLAM estimation result ρ0 =
0.5m−1. Right: EKF SLAM estimation result ρ0 = 0.1m−1. The uncer-
tainty for the features is plotted in red and blue, the camera uncertainty in
cyan and the camera trajectory in yellow.

Figure F2: Pure rotation image search regions. Left: sample image. Centre:
Πα = 2pxls. Right:Πα = 4pxls.

form, the difference is just the scale of the axis. If ΠWC
r = ρ0rWC and Πyi

were estimated using the dimensionless monocular SLAM proposed, these
two experiments would be normalized into one, in which normalized depth
tends to be at dimensionless ’1’,

F2 Image tuning in a pure rotation sequence

This sequence is a pure camera rotation in a hallway. Dimensional monocu-
lar SLAM should have been tuned with real camera accelerations and depth
priors. As these values are not observable, they need to be guessed. In the
dimensionless monocular SLAM of this chapter, the filter parameters are
tuned in image units, which are directly observable.

Two experiments with the same Πσa = 0, Πσz = 1pxls values but differ-
ent tuning in Πσα: a) Πσα = 2pxls, and b) Πσα = 4pxls has been performed
(figure F2). Because of the image tuning, their effect can be directly seen
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Appendix B. Filter Tuning Understanding via Dimensional Analysis

in the 95% image search regions size for the map features.
It is important to notice again here that neither 3D scene assumptions

nor time between frames ∆t have been neded in the previous paragraph
to propose a filter tuning. The tuned values are the allowed image motion
between frames due to camera linear and angular acceleration and image
noise.

F3 The same image tuning for different sequences

Two translational sequences have been recorded walking along a corridor
and looking at the wall. In the first one, the distance from the wall was 2.5
metres. In the second, the distance from the wall was twice (5 metres), the
distance walked along the corridor the same, and the walking velocity was
double (therefore, the number of frames of the second sequence is half the
first one). Although they are two different experiments, the image motion in
both sequences is the same, and dimensionless monocular SLAM has to be
tuned with same values. In this experiment, these values were: σz = 1pxl,
σa = 2pxl and σα = 2pxl. Notice again the simplicity of image tuning
compared with 3D tuning, in which you have to guess the unobservable
depth prior and the 3D accelerations. Figure F3 shows the results of both
estimations.

The dimensionless estimated translation can be interpreted as the trans-
lation in units of the initial depth prior. As the wall is twice as far in the
second sequence, the second sequence’s estimated translation is half. It can
also be noticed that, as the normalized translation is smaller in the sec-
ond experiment, the normalized 3D point positions are estimated with less
accuracy and have larger uncertainty regions.

G Conclusions

As a result of an analysis of the SfM problem under Π Buckingham’s theo-
rem, a dimensionless parametrization for the EKF state vector can be pro-
posed that clarifies the role of the filter tuning parameters as image motion
quantities. As a consequence, filter tuning can be done using the allowed ac-
celerations to the filter projected in the images –that is, in pixels– instead of
using the allowed acceleration itself in metric units –which is more difficult
to estimate having the sequence as the only input to the algorithm.

Up-to-scale results from real-time, EKF based monocular SLAM without
an initialisation target are presented. As no known points are included in
the estimation, the real size of the scene is not going to be recovered. A
scaled estimation is going to be obtained, being the overall scene scale being
determined from a priori knowledge inserted to the filter –even if it is so
weak as inverse depth priors and linear acceleration noise are.
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G. Conclusions

Figure F3: Two equivalent sequences. First and last images and 3D esti-
mated geometry
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